
TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

21

PSelInv—A Distributed Memory Parallel Algorithm for Selected 1
Inversion: The Symmetric Case 2

MATHIAS JACQUELIN, Lawrence Berkeley National Laboratory 3
LIN LIN, University of California, Berkeley and Lawrence Berkeley National Laboratory 4
CHAO YANG, Lawrence Berkeley National Laboratory 5

We describe an efficient parallel implementation of the selected inversion algorithm for distributed memory 6
computer systems, which we call PSelInv. The PSelInv method computes selected elements of a general 7
sparse matrix A that can be decomposed as A = LU , where L is lower triangular and U is upper triangular. 8
The implementation described in this article focuses on the case of sparse symmetric matrices. It contains an 9
interface that is compatible with the distributed memory parallel sparse direct factorization SuperLU_DIST. 10
However, the underlying data structure and design of PSelInv allows it to be easily combined with other 11
factorization routines, such as PARDISO. We discuss general parallelization strategies such as data and task 12
distribution schemes. In particular, we describe how to exploit the concurrency exposed by the elimination 13
tree associated with the LU factorization of A. We demonstrate the efficiency and accuracy of PSelInv by 14
presenting several numerical experiments. In particular, we show that PSelInv can run efficiently on more 15
than 4,000 cores for a modestly sized matrix. We also demonstrate how PSelInv can be used to accelerate 16
large-scale electronic structure calculations. 17

Categories and Subject Descriptors: G.4 [Mathematical Software]: Algorithm design and analysis; G.4 18
[Mathematical Software]: Parallel and vector implementations; I.1.2 [Symbolic and Algebraic Manip- 19
ulation]: Algorithms—Algebraic algorithms 20

General Terms: Design, Performance 21

Additional Key Words and Phrases: Selected inversion, sparse direct method, distributed memory parallel 22
algorithm, high-performance computation, electronic structure theory 23

ACM Reference Format: 24
Mathias Jacquelin, Lin Lin, and Chao Yang. 2016. PSelInv—A distributed memory parallel algorithm for 25
selected inversion: The symmetric case. ACM Trans. Math. Softw. 43, 3, Article 21 (November 2016), 28 26
pages. 27
DOI: http://dx.doi.org/10.1145/2786977 28

1. INTRODUCTION 29

Let A ∈ C
N×N be a nonsingular sparse matrix. We are interested in computing selected 30

elements of A−1, defined as 31

{(A−1)i, j | for 1 ≤ i, j ≤ N such that Ai, j �= 0}. (1)

This work was partially supported by the Laboratory Directed Research and Development Program of
Lawrence Berkeley National Laboratory under U.S. Department of Energy contract DE-AC02-05CH11231
(L. L. and C. Y.), the Scientific Discovery through Advanced Computing (SciDAC) program funded by the
U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy
Sciences (M. J., L. L., and C. Y.), and the Center for Applied Mathematics for Energy Research Applications
(CAMERA), which is a partnership between Basic Energy Sciences (BES) and Advanced Scientific Computing
Research (ASRC) at the U.S Department of Energy.
Authors’ addresses:Q1
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 0098-3500/2016/11-ART21 $15.00

DOI: http://dx.doi.org/10.1145/2786977

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

http://dx.doi.org/10.1145/2786977
http://dx.doi.org/10.1145/2786977

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

21:2 M. Jacquelin et al.

Sometimes we only need to compute a subset of these selected elements—for example,32
the diagonal elements of A−1. The most straightforward way to obtain these selected33
elements of A−1 is to compute the full inverse of A and then extract the selected34
elements. But this is often prohibitively expensive in practice. It turns out that to35
compute these selected elements of A−1, some additional elements of A−1 often need to36
be computed. However, the overall set of nonzero elements that need to be computed37
often remains a small percentage of all elements of A−1 due to the sparsity structure38
of A.39

The selected elements of A−1 defined by (1) can be used to obtain trace estimation of40
the form41

Tr[A−1] or Tr[A−1 BT], (2)

if the sparsity pattern of B ∈ C
N×N is contained in the sparsity pattern of A (i.e.,42

{(i, j)|Bi, j �= 0} ⊂ {(i, j)|Ai, j �= 0}). The computation of selected elements of A−1 together43
with the trace estimation of the form (2) arise in several scientific computing appli-44
cations, including density functional theory (DFT) [Hohenberg and Kohn 1964; Kohn45
and Sham 1965], dynamical mean-field theory (DMFT) [Kotliar et al. 2006], Poisson-46
Boltzmann equations [Xu and Maggs 2013], and uncertainty quantification [Bekas47
et al. 2009].48

It is possible to compute selected elements of A−1 by iterative methods such as the49
Lanczos algorithm [Lanczos 1950; Sidje and Saad 2011], combined with Monte Carlo50
[Bekas et al. 2007] or deterministic probing techniques [Tang and Saad 2012]. These51
types of methods work well if A−1 is a banded matrix or it becomes a banded matrix52
after elements with absolute value less than ε have been truncated, and a sparse53
factorization of A is prohibitively expensive to perform.54

In this article, we focus on using a sparse direct method to compute selected elements55
of A−1. We assume that a sparse LU factorization (or LDLT factorization if A is sym-Q256
metric) of A is computationally feasible. The main advantage of a direct method is that57
we do not need to make assumptions on the decay property of A−1. The disadvantage58
of this direct method is that it actually computes a superset of the selected elements of59
A−1 as defined in Equation (1). In particular, all elements of A−1 indexed by the union60
of the nonzero index sets of the L and U factors need to be computed. It should be noted61
that as long as L and U remain sparse, computing elements of A−1 restricted to this62
superset can still be much faster than computing the full inverse.63

Sparse direct methods for computing selected elements of A−1 were first proposed64
in Takahashi et al. [1973] and Erisman and Tinney [1975]. The use of an elimination65
tree for computing selected elements of inverse was presented in Campbell and Davis66
[1995] for a sequential algorithm. Motivated by quantum transport simulations, Li67
et al. [2008], Li and Darve [2012], and Li et al. [2013] developed the fast inverse68
using nested dissection (FIND) algorithm for computing the diagonal of A−1. Some69
related work has been described in Cauley et al. [2012] and Eastwood and Wan [2013].70
The FIND algorithm is in principle applicable to matrices with a general sparsity71
pattern, but so far its implementation focuses on structured matrices obtained from72
second-order partial differential operators discretized by a finite difference scheme.73
The implementation of FIND is not yet publicly available. Nor is it scalable to a large74
number of processors. Lin et al. [2009b] developed the hierarchically Schur complement75
(HSC) method for a similar type of matrix arising from DFT-based electronic structure76
calculations. The method has also been generalized and applied to quantum transport77
calculations [Hetmaniuk et al. 2013].78

An efficient implementation of the selected inversion algorithm for a general sym-79
metric matrix, called SelInv, was presented in Lin et al. [2011b] and is publicly avail-80
able. Amestoy et al. [2012a] considered a more general parallel matrix inversion method81

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

PSelInv: The Symmetric Case 21:3

for computing any subset of entries of A−1. They implemented their algorithm in the 82
MUMPS package [Amestoy et al. 2001], which is based on the multifrontal method. In 83
this algorithm, the actual set of computed entries of A−1 contains entries on the critical 84
path of the requested entries to the root of the elimination tree, and therefore this 85
is also a superset of the requested entries of A−1. This method is more efficient than 86
our algorithm when a small number of entries of A−1 are requested. However, when a 87
relatively large number of entries are to be computed, such as in the computation of 88
the selected elements defined by (1), our algorithm can more efficiently reuse the infor- 89
mation shared among different entries of A−1, and our numerical results indicate that 90
our algorithm is more efficient than the parallel matrix inversion method implemented 91
in MUMPS. In addition to the work presented in Amestoy et al. [2012a, 2012b], paral- 92
lel implementation of algorithms for computing selected elements of inverse tailored 93
to matrices obtained from a finite difference discretization of a second-order partial 94
differential operator have appeared in several publications [Petersen et al. 2009; Lin 95
et al. 2011a]. The method developed by Petersen et al. [2009], which was designed 96
for a quasi-1D quantum transport problem, is scalable to a relatively small (32 ∼ 64) 97
number of processors. In Lin et al. [2011a], we described an efficient parallel imple- 98
mentation for discretized 2D Laplacian-type operators and demonstrated the efficiency 99
of the implementation when it was used to solve a problem with billions of degrees of 100
freedom on 4,096 processors. However, this implementation cannot be used to perform 101
a selected inversion of a general symmetric sparse matrix with an arbitrary sparsity 102
pattern. 103

The purpose of this article is to extend the selected inversion algorithm presented 104
in Lin et al. [2011b] and describe an implementation of a parallel selected inversion 105
algorithm designed for distributed memory parallel computers. Such an implementa- 106
tion allows us to solve much larger problems by utilizing more computational resources 107
available on high-performance computers. The present work is more general than the 108
previous work in Lin et al. [2011a], which assumes a balanced binary elimination 109
tree and is only applicable to structured sparse matrices obtained from finite differ- 110
ence discretization of differential operators. It can utilize far greater numbers of pro- 111
cessors than the sequential algorithm described in Lin et al. [2011b] for general sparse 112
matrices. 113

The parallel implementation of the selected inversion algorithm that we present 114
in this article uses a more general data distribution and communication strategy to 115
divide the work among a large number of processors to achieve multiple levels of 116
concurrency. We name our implementation PSelInv, and the software is publicly avail- 117
able.1 Our first implementation focuses on the case of sparse symmetric matrices. In 118
principle, the PSelInv package can be interfaced with any sparse LU and LDLT factor- 119
ization routines. Our current implementation provides an interface to the SuperLU_DIST 120
[Li and Demmel 2003] package. The user has the option of using either the ParMETIS 121
[Karypis and Kumar 1998] software or the PT-Scotch [Chevalier and Pellegrini 2008] 122
package to reorder the matrix in parallel to minimize the nonzero fill in the sparse 123
matrix factors. 124

The rest of the article is organized as follows. We review the basic idea of the se-

Q3

125
lected inversion method in Section 2 and discuss various implementation issues for the 126
distributed memory parallel selected inversion algorithm in Section 3. The numerical 127
results with applications to various matrices from the Harwell-Boeing Test Collection 128
[Duff et al. 1992] and the University of Florida Matrix Collection [Davis and Hu 2011], 129

1http://www.pexsi.org/, distributed under the BSD license.

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

http://www.pexsi.org/

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

21:4 M. Jacquelin et al.

and also applications from DFT, are given in Section 4, followed by our conclusions and130
the discussion of future work in Section 5.131

Standard linear algebra notation is used for vectors and matrices throughout the132
article. We use Ai, j to denote the (i, j)-th entry of the matrix A and fi to denote the i-th133
entry of the vector f . With slight abuse of notation, both a supernode index and the set134
of column indices associated with a supernode are denoted by uppercase script letters,135
such as I,J ,K. Furthermore, we use Ai,∗ and A∗, j to denote the i-th row and the j-th136
column of A, respectively. Similarly, AI,∗ and A∗,J are used to denote the I-th block row137

and the J -th block column of A, respectively. A−1
I,J denotes the (I,J)-th block of the138

matrix A−1 (i.e., A−1
I,J ≡ (A−1)I,J). When the block AI,J itself is invertible, its inverse is139

denoted by (AI,J)−1 to distinguish it from A−1
I,J .140

2. SELECTED INVERSION ALGORITHM141

2.1. Basic Formulation142

Although this article focuses on the computation of selected elements of A−1 when A is a143
sparse symmetric matrix, the idea of the selected inversion algorithm can be given for a144
general square matrix Aand will be used in our ongoing work for computing the selected145
elements of A−1 for asymmetric matrices. The standard approach for computing A−1 is146
to first decompose the general matrix A using the LU factorization147

A = LU, (3)

where L is a unit lower triangular matrix and U is an upper triangular matrix. To148
stabilize the computation, matrix reordering and partial pivoting [Golub and Van Loan149
1996] are usually applied to the matrix of A, and the general form of the LU factorization150
can be given as151

PAQ = LU, (4)

where P and Q are two permutation matrices. To simplify the discussion, we will use152
Equation (3) and assume that A has already been permuted.153

Given the LU factorization, the most straightforward way to compute selected154
elements of A−1 is to obtain A−1 ≡ (x1, x2, . . . , xn) by solving several triangular155
systems156

Lyj = e j, U xj = yj, (5)

where j = 1, 2, . . . , n, and e j is the j-th column of the n × n identity matrix. Such157
a procedure, which will be referred to as the direct inversion algorithm, is generally158
very costly even when A is sparse. The direct inversion algorithm performs too much159
computation when only a small number of selected elements of the inverse matrix are160
needed.161

An alternative algorithm is the selected inversion algorithm, which accurately com-162
putes all selected elements of A−1. The idea of the selected inversion method originates163
from Takahashi et al. [1973] and Erisman and Tinney [1975], and the algorithm and164
its variants have been discussed in several works [Lin et al. 2009b; Lin et al. 2011b;165
Amestoy et al. 2012b; Li et al. 2008; Li and Darve 2012; Kuzmin et al. 2013]. The se-166
lected inversion algorithm can be understood as follows. We first partition the matrix167
A into 2 × 2 blocks of the form168

A =
(

A1,1 A1,2
A2,1 A2,2

)
, (6)

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

PSelInv: The Symmetric Case 21:5

where A1,1 is a scalar of size 1 × 1. We can write A1,1 as a product of two scalars L1,1 169
and U1,1. In particular, we can pick L1,1 = 1 and U1,1 = A1,1. Then 170

A =
(

L1,1 0
L2,1 I

)(
U1,1 U1,2

0 S2,2

)
, (7)

where 171

L2,1 = A2,1(U1,1)−1, U1,2 = (L1,1)−1 A1,2. (8)

The L and U factors are usually directly accessible in a standard LU factorization, and 172
173

S2,2 = A2,2 − L2,1U1,2 (9)

is the Schur complement. Using the decomposition given by Equation (7), we can 174
express A−1 as 175

A−1 =
(

(U1,1)−1(L1,1)−1 + (U1,1)−1U1,2S−1
2,2L2,1(L1,1)−1 −(U1,1)−1U1,2S−1

2,2
−S−1

2,2L2,1(L1,1)−1 S−1
2,2

)
. (10)

Since S2,2 is the same as S here, without ambiguity, S−1
2,2 ≡ (S−1)2,2 can be used. To 176

simplify the notation, we define the normalized LU factors as 177

L̂1,1 = L1,1, Û1,1 = U1,1, L̂2,1 = L2,1(L1,1)−1, Û1,2 = (U1,1)−1U1,2, (11)

and Equation (10) can be equivalently given by 178

A−1 =
(

(Û1,1)−1(L̂1,1)−1 + Û1,2S−1
2,2 L̂2,1 −Û1,2S−1

2,2
−S−1

2,2 L̂2,1 S−1
2,2

)
. (12)

Let us denote by C the set of indices 179

{i| (L2,1
)

i �= 0} ∪ { j| (U1,2
)

j �= 0}, (13)

and assume that S−1
2,2 has already been computed. From Equation (12), it can be readily 180

observed that to compute the i-th element of A−1
2,1 ≡ −S−1

2,2 L̂2,1 for i ∈ C, we only need 181

the entries 182{(
S−1

2,2

)
i, j |i ∈ C, j ∈ C

}
. (14)

The same set of entries of S−1
2,2 are required to compute selected entries of A−1

1,2 ≡ 183

−Û1,2S−1
2,2. No additional entries of S−1

2,2 are needed to complete the computation of A−1
1,1, 184

which involves the matrix product of selected entries of Û1,2 and A−1
2,1. This procedure 185

can be repeated recursively to compute selected elements of S−1
2,2 until S2,2 is a scalar of 186

size 1. A pseudocode for demonstrating this column-based selected inversion algorithm 187
for symmetric matrix is given in Lin et al. [2011b]. 188

In practice, a column-based sparse factorization and selected inversion algorithm 189
may not be efficient due to the lack of level 3 BLAS operations. For a sparse matrix 190
A, the columns of A and the L factor can be partitioned into supernodes. A supernode 191
is a maximal set of contiguous columns J = { j, j + 1, . . . , j + s} of the L factor that 192
have the same nonzero structure below the (j + s)-th row, and the lower triangular 193
part of LJ ,J is dense. However, this strict definition can produce supernodes that are 194
either too large or too small, leading to memory usage, load balancing, and efficiency 195
issues. Therefore, in our work, we relax this definition to limit the maximal number 196

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

21:6 M. Jacquelin et al.

Fig. 1. (a) A structurally symmetric matrix Aof size 29×29 divided into 10 supernodes. The nonzero matrix
elements in A are labeled as round dots, and the extra fill-in elements in L are labeled as squares. (b) The
elimination tree corresponding to the matrix A and its supernode partitioning.

of columns in a supernode (i.e., sets are not necessarily maximal). The relaxation also197
allows a supernode to include columns for which nonzero patterns are nearly identical198
to enhance the efficiency [Ashcraft and Grimes 1989]. This approach is also used in199
SuperLU_DIST [Li and Demmel 2003]. Even though the nonzero pattern of the matrix200
can be nonsymmetric, the same supernode partitioning is usually applied to the row201
partition as well, and we assume that the factorization has been computed using the202
structure of A+ AT . Then the nonzero structures of L and U are the transpose of each203
other. The total number of supernodes is denoted by N . An example of the supernode204
partitioning of a structurally symmetric matrix A together with the extra fill-in in its205
L factor (U factor omitted due to structural symmetry) are given in Figure 1(a).206

Using the notation of supernodes, a pseudocode for the selected inversion algorithm207
is given in Algorithm 1. The key step to gain computational efficiency in the selected208
inversion algorithm is step 2, which identifies the collection of all nonzero row and209
column indices corresponding to the supernode K, denoted by C. All subsequent steps210
operate only on these nonzero rows and columns within the sparsity pattern of the211
selected elements, thereby significantly reducing the computational cost.212

It should be noted that if A is a sparse symmetric matrix, the normalized LU factors213
satisfy the relation214

ÛC,K = L̂T
K,C . (15)

To simplify the implementation, the entire diagonal block A−1
K,K is computed even though215

it is symmetric. Due to round-off error, the numerical update in step 4 may not pre-216
serve this symmetry in finite precision. Our numerical results indicate that the loss217
of symmetry may accumulate, especially for ill-conditioned matrices. To reduce such218
error for symmetric matrices, we can simply symmetrize the diagonal block of A−1 by219

performing A−1
K,K ← 1

2 (A−1
K,K + A−T

K,K) after step 4 for each K.220

Furthermore, it should be noted that in the symmetric case, Equation (12) can be221
simplified using an LDLT factorization, which is more efficient than an LU factor-222
ization, where L is a unit lower triangular matrix and D is a block diagonal matrix223
consisting of 1×1 or 2×2 blocks. The simplification of the selected inversion algorithm224

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

PSelInv: The Symmetric Case 21:7

ALGORITHM 1: Selected Inversion Algorithm Based on LU Factorization.

Input:
(1) The supernode partition of columns of A: {1, 2, . . . ,N }
(2) A supernodal LU factorization of A with (unnormalized) LU factors L

and U .
Output: Selected elements of A−1(i.e., A−1

I,J such that LI,J is not an empty block).
for K = N ,N − 1, . . . , 1 do

1 Find the collection of indices
C = {I | I > K, LI,K is a nonzero block} ∪ {J | J > K,UK,J is a nonzero block}

2 L̂C,K ← LC,K(LK,K)−1, ÛK,C ← (UK,K)−1UK,C
end
for K = N ,N − 1, . . . , 1 do

Find the collection of indices
C = {I | I > K, LI,K is a nonzero block} ∪ {J | J > K,UK,J is a nonzero block}

3 Calculate A−1
C,K ← −A−1

C,C L̂C,K

4 Calculate A−1
K,K ← U −1

K,KL−1
K,K − ÛK,C A−1

C,K
5 Calculate A−1

K,C ← −ÛK,C A−1
C,C

end

with an LDLT factorization can be found in Lin et al. [2011b]. For symmetric matrices, 225

A−1
K,C (step 5) is readily obtained as the transpose of A−1

C,K without extra computation. 226

2.2. Elimination Tree 227

Both the factorization and the selected inversion can be conveniently described in terms

Q4

228
of traversals of an elimination tree [Liu 1990]. Each node of the tree corresponds to a 229
supernode of A. A node R is the parent of a node K if and only if 230

R = min{I > J | LI,J is a nonzero block}. (16)

An example of the elimination tree corresponding to the matrix in Figure 1(a) is given 231
in Figure 1(b). 232

In the factorization procedure, the traversal of the elimination tree is a bottom-up 233
process that starts from the leaves of the tree. A parent supernode cannot be factored 234
until the supernodes associated with all of its children in the tree have been factored. 235
This type of task dependency also determines the amount of concurrency that can be 236
exploited to speed up the factorization on a parallel computer. 237

In the selected inversion procedure, the traversal of the elimination tree is a top- 238
down process that starts from the root of the tree. Computing the selected elements 239
in the K-th supernode of A−1 requires the selected elements of A−1 already computed 240
at ancestor nodes of K, but not those computed at its sibling nodes and their descen- 241
dants. Consequently, the selected inversion of supernodes that belong to two different 242
branches of the elimination tree can in principle be carried out independently as long as 243
the selected elements computed at supernodes above these branches have been passed 244
to processors that are assigned to work on these branches. 245

3. DISTRIBUTED MEMORY PARALLEL SELECTED INVERSION ALGORITHM 246

In this article, we present the distributed memory PSelInv method. Our first imple- 247
mentation focuses on the case of symmetric matrices. For such matrices, the selected 248
inversion algorithms described in Algorithm 1 require a sparse LU or LDLT factor- 249
ization of A to be available first. Here we use the SuperLU_DIST software package 250
[Li and Demmel 2003] to obtain the LU factorization, which has been shown to be 251
scalable to a large number of processors on distributed memory parallel machines. 252

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

21:8 M. Jacquelin et al.

The relatively simple data structure of SuperLU_DIST allows easy access to sparse L253
and U factors. However, the main ideas that we develop here can be combined with254
other sparse matrix solvers, such as MUMPS [Amestoy et al. 2001], and PARDISO [Schenk255
and Gartner 2006] as well, which provides the LDLT functionality and can potentially256
be two times faster in the factorization phase. We also note that only symmetric per-257
mutation of the matrix A is allowed, even though SuperLU_DIST allows the column258
permutation to be different from the row permutation. In this work, to preserve the259
symmetry of the matrix, we do not perform the equilibration procedure often used260
in the LU factorization to modify poorly scaled matrix elements. In the current im-261
plementation of the PSelInv method, we explicitly take advantage of the symmetry262
of the matrix and only compute the lower triangular part of the selected elements of263
A−1. However, our implementation is not optimal in terms of memory allocation in the264
sense that both the upper and lower triangular part of A−1 are stored. As will be seen265
in the following, such a strategy simplifies the communication pattern and efforts for266
bookkeeping in the case of 2D block cyclic data distribution and facilitates generalizing267
PSelInv to asymmetric matrices. We also note that the suboptimal memory allocation268
is not a severe limitation of the PSelInv method. The memory footprint of PSelInv can269
be further optimized for applications that are constrained by the memory usage. Our270
numerical results also indicate that the additional memory usage by PSelInv is rela-271
tively small compared to that used in other procedures, such as the parallel numerical272
factorization.273

We use the same 2D block cyclic distribution scheme employed in SuperLU_DIST to274
partition and distribute both the L factor and the selected elements of A−1 to be com-275
puted. We will review the main features of this type of distribution in Section 3.1. In the276
2D block cyclic distribution scheme, each supernode K is assigned to and partitioned277
among a subset of processors. However, computing the selected elements of A−1 con-278
tained in the supernode K requires retrieving previously computed selected elements279
of A−1 that belong to ancestors of K in the elimination tree. These selected elements280
may reside on other processors. As a result, communication is required to transfer281
data among different processors to complete steps 3, 4, and 5 of Algorithm 1 in each282
iteration. We will discuss how this is done in Section 3.2. The key to reducing com-283
munication cost and achieving scalable performance is to overlap communication with284
computation by using asynchronous point-to-point MPI functions, even though some of285
these communication events are collective in nature (e.g., broadcast and reduce) within286
a communication subgroup.287

In addition to utilizing a fine-grain level of parallelism in computing A−1 for each su-288
pernode, we introduce a coarse-grain level of parallelism by exploiting the concurrency289
available in the elimination tree. This amounts to executing different iterates of the290
for loop in Algorithm 1 in parallel. Although the elimination tree may exhibit many291
independent tasks associated with supernodes that belong to different branches of the292
elimination tree, the 2D block cyclic distribution of L and A−1 may prevent these tasks293
from being performed completely simultaneously on different processors. The key to294
minimizing the dependency issue is to properly assign the order of computational tasks295
and to overlap computation and communication as much as possible. We will discuss296
our preliminary strategy for improving the parallel efficiency using the elimination297
tree in Section 3.3.298

3.1. Distributed Data Layout and Structure299

As discussed in Section 2, the columns of A, L, and U are partitioned into supernodes.300
Different supernodes may have different sizes. The same partition is applied to the301
rows of these matrices to create a 2D block partition of these matrices. The submatrix302
blocks are mapped to processors that are arranged in a virtual 2D grid of dimension303

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

PSelInv: The Symmetric Case 21:9

Fig. 2. Data layout of the internal sparse matrix data structure used by PSelInv.

Pr × Pc in a cyclic fashion as follows: the (I,J)-th matrix block is held by the processor 304
labeled as 305

Pmod(I−1,Pr)×Pc+mod(J−1,Pc)+1. (17)

This is called a 2D block cyclic data-to-processor mapping. The mapping itself does not 306
take the sparsity of the matrix into account. If the (I,J)-th block contains only zero 307
elements, then that block is not stored. It is possible that some nonzero blocks may 308
contain several rows of zeros. These rows are not stored either. As an example, a 4 × 3 309
grid of processors is depicted in Figure 2(a). The mapping between the 2D supernode 310
partition of the matrix in Figure 1(a) and the 2D processor grid in Figure 2(a) is depicted 311
in Figure 2(b). Each supernodal block column of L is distributed among processors that 312
belong to a column of the processor grid. Each processor may own multiple matrix 313
blocks. For instance, the nonzero rows in the second supernode are owned by processors 314
P2 and P5. More precisely, P2 owns two nonzero blocks, whereas P5 is responsible for 315
one block. Note that these nonzero blocks are not necessarily contiguous in the global 316
matrix. Although the nonzero structure of A is not taken into account during the 317
distribution, it has been shown in practice that 2D layouts lead to higher scalability 318
for both dense [Blackford 1997], sparse Cholesky factorizations [Rothberg and Gupta 319
1994], and LU factorization [Li and Demmel 2003]. 320

In the current implementation, PSelInv contains an interface that is compatible with 321
the SuperLU_DIST software package. To allow PSelInv to be easily integrated with other 322
LDLT or LU factorization codes, we create some intermediate sparse matrix objects 323
to hold the distributed L and U factors. Such intermediate sparse matrix objects will 324
be overwritten by selected elements of A−1 in the selected inversion process. Each 325
nonzero block LI,J is stored as follows. Diagonal blocks LI,I are always stored as 326
dense matrices. Nonzero entries of LI,J (I > J) are stored contiguously as a dense 327
matrix in a column-major order, even though row indices associated with the stored 328
matrix elements are not required to be contiguous. As mentioned at the beginning 329
of Section 3, our implementation is not optimal in terms of memory allocation for 330
symmetric matrices in the sense that the nonzero entries within UI,J (I < J) are 331
also stored as a dense matrix in a contiguous array in a column major order, even 332

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

21:10 M. Jacquelin et al.

though the values of UI,J are identical to those of LT
J ,I for symmetric matrices. The333

nonzero column indices associated with the nonzeros entries in UI,J are not required334
to be contiguous either. We remark that for matrices with highly asymmetric sparsity335
patterns, it is more efficient to store the upper triangular blocks using the skyline336
structure shown in Li and Demmel [2003]. However, we choose to use a simpler data337
layout because it allows level-3 BLAS (GEMM) to be used in the selected inversion338
process.339

3.2. Computing Selected Elements of A−1 within Each Supernode in Parallel340

In this section, we detail how steps 2 through 5 in Algorithm 1 can be completed in341
parallel.342

We perform step 2 of Algorithm 1 in a separate pass, as the data communication343
required in this step is relatively simple. The processor that owns the block LK,K344
broadcasts LK,K to all other processors within the same column processor group owning345
nonzero blocks LI,K in the supernode K. Each processor in that group performs the346

triangular solve L̂I,K ≡ LI,K(LK,K)−1 for each nonzero block contained in the set C347
defined in step 1 of the algorithm. Because LI,K is not used in the subsequent steps348

of selected inversion once L̂I,K has been computed, it is overwritten by L̂I,K. Since349
communication is limited to a processor column group only, step 2 can be carried out350
for multiple supernodes at the same time.351

A more complicated communication pattern is required to complete step 3 in parallel.352

Because A−1
C,C and L̂C,K are generally owned by different processor groups, there are two353

possible ways to carry out the multiplication of A−1
C,C with L̂C,K. The first approach354

is to send blocks of L̂C,K to processors that own the matching blocks of A−1
C,C so that355

matrix-matrix multiplication can be performed on processors owning A−1
C,C . The second356

approach is to send data in the opposite direction—that is, one can send blocks of A−1
C,C357

to the matching blocks of L̂C,K so that matrix-matrix multiplication can be performed358

on processors owning L̂C,K.359
To compare the cost of these two approaches, let us first consider the case in which all360

blocks L̂I,K with I ≥ K are dense matrix blocks of equal size mb×mb, and C = {I|I ≥ K}.361
This is approximately the case when K is near the root of the elimination tree. We362

assume that there are
√

P × √
P processors, and thus the size of the set C is mb

√
P.363

We also assume that the matrix blocks in L̂C,K are distributed among
√

P processors364
within the same column group, and each processor in this processor column also holds365

a dense block L̂I,K of size mb × mb. In the first approach, the computation is performed366

in parallel on P processors, and the computational cost on each processor is O(m3
b). In367

the second approach, the computation is performed in parallel on
√

P processors only,368

and the computational cost on these processors is O(m3
b

√
P). All other processors are369

idle in the computational step, and this leads to severe load imbalance when P is large.370

We implemented the first approach in PSelInv. This requires sending the L̂I,K371
block from a particular processor to all processors within the same column group372

of processors among which A−1
C,I is distributed. However, since the processor owning373

L̂I,K is generally not in the same processor communication group that owns A−1
C,I ,374

sending L̂I,K to processors that hold the distributed blocks of A−1
C,I cannot be done375

by a single broadcast. Indeed, for this to be possible, communication groups (i.e.,376
MPI communicators) would have to be created for each and every different sparse377
row/column structure. This is generally not possible, as the maximum number of378

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

PSelInv: The Symmetric Case 21:11

Fig. 3. Processors holding L̂8,6 and L̂10,6 send data to processors holding the cross-diagonal blocks and
overwrite Û6,8 and Û6,10.

allowed MPI communicators is typically much smaller than needed. Therefore, one 379
way to complete this step of data communication is to use a number of point-to-point 380

MPI sends that originate from the processor that owns L̂I,K and terminate on the 381

group of processors that own the nonzero blocks of A−1
C,I . In addition to incurring higher 382

communication latency cost, this approach also leads to significant bookkeeping effort 383
to track the sources and destinations of all messages for each processor. 384

In our current implementation, we simplify the data communication pattern by 385

storing both L̂I,K and ÛK,I even when A is symmetric. We acknowledge that such 386
implementation is not optimal in terms of memory allocation and can be improved 387
if applications are constrained by memory usage for symmetric matrices. As soon as 388

L̂I,K becomes available as illustrated earlier, we send the L̂I,K block to the processor 389

that owns ÛK,I , and ÛK,I is overwritten by L̂T
I,K. Figure 3 illustrates how this step is 390

carried out for a specific supernode K = �6 of the matrix described in Figure 2(b). Once 391

L̂8,6 is computed on P12, the block is sent to P5. The P5 processor then overwrites Û6,8 392

by L̂T
8,6. Similarly, the L̂10,6 block is computed on P6 and sent to P4, on which Û6,10 is 393

overwritten by L̂10,6. 394

With L̂I,K properly placed on the processors that are mapped to the upper triangular 395

part of the distributed Û matrix, step 3 of Algorithm 1 can proceed as follows. The 396

ÛK,I = L̂T
I,K block is first sent to all processors within the same column processor group 397

that owns ÛK,I . The matrix-matrix multiplication A−1
J ,I L̂I,K is then performed locally on 398

each processor owning A−1
J ,I using the GEMM subroutine in BLAS3. Then local matrix 399

contributions A−1
J ,I L̂I,K are reduced within each row communication groups owning 400

L̂J ,K to produce the A−1
J ,K block in step 3 of Algorithm 1. 401

Figure 4 illustrates how this step is completed for a specific supernode K = �6, for the 402
matrix depicted in Figure 2(b). We use circled letters a©, b©, c© to label communication 403
events and circled numbers 1©, 2©, 3© to label computational events. We can see from 404

this figure that Û6,8 = L̂T
8,6 is sent by P5 to all processors within the same column 405

processor group to which P5 belongs. This group includes both P5 and P11. Similarly, 406

L̂10,6 is broadcast from P4 to all other processors within the same column group to 407
which P4 belongs. Local matrix matrix multiplications are then performed on P11, P10, 408
P4, and P5 simultaneously. The distributed products are then reduced onto P12 and P5 409

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

21:12 M. Jacquelin et al.

Fig. 4. Task parallelism and communication pattern for the supernode �6.. There are six steps: a© broadcast
L̂, 1© compute A−1 L̂, b© reduce A−1 L̂, 2© compute L̂T A−1 L̂, c© reduce L̂T A−1 L̂, and 3© update A−1.

respectively within the row processor groups to which they belong. After this step, A−1
8,6410

and A−1
10,6 respectively become available on P12 and P6.411

On completion of step 3, the matrix product ÛK,J A−1
J ,K ≡ L̂T

J ,K A−1
J ,K is first computed412

locally on the processor holding L̂J ,K and then reduced to the processor that owns413
the diagonal block LK,K within the column processor group to which the supernode414

K is mapped. The sum of the distributed matrix product −L̂T
J ,K A−1

J ,K is then added415

to (UK,K)−1(LK,K)−1 computed on the processor holding LK,K. This completes step 4 of416

Algorithm 1. As an example, again we use Figure 4 for K = �6. L̂T
8,6 A−1

8,6 is computed on417

P12 and sent to P6. Similarly, L̂T
10,6 A−1

10,6 is computed on P6. Since both L̂T
10,6 and L6,6 are418

held by P6, no further data communication is necessary. Finally, P6 updates A−1
6,6. As we419

discussed in Section 2.1, for symmetric matrices, A−1
K,K should be explicitly symmetrized420

to reduce the effect of rounding errors.421
Since A is symmetric, dtep 5 of Algorithm 1 can be simplified as follows. We first422

overwrite L̂J ,K by A−1
J ,K locally on the processor holding L̂J ,K (J > K). We then send A−1

J ,K423

to the processor holding ÛK,J and overwrite ÛK,J by (A−1
J ,K)T . The data communication424

pattern for this step is the same as described in Figure 3. After step 5, we move to the425
next supernode (K − 1).426

3.3. Exploiting Concurrency in the Elimination Tree427

In this section, we discuss how to add an additional coarse-grain level of parallelism428
to the selected inversion algorithm by exploiting task concurrency exposed by the429
elimination tree.430

As we indicated in Section 2.2, two supernodes belonging to two separate branches431
of the elimination tree can be processed independently if the selected elements of the432
inverse belonging to their ancestors have been computed, and if these supernodes433
and the ancestors on which they depend are mapped onto different sets of processors.434
Although it is possible to pass the previously computed selected elements of A−1 from435
the ancestors down to their children as we move down the elimination tree, algorithms436
based on this approach (e.g., a multifrontal like algorithm [Lin et al. 2011a]) would437
require additional work space to hold extra copies of the selected elements.438

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

PSelInv: The Symmetric Case 21:13

To reduce the amount of extra work space, which can grow rapidly as we go down 439
the elimination tree, we choose to allow processors assigned to each supernode to 440
communicate back and forth with processors assigned to its ancestors in the way that 441
we described in Section 3.2 to complete step 3 of Algorithm 1. 442

However, the drawback of this approach is that at some point, two supernodes be- 443
longing to two separate branches of the elimination tree may not be processed simul- 444
taneously when they need to communicate with their common ancestors at the same 445
time. At this point of conflict, only one of them should be allowed to initiate and com- 446
plete the data communication with the common ancestor at a time. For example, when 447
supernodes �2 and �4 in Figure 1(a) are being processed on different sets of processors, 448
both of them may need to communicate with processors assigned to supernode �5 at 449
the same time. In this case, the updates to be performed on these processors cannot 450
proceed completely independently. On the other hand, if the set of processors assigned 451
to update two supernodes are completely different, then at least some of the updates 452
can be computed simultaneously. 453

To exploit the type of concurrency discussed previously, which occurs at the for 454
loop level in Algorithm 1, we create a basic parallel task scheduler to launch different 455
iterates of the for loop in a certain order. This order is defined by a priority list S, 456
which is indexed by integer priority numbers ranging from 1 to ns, where ns is bounded 457
from above by the depth of the elimination tree. The task performed in each iteration of 458
the for loop is assigned a priority number σ (I). The lower the number, the higher the 459
priority of the task, and hence the sooner it is scheduled. The supernode N associated 460
with the root of the elimination tree clearly has to be processed first. If the k-th element 461
of S contains multiple supernodes or tasks whose priority numbers are k, the order 462
in which these tasks are completed can be arbitrary. A recipe for assigning priority 463
number of different tasks (or equivalently, supernodes) is shown in Algorithm 2. We 464
assume that the elimination tree is post ordered. 465

Even though we use a priority list to help launch tasks, we do not place extra 466
synchronization among launched tasks other than requiring them to preserve data 467
dependency. Tasks associated with different supernodes can be executed concurrently 468
if these supernodes are on different critical paths of the elimination tree, and if there is 469
no overlap among processors mapped to these critical paths. In fact, if tasks associated 470
with supernode J and I are mapped to different sets of processors, the task associated 471
with the supernode J may actually start before that associated with another supernode 472
I even if σ (I) < σ (J)—that is, even if task I is scheduled ahead of task J according 473
to the priority list. When two different tasks need to communicate with a common 474
ancestor, the priority number associated with each task determines which task is 475
completed first.

Q5

476

ALGORITHM 2: Assign Priority Numbers to Supernodes and Create a Priority List.
Input: A list of supernodes {I} and the elimination tree associated with these supernodes.
Output: An array σ , σ (I) gives the priority number of the task associated with supernode I;

an array S of ns supernode lists, S(i) gives a set of supernodes with priority number i,
1 ≤ i ≤ ns.

σ (N) = 1
S(1) = {N }
for I = N − 1 down to 1 do

σ (I) = σ (parent(I)) + 1
S(σ (I)) = S(σ (I)) ∪ {I}

end

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

21:14 M. Jacquelin et al.

Fig. 5. Elimination tree of matrix A and two possible priority lists S.

We remark that there is some flexibility in assigning a priority number to each477
supernode and constructing the priority list S. For instance, we can use the strategy478
given by Algorithm 2, which simply defines σ (I) by the distance (in terms of the number479
of edges) between the supernode I and the root of the elimination tree. For the same480
elimination tree shown in Figure 5(a), another possible construction of the σ list is481
illustrated in Figure 5(b), which assigns the same σ value to supernodes at different482
levels of the elimination tree. The latter construction takes into account how supernodes483
are distributed among different processors, as we will discuss in the following.484

The priority list S determines the order in which computational tasks associated with485
different supernodes are completed. Because the amount of work and communication486
performed by each of the supernodes can vary significantly, different priority lists can487
lead to different overall performance. The actual performance of parallel selected in-488
version depends on the sparsity pattern of the matrix, as well as the processor grid, and489
is therefore difficult to predict a priori. We refer readers to our report [Jacquelin et al.490
2014] for a detailed example on the difficulty of designing an optimal task schedule.491

With the help of the priority list, we can implement the for loop level of parallelism in492
Algorithm 1 in a way that is described in Algorithm 3. To illustrate the relation clearly,493
Algorithm 3 uses the same numeric ordering of the steps as that in Algorithm 1. Algo-494
rithm 3 also makes use of another array of lists procmap. The K-th element of procmap495
contains the list of all processors participating in steps 3 through 5 in Algorithm 1.496
The communication steps are described within parentheses. We also remark that we497
do not place MPI barriers between supernodes explicitly to exploit parallelism among498
the computation for different supernodes. For symmetric matrices, the diagonal blocks499
should be symmetrized, as indicated at the end of Section 2.1 for symmetric cases.500

4. NUMERICAL RESULTS501

To assess the performance of PSelInv, we conducted several computational experi-502
ments, which we report in this section.503

Our test problems are taken from various sources, including the Harwell-Boeing504
Test Collection [Duff et al. 1992] and the University of Florida Matrix Collection505
[Davis and Hu 2011], and matrices generated from electronic structure software, in-506
cluding SIESTA [Soler et al. 2002] and DGDFT [Lin et al. 2012]. The first two matrix507
collections are widely used benchmark problems for testing sparse direct methods,508
whereas the other test problems come from practical large-scale electronic structure509

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

PSelInv: The Symmetric Case 21:15

ALGORITHM 3: The Parallel Selected Inversion Algorithm (for Symmetric Matrices).
Input: (1) The supernode partition of columns of a sparse symmetric matrix

A: {1, 2, . . . ,N }; a priority list {S(k)}: k = 1, 2, . . . , ns;
(2) L and U factors through a supernodal LU factorization (or equivalent

LDLT factorization) of A;
(3) 2D processor mapping with with P = Pr × Pc processors.

Output: Selected elements of A−1.
[Compute the normalized factors L̂ and Û].
for k = 1, 2,. . . , ns do

for each supernode K ∈ S(k) do
if myid ∈ procmap(K) then

1 Find the collection of indices
C = {I | I > K, LI,K is a nonzero block} ∪ {J | J > K,UK,J is a nonzero block}

2 (Broadcast (LK,K)−1 to processors owning LI,K, I ∈ C)
2 L̂C,K ← LC,K(LK,K)−1

2 (Send L̂I,K, I ∈ C to the processor holding ÛK,I , I ∈ C and overwrite ÛK,I , I ∈ C
by L̂T

I,K, I ∈ C)
end

end
end
[Selected inversion process].
for k = 1, 2,. . . , ns do

for each supernode K ∈ S(k) do
if myid ∈ procmap(K) then

Find the collection of indices
C = {I | I > K, LI,K is a nonzero block} ∪ {J | J > K,UK,J is a nonzero block}

3 (Broadcast ÛK,I , I ∈ C to processors holding A−1
J ,I , I,J ∈ C)

3 For processors holding A−1
J ,I , I,J ∈ C, compute locally −A−1

J ,I L̂I,K, I,J ∈ C
3 (Reduce −A−1

J ,I L̂I,K, I,J ∈ C to processors holding L̂J ,K,J ∈ C, and save the
result in A−1

J ,K,J ∈ C)
4 For processors holding L̂I,K, I ∈ C, compute locally −L̂T

I,K A−1
I,K, I ∈ C

4 (Reduce −L̂T
I,K A−1

I,K, I ∈ C to the processor holding LK,K)
4 For the processor holding (LK,K)−1, update A−1

K,K ← (UK,K)−1(LK,K)−1 − L̂T
C,K A−1

C,K
For the processors holding L−1

K,K, update A−1
K,K ← 1

2

(
A−1
K,K + A−T

K,K
)

3 Overwrite L̂I,K, I ∈ C by A−1
I,K, I ∈ C

5 (Send A−1
I,K, I ∈ C to the processor holding ÛK,I , I ∈ C, and overwrite ÛK,I , I ∈ C

by A−1
I,K, I ∈ C)

end
end

end

calculations. The names of these matrices, as well as some of their characteristics, are 510
listed in Tables I and II. The first three problems in these tables come with two matrices 511
each. One of the matrices, denoted by H, is a discretized Hamiltonian, and the other 512
matrix is an overlap matrix, denoted by S. For all other problems, the overlap matrices 513
can be considered as the identity matrix. All matrices are real and symmetric. In all of 514
our experiments, we compute the selected elements of the matrix 515

A(z) = H − zS. (18)

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

21:16 M. Jacquelin et al.

Table I. Description of Test Problems for PSelInv

Problem Description
SIESTA_C_BN_1x1 Electronic structure theory, C-BN sheet with 2,532 atoms
SIESTA_C_BN_2x2 Electronic structure theory, C-BN sheet with 10,128 atoms
SIESTA_C_BN_4x2 Electronic structure theory, C-BN sheet with 20,256 atoms
DNA_16 Electronic structure theory, DNA molecule with 11,440 atoms
DNA_715_64cell Electronic structure theory, DNA molecule with 45,760 atoms
DG_Graphene_2048 Electronic structure theory, graphene with 2,048 atoms
DG_Graphene_8192 Electronic structure theory, graphene with 8,192 atoms
pwtk Pressurized wind tunnel, stiffness matrix
parabolic_fem Diffusion-convection reaction, constant homogeneous diffusion
ecology2 Circuitscape: circuit theory applied to animal/gene flow, B. McRae, UCSB
audikw_1 Automotive crankshaft model with more than 900,000 TETRA elements, Audi,

GmbH

Table II. Dimension n, the Number of Nonzeros |A|, and the Number
of Nonzeros of the Cholesky Factor |L | of the Test Problems

Problem n |A| |L|
SIESTA_C_BN_1x1 32,916 23,857,418 269,760,112
SIESTA_C_BN_2x2 131,664 95,429,672 1,655,233,542
SIESTA_C_BN_4x2 263,328 190,859,344 3,591,750,262

DNA_16 7,752 2,430,642 9,272,160
DNA_715_64cell 459,712 224,055,744 866,511,698

DG_Graphene_2048 82,944 87,340,032 545,245,344
DG_Graphene_8192 331,776 349,360,128 2,973,952,468

pwtk 217,918 5,926,171 104,644,472
parabolic_fem 525,825 3,674,625 58,028,731

ecology2 999,999 2,997,995 91,073,583
audikw_1 943,695 77,651,847 2,500,489,909

For simplicity, we choose z = 0 for all efficiency tests in Section 4.1. For some appli-516
cations, z is chosen to be a complex number with a small imaginary part to ensure517
that A(z) is nonsingular. This technique is often used in the electronic structure calcu-518
lation to be discussed in Section 4.3. The LU factorization is performed by using the519
SuperLU_DIST software package. SuperLU_DIST does not use dynamic pivoting strate-520
gies, and our matrices are permuted without taking into account the values of matrix521
entries. Consequently, the efficiency of both SuperLU_DIST and PSelInv is independent522
of the choice of z. The lack of dynamic pivoting strategies may impact the accuracy523
of PSelInv for highly indefinite and nearly singular systems. We study the accuracy524
for different choices of complex shifts z in Section 4.2. All timing results reported are525
performed in complex arithmetic computation.526

In all of our experiments, we used the NERSC Edison platform with Cray XC30527
nodes. Each node has 24 cores partitioned among two Intel Ivy Bridge processors. Each528
12-core processor runs at 2.4GHz. A single node has 64GB of memory, providing more529
than 2.6GB of memory per core. We used one MPI process per core and refer to the core530
to denote an MPI process.531

4.1. Parallelization Scalability532

Four types of experiments were performed to measure the scalability of PSelInv. For533
the first three sets of experiments, all timing data points that we present are averaged534
measurements over 10 runs, and the error bars shown in Figures 6, 7, 8, and 9 indicate535
the standard deviation of the measured wall clock time.536

To clearly show the cost and scalability of selected inversion itself in comparison537
with the symbolic and numerical LU factorizations, which are required for selected538

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

PSelInv: The Symmetric Case 21:17

Fig. 6. Wall clock time used by three components (symbolic factorization, numerical LU factorization, and
selected inversion) of two versions of PSelInv with respect to the number of cores used in the computation
for the DNA_715_64cell matrix. In one version, we do not take advantage of the concurrency exposed by the
elimination tree, whereas in the other version, we do make use of this tree level of parallelism. The height
of each bar in the figure indicates the ratio of wall clock time measured for the former over that measured
for the latter.

Fig. 7. Strong scalability of PSelInv compared to that of LU factorization and symbolic factorization for
SIESTA matrices generated for two C_BN systems of different sizes.

inversion, we time the three computational components separately. The symbolic 539
factorization is performed in parallel using PT-Scotch. It is labeled as “symbolic factor- 540
ization” in the timing figures. The LU factorization is performed by using SuperLU_DIST. 541
It is labeled as “LU factorization.” The selected inversion itself is performed by using 542
PSelInv and labeled as “PSelInv.” The total time required to obtain the selected 543
elements of the inverse matrix thus corresponds to the sum of all three components. 544

The first experiment focuses on the impact of the additional parallelism stemming 545
from the elimination tree as discussed in Section 3.3. PSelInv is thus tested both with 546
and without this additional level of parallelism. As observed in Figure 6, adding the 547
tree-level parallelism allows the performance of PSelInv to scale to 4,096 cores. When 548

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

21:18 M. Jacquelin et al.

Fig. 8. Strong scalability of PSelInv compared to that of LU factorization and symbolic factorization for DG
matrices generated for graphene systems of different sizes.

Fig. 9. Strong scalability of PSelInv compared to that of LU factorization and symbolic factorization for
matrices from the Harwell-Boeing Test Collection and the University of Florida Matrix Collection.

4,096 cores are used, adding the tree-level parallelism leads to a 5.6-fold speedup in549
the DNA_715_64cell problem. Comparatively, the performance of the LU factorization550
and the selected inversion without tree parallelism can only scale up to 1,024 cores.551

The second set of experiments (Figures 7, 8, and 9) aims at evaluating the strong552
scaling of PSelInv. In every experiment, the tree-level parallelism is enabled, as it553
clearly delivers better performance. PSelInv exhibits excellent strong scalability up to554

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

PSelInv: The Symmetric Case 21:19

Fig. 10. Cumulative total memory cost and maximum memory cost among all cores for the audikw_1 matrix
and the DNA_715_64cell matrix, with shaded regions indicating the additional memory cost introduced in
each step of the selected inversion process. The memory cost is measured by the memory high watermark
reached at each step.

4,096 cores. For SIESTA matrices (Figure 7), PSelInv is slightly slower than LU factor- 555
ization when the number of cores is less than 1,024 and is faster than LU factorization 556
when more than 2,116 cores are used. For DGDFT matrices (Figure 8), PSelInv can be 557
twice as fast as LU factorization, and the running time of PSelInv can be comparable 558
to that of symbolic factorization for the DNA_715_64cell matrix. For generic sparse 559
matrices (Figure 9) obtained from the University of Florida Collection, PSelInv deliv- 560
ers excellent performance on relatively dense matrices, such as audikw_1 and pwtk. 561
We also observe that for highly sparse problems, such as ecology_2 and parabolic_fem, 562
PSelInv is relatively more costly, but the scalability of PSelInv can still be better than 563
that of SuperLU_DIST when a large number of cores are used. 564

The third experiment focuses on the memory cost of PSelInv. Figure 10 shows the cu- 565
mulative total memory cost and cumulative maximum single-core memory usage in the 566
parallel selected inversion procedure for two matrices: audikw_1 and DNA_715_64cell. 567
This is measured by the memory high watermark reached after the LU factorization 568
step and the selected inversion step, respectively. The memory cost for reading the 569
input matrix is much smaller compared to the memory cost of LU factorization or se- 570
lected inversion. The shaded areas in Figure 10 correspond to the additional memory 571
required to perform each step of the procedure. The memory high watermark implies 572
that the memory cost for LU factorization includes not only the memory cost for the 573
LU factors but also other temporary memory allocation created during the LU factor- 574
ization process. The situation is similar for the selected inversion process. The memory 575

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

21:20 M. Jacquelin et al.

Fig. 11. Performance comparison against MUMPS 4.10.0 for computing selected elements of the inverse.

required to store both the LU factors and the corresponding elements in the inverse is576
lower than the overall memory high watermark, which accounts for additional mem-577
ory required to hold communication and temporary buffers. We can see from Figure 10578
that most of the memory allocation is done during the LU factorization step. The to-579
tal memory cost of LU factorization and selected inversion increases as the number580
of cores increases due to the use of additional buffer arrays for communication and581
computation.582

The total additional memory cost of PSelInv is 20% to 60% of the total memory583
required by LU factorization, which is relatively small. The maximum memory usage584
per core decreases steadily as the number of cores increases. For our test problems,585
the maximum memory cost per core of PSelInv is around 1GB when a relatively small586
number (64) of cores are used. It decreases to around 100MB when a large number587
(4,096) of cores are used for the same problem.588

The last set of experiments compare the performance of PSelInv to the parallel589
matrix inversion method recently implemented in the MUMPS package [Amestoy et al.590
2012a]. In the MUMPS algorithm, the actual set of computed entries of A−1 is alsoQ6591
a superset of the requested entries of A−1. This method can be more efficient than592
PSelInv when a small number of entries of A−1 are requested. However, when a rela-593
tively large number of entries are to be computed, such as in the computation of the594
selected elements defined by (1), PSelInv can more efficiently reuse the information595
shared among different entries of A−1. Figure 11 shows the numerical factorization596
and selected inversion timings for MUMPS and PSelInv, respectively. As all matrices597
are symmetric, MUMPS performs LDLT factorizations, which use fewer floating point598
operations and less memory. We use MUMPS to compute the selected elements of A−1 as599
defined in Equation (1) for DNA_16 and SIESTA_C_BN_1x1, and we also use MUMPS to600
only compute the diagonal entries of A−1 for DGDFT_ACPNR4_60. All three matrices601

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

PSelInv: The Symmetric Case 21:21

Table III. Comparison of Wall Clock Time Required by PSelInv and MUMPS for
Computing the Selected Elements Defined by (1) of Two Matrices DNA_16 and

SIESTA_C_BN_1x1, and the Diagonal Elements of DGDFT_ACPNR4_60

Problem Cores (#) PSelInv MUMPS

DNA_16 1 3.1 29.9
DNA_16 16 2.9 44.6

DGDFT_ACPNR4_60 1 4.9 82.6
DGDFT_ACPNR4_60 16 0.6 67.1
SIESTA_C_BN_1x1 16 52.6 648.2
SIESTA_C_BN_1x1 256 5.6 293.7

come from electronic structure applications, and the difference in terms of computed 602
entries is determined by the different requirements in practical calculations. MUMPS 603
contains a block size parameter that controls the number of right-hand sides processed 604
simultaneously. We experimented with this parameter and report the best results that 605
we could produce for each case (i.e., 16 for DNA_16 and 256 for SIESTA_C_BN_1x1 and 606
DGDFT_ACPNR4_60). Table III shows how the wall clock time used by PSelInv com- 607
pares to that used by MUMPS for three test problems: DNA_16, DGDFT_ACPNR4_60, 608
and SIESTA_C_BN_1x1. 609

For all test problems, PSelInv is at least an order of magnitude faster than MUMPS. It 610
is two orders of magnitude faster on SIESTA_C_BN_1x1 when using 256 cores. PSelInv 611
can also scale to a relatively larger number of cores. Our numerical results indicate 612
that for the computation of selected elements as considered in this article, PSelInv is 613
more efficient than the more general approach taken in MUMPS. 614

One way to understand the speedup of PSelInv over MUMPS is through the following 615
idealized situation. Consider the computation of the diagonal entries of a tridiagonal 616
matrix A of size N, which can be computed by solving an N set of triangular equations 617
of the form (5). Even with the help of the elimination tree and the fact that only 618
one entry of A−1 is needed for each equation, the cost for solving all N equations 619
independently would be O(N2). The reason for the high computational cost is that a 620
significant amount of information calculated among the N equations is redundant. 621
The MUMPS approach detects such redundant information on the fly through graph- 622
based algorithms. However, designing an optimal algorithm that maximally reduces the 623
amount of redundant information for a given data-to-processor mapping is difficult. The 624
resulting implementation may or may not reach the optimal complexity. In contrast, 625
PSelInv removes all redundant calculation by design, and the computational cost for a 626
tridiagonal matrix can be provably reduced to O(N) [Lin et al. 2009b]. 627

We should point out that MUMPS can compute an arbitrary set of elements of A−1, 628
whereas the set of selected elements that can be computed by PSelInv is more restric- 629
tive, as defined in Equation (1). 630

Overall, the strong scalability of PSelInv is similar to that of SuperLU_DIST, and 631
it clearly outperforms the current inversion algorithm as implemented in MUMPS. It 632
requires a modest amount of additional memory to compute the selected elements of 633
the inverse. This observation demonstrates both the validity of our approach and the 634
efficiency of our implementation. More importantly, on matrices arising from actual 635
electronic calculations, PSelInv allows one to use thousands of cores, thereby enabling 636
very large scale computations. 637

4.2. The Accuracy of PSelInv 638

In exact arithmetic, the selected inversion method is an exact method for computing 639
the selected elements of A−1, regardless of whether A is positive definite or not. In prac- 640
tice, the selected inversion method cannot give an exact result due to the presence of 641

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

21:22 M. Jacquelin et al.

Table IV. Maximum Column-Wise Relative Error between MUMPS
and PSelInv Using Different Numbers of Cores P

P Max. Relative Error
1 8.52E-008
4 2.35E-008
16 2.52E-008
36 2.05E-007
64 2.07E-007

P Max. Relative Error
16 1.96E-007
36 1.72E-007
64 1.77E-007
121 1.76E-007
256 1.78E-007

(a) DNA 16 (b) SIESTA C BN 1x1

round-off errors. For the sparse direct solver, dynamical pivoting strategies such as the642
Bunch-Kaufman process [Bunch and Kaufman 1977] for LDLT factorization has been643
shown to be effective for reducing the numerical error, especially for indefinite matri-644
ces. On distributed memory machines, dynamic pivoting strategies can significantly645
affect the load balance and the scalability of the factorization process. Thus, they are646
not used in SuperLU_DIST [Li and Demmel 2003].647

Since the primary goal of the current implementation of the PSelInv method is to648
achieve high parallel scalability, we choose not to perform additional pivoting steps649
after the factorization step. We show that for the test problems we tried, PSelInv650
produces results comparable to that produced by the MUMPS package and is sufficiently651
accurate even when the matrix is relatively ill conditioned.652

The first set of experiments report comparative results between MUMPS and653
PSelInv on two problems benchmarked in Section 4.1. Selected elements are com-654
puted with both methods, and their maximum relative column-wise difference655

max1≤ j≤n(‖A−1
MUMPS∗, j

− A−1
PSelInv∗, j

‖/‖A−1
MUMPS∗, j

‖) is presented in Table IV. In both cases,656

PSelInv provides accurate results that are comparable to MUMPS on these two problems.657
In the second set of experiments, we assess the accuracy of PSelInv on larger ill-658

conditioned matrices. To obtain test problems that are indefinite and ill conditioned,659
for each test problem listed in Table II, we construct a sequence of A(z) defined by660
Equation (18) for several complex shifts z. The real parts of the shifts lie within the661
spectrum of the matrix pencil (H, S), and the imaginary parts range from small (10−7)662
to large (10−1) values.663

To quantify the accuracy of the PSelInv method for large matrices in the test set,664
we need to find an appropriate error metric. Due to the large matrix size, the parallel665
matrix inversion method in MUMPS becomes too expensive to be used for the purpose of666
benchmarking. Motivated by the trace estimation in Equation (2), we choose to measure667
the numerical error introduced by PSelInv by using the following quantity:668

E(z) = |N − Tr[A(z)−1 A(z)]|
N

≡
∣∣∣∣∣∣1 − 1

N

N∑
i, j=1

[A(z)−1]i j[A(z)] ji

∣∣∣∣∣∣ . (19)

Since A is sparse, the summation in Equation (19) involves only those i and j such that669
Ai, j �= 0.670

In Figure 12, we show both the spectral density ρ(λ) of the pwtk matrix, which671
describes the number of eigenvalues of eigenvalues (H, S) per unit interval, and E(z)672
for several shifts z with different real and imaginary parts. We observe that for all of673
these problems, the measured errors are below 10−11, even when the real part of z is674
close to an eigenvalue cluster and the imaginary part of z is as small as 10−7. Figure 13675
shows that a similar level of accuracy is achieved in the test of the DNA_715_64cell676
matrix.677

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

PSelInv: The Symmetric Case 21:23

Fig. 12. Spectral density and error E(z) for the pwtk matrix.

Fig. 13. Spectral density and error E(z) for the DNA_715_64cell matrix.

4.3. Application to Electronic Structure Theory 678

In this section, we demonstrate how PSelInv can be applied to accelerate Kohn-Sham 679
density functional theory (KSDFT) calculation [Hohenberg and Kohn 1964; Kohn and 680
Sham 1965], which is widely used for describing the ground state electronic properties 681
of molecules, solids, and other nanostructures. We use the recently developed pole 682
expansion and selected inversion technique (PEXSI) [Lin et al. 2009a, 2009b, 2011b, 683
2013] to compute the nonzero elements of the so-called single particle density matrix 684

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

21:24 M. Jacquelin et al.

Fig. 14. Wall clock time versus the number of cores for a graphene system.

� that can be approximated by685

� ≈
P∑

l=1

ωl(H − zlS)−1, (20)

where zl, ωl ∈ C, and the number of “poles” P is around 80 in practical calculations.686
Both H and S are real sparse symmetric matrices that have the same sparsity pattern687
when a local basis set is used to discretize the Kohn-Sham problem. Each matrix688
Al = H − zlS is a complex symmetric matrix. In KSDFT calculations, only elements of689
�i j corresponding to the nonzero elements of H and S (i.e., Hij, Sij �= 0) are needed to690
compute physical quantities such as electron density and energy. The expansion (20)691
immediately suggests that only the selected elements as defined in Equation (1) of692

the matrices A−1
l are needed. In a parallel implementation of PEXSI, we use PSelInv693

to evaluate the selected elements of A−1
l that correspond to the nonzero elements of694

� on a subset of cores. The selected inversion of Al for different l can be carried out695
independently on different subsets of cores.696

We apply the parallel PEXSI method to the DG_Graphene_2048 and697
DG_Graphene_8192 systems, which are disordered graphene systems with 2,048 and698
8,192 atoms, respectively, and compare its performance to a standard approach that699
requires a partial diagonalization of (H, S). We use a ScaLAPACK subroutine pdsyevr700
[Vömel 2010], which is based on the multiple relatively robust representations (MRRR)701
algorithm, to perform such diagonalization. Although both H and S are sparse matri-702
ces, the MRRR algorithm treats them as dense matrices. For H, S ∈ R

N×N, the MRRR703
algorithm first performs a tridiagonalization procedure withO(N3) cost, then efficiently704
solves the eigenvalues and eigenvectors of the tridiagonal system with O(N2) cost, and705
finally the eigenvectors can be constructed with O(N3) cost.706

Figure 14(a) shows that the scalability of pdsyevr is limited to 1,024 cores for the707
2,048-atom problem. Adding more cores to the diagonalization process leads to an708
increase of the wall clock time due to communication overhead. For this relatively709
small problem, the benefit of parallel implementation of PEXSI is already clear when710
320 cores are used. Since we use P = 80 poles in the pole expansion, 4 cores with a711
2×2 processor grid are used in each selected inversion in this case. The wall clock time712
used by PEXSI is 261 seconds, among which 150 seconds are attributed to PSelInv,713
95 seconds are attributed to factorization, and 10 seconds are attributed to symbolic714

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

PSelInv: The Symmetric Case 21:25

Fig. 15. Wall clock time versus the number of cores for a graphene system with 32,768 atoms.

factorization. This timing result compares favorably to the 430 seconds of measured 715
wall clock time required by pdsyevr on 1,024 cores. 716

Furthermore, we can clearly see from Figure 14(a) that the parallel PEXSI method 717
can scale to a much larger number of cores. Nearly perfect speedup can be observed 718
when a total of 20,480 cores is used in the parallel PEXSI computation, with 256 719
cores used in each selected inversion. The total wall clock time used in this calculation 720
is merely 10 seconds. Compared to the best wall clock time that we can obtain for 721
the diagonalization procedure, which is 430 seconds on 1,024 cores, this represents a 722
speedup factor of 43. 723

For the larger system that contains 8,192 atoms, pdsyevr can scale to 4,096 cores, 724
as we can see in Figure 14(b). It takes 5,703 wall clock seconds to perform such a 725
computation. When the parallel PEXSI calculation is carried out on 5,120 cores with 726
64 cores used to perform each selected inversion, the total wall clock time required 727
is 224 seconds. Figure 14(b) also shows that parallel PEXSI can scale to as many as 728
327,680 cores with 4,096 cores used for each selected inversion. The total wall clock 729
time required in this calculation is merely 45 seconds, a 127-fold speedup compared to 730
the best diagonalization wall clock time measured. 731

Finally, we apply PEXSI to a system with 32,768 atoms. The matrix size is four times 732
larger than that for the system with 8,192 atoms, and the diagonalization routine is 733
no longer feasible: the wall clock time required to run the pdsyevr routine with 1,024 734
cores for the 2,048-atom system is 431 seconds, and for the 8,192-atom system, it 735
is 21,556 seconds. The increase of the wall clock time is 50 fold, which is roughly 736
in agreement with the cubic complexity scaling factor 43 = 64. The cubic scaling of 737
the diagonalization procedure implies that the wall clock time would increase by at 738
least a factor of 50 to 1,077,800 seconds (300 hours) if we perform the same type of 739
calculation for a system that contains 32,768 atoms on 1,024 cores. Based on this 740
estimation and assuming that the strong scaling of pdsyevr is perfect, we compare the 741
ideal performance of the diagonalization method to the practical performance of PEXSI 742
in Figure 15 up to 1,310,720 cores. The total wall clock time for both factorization and 743
selected inversion reaches its minimum at 4,096 cores per pole (327,680 cores in total), 744
which is 241 seconds. Among these, 87 seconds is attributed to PSelInv. Comparatively, 745
even if the diagonalization procedure scales perfectly to more than one million cores, 746

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

21:26 M. Jacquelin et al.

which is highly unlikely within the current framework of diagonalization methods, the747
projected wall clock time is greater than 1,000 seconds, which is significantly more748
than that used by PEXSI.749

5. CONCLUSIONS AND FUTURE WORK750

We described an efficient parallel implementation of the selected inversion algorithm751
for distributed memory parallel machines. The current implementation of PSelInv can752
be applied to the computation of selected elements of the inverse of a sparse symmetric753
matrix. It is publicly available and can scale to more than 4,000 cores for sufficiently754
large problems. The scalability of the solver depends on the size and sparsity of the755
matrix. We observed that it is important to exploit concurrency available within the756
elimination trees to achieve high scalability in the parallel selected inversion process.757
In the future, we plan to further improve the tree-level parallelism to enhance the con-758
currency among different supernodes. We also observed that for our test problems, the759
PSelInv method is relatively accurate even for matrices that are highly indefinite and760
close to singular. It can be applied to accelerate several scientific computation applica-761
tions, such as the DFT-based electronic structure calculations. To further improve the762
numerical accuracy of the PSelInv method, especially for indefinite matrices, dynamic763
pivoting strategies such as the Bunch-Kaufman procedure [Bunch and Kaufman 1977;764
Grimes et al. 1994] for the factorization may be needed. Generalizing PSelInv to non-765
symmetric matrices and combining it with other sparse direct solvers are other areas766
in which we plan to work in the future.767

ACKNOWLEDGMENTS768

We would like to thank Xiaoye S. Li and François-Henry Rouet for helpful discussions.769

REFERENCES770

P. Amestoy, I. Duff, J.-Y. L’Excellent, and J. Koster. 2001. A fully asynchronous multifrontal solver using771
distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications 23, 15–41.772

P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, Y. Robert, F.-H. Rouet, and B. Uçar. 2012b. On computing inverse773
entries of a sparse matrix in an out-of-core environment. SIAM Journal on Scientific Computing 34,774
A1975–A1999.775

P. R. Amestoy, I. S Duff, J. Y. L’Excellent, and F. H. Rouet. 2012a. Parallel Computation of Entries of A−1.776
Technical Report. CERFACS, Toulouse, France.777

C. Ashcraft and R. Grimes. 1989. The influence of relaxed supernode partitions on the multifrontal method.778
ACM Transactions on Mathematical Software 15, 291–309.779

C. Bekas, A. Curioni, and I. Fedulova. 2009. Low cost high performance uncertainty quantification. In780
Proceedings of the 2nd Workshop on High Performance Computational Finance. 8.781

C. Bekas, E. Kokiopoulou, and Y. Saad. 2007. An estimator for the diagonal of a matrix. Applied Numerical782
Mathematics 57, 1214–1229.783

L. S. Blackford. 1997. ScaLAPACK User’s Guide. Vol. 4. SIAM.784
J. R. Bunch and L. Kaufman. 1977. Some stable methods for calculating inertia and solving symmetric linear785

systems. Mathematics of Computation 31, 137, 163–179.786
Y. E. Campbell and T. A. Davis. 1995. Computing the Sparse Inverse Subset: An Inverse Multifrontal Approach.787

Technical Report TR-95-021. University of Florida.788
S. Cauley, V. Balakrishnan, G. Klimeck, and C.-K. Koh. 2012. A two-dimensional domain decomposition789

technique for the simulation of quantum-scale devices. Journal of Computational Physics 231, 4, 1293–790
1313.791

C. Chevalier and F. Pellegrini. 2008. PT-scotch: A tool for efficient parallel graph ordering. Parallel Computing792
34, 318–331.793

T. A. Davis and Y. Hu. 2011. The University of Florida sparse matrix collection. ACM Transactions on794
Mathematical Software 38, 1.795

I. Duff, R. Grimes, and J. Lewis. 1992. User’s Guide for the Harwell-Boeing Sparse Matrix Collection. Research796
and Technology Division, Boeing Computer Services, Seattle, WA.797

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

PSelInv: The Symmetric Case 21:27

S. Eastwood and J. Wan. 2013. Finding off-diagonal entries of the inverse of a large symmetric sparse matrix. 798
Numerical Linear Algebra with Applications 20, 1, 74–92. 799

A. Erisman and W. Tinney. 1975. On computing certain elements of the inverse of a sparse matrix. Commu- 800
nications of the ACM 18, 177. 801

G. H. Golub and C. F. Van Loan. 1996. Matrix Computations (3rd ed.). Johns Hopkins University Press, 802
Baltimore, MD. 803

R. G. Grimes, J. G. Lewis, and H. D. Simon. 1994. A shifted block Lanczos algorithm for solving sparse 804
symmetric generalized eigenproblems. SIAM Journal on Matrix Analysis and Applications 15, 1, 228– 805
272. 806

U. Hetmaniuk, Y. Zhao, and M. P. Anantram. 2013. A nested dissection approach to modeling transport in 807
nanodevices: Algorithms and applications. International Journal for Numerical Methods in Engineering 808
95, 7, 587–607. 809

P. Hohenberg and W. Kohn. 1964. Inhomogeneous electron gas. Physical Review 136, B864–B871. 810
M. Jacquelin, L. Lin, and C. Yang. 2014. PSelInv—A Distributed Memory Parallel Algorithm for Selected 811

Inversion: The Symmetric Case. Technical Report, Lawrence Berkeley National Laboratory, Berkeley, 812
CA. 813

G. Karypis and V. Kumar. 1998. A parallel algorithm for multilevel graph partitioning and sparse matrix 814
ordering. Journal of Parallel and Distributed Computing 48, 71–85. 815

W. Kohn and L. Sham. 1965. Self-consistent equations including exchange and correlation effects. Physical 816
Review 140, A1133–A1138. 817

G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A. Marianetti. 2006. Electronic 818
structure calculations with dynamical mean-field theory. Review of Modern Physics 78, 865–952. 819

A. Kuzmin, M. Luisier, and O. Schenk. 2013. Fast methods for computing selected elements of the Green’s 820
function in massively parallel nanoelectronic device simulations. In Euro-Par 2013 Parallel Processing. 821
Lecture Notes in Computer Science, Vol. 8097. Springer, 533–544. 822

C. Lanczos. 1950. An iteration method for the solution of the eigenvalue problem of linear differential and 823
integral operators. Journal of Research of the National Bureau of Standards 45, 255–282. 824

S. Li, S. Ahmed, G. Klimeck, and E. Darve. 2008. Computing entries of the inverse of a sparse matrix using 825
the FIND algorithm. Journal of Computational Physics 227, 9408–9427. 826

Song Li and Eric Darve. 2012. Extension and optimization of the FIND algorithm: Computing Green’s and 827
less-than Green’s functions. Journal of Computational Physics 231, 4, 1121–1139. 828

S. Li, W. Wu, and E. Darve. 2013. A fast algorithm for sparse matrix computations related to inversion. 829
Journal of Computational Physics 242, 915–945. 830

X. S. Li and J. W. Demmel. 2003. SuperLU_DIST: A scalable distributed-memory sparse direct solver for 831
unsymmetric linear systems. ACM Transactions on Mathematical Software 29, 110. 832

L. Lin, M. Chen, C. Yang, and L. He. 2013. Accelerating atomic orbital-based electronic structure calculation 833
via pole expansion and selected inversion. Journal of Physics: Condensed Matter 25, 295501. 834

L. Lin, J. Lu, L. Ying, R. Car, and W. E. 2009b. Fast algorithm for extracting the diagonal of the inverse 835
matrix with application to the electronic structure analysis of metallic systems. Communications in 836
Mathematical Sciences 7, 755. 837

L. Lin, J. Lu, L. Ying, and E. Weinan. 2009a. Pole-based approximation of the Fermi-Dirac function. Chinese 838
Annals of Mathematics, Series B 30, 729. 839

L. Lin, J. Lu, L. Ying, and E. Weinan. 2012. Adaptive local basis set for Kohn-Sham density functional theory 840
in a discontinuous Galerkin framework I: Total energy calculation. Journal of Computational Physics 841
231, 2140–2154. 842

L. Lin, C. Yang, J. Lu, L. Ying, and E. Weinan. 2011a. A fast parallel algorithm for selected inversion of 843
structured sparse matrices with application to 2D electronic structure calculations. SIAM Journal on 844
Scientific Computing 33, 1329. 845

L. Lin, C. Yang, J. Meza, J. Lu, L. Ying, and E. Weinan. 2011b. SelInv—an algorithm for selected inversion 846
of a sparse symmetric matrix. ACM Transactions on Mathematical Software, 40. 847

J. Liu. 1990. The role of elimination trees in sparse factorization. SIAM Journal on Matrix Analysis and 848
Applications 11, 134. 849

D. E. Petersen, S. Li, K. Stokbro, H. H. B. Sørensen, P. C. Hansen, S. Skelboe, and E. Darve. 2009. A 850
hybrid method for the parallel computation of Green’s functions. Journal of Computational Physics 228, 851
5020–5039. 852

E. Rothberg and A. Gupta. 1994. An efficient block-oriented approach to parallel sparse Cholesky factoriza- 853
tion. SIAM Journal on Scientific Computing 15, 1413–1439. 854

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

21:28 M. Jacquelin et al.

O. Schenk and K. Gartner. 2006. On fast factorization pivoting methods for symmetric indefinite systems.855
Electronic Transactions on Numerical Analysis 23, 158–179.856

R. B. Sidje and Y. Saad. 2011. Rational approximation to the Fermi-Dirac function with applications in857
density functional theory. Numerical Algorithms 56, 455.858

J. M. Soler, E. Artacho, J. D. Gale, A. Garcı́a, J. Junquera, P. Ordejón, and D. Sánchez-Portal. 2002. The859
SIESTA method for ab initio order-n materials simulation. Journal of Physics: Condensed Matter 14,860
2745–2779.861

K. Takahashi, J. Fagan, and M. Chin. 1973. Formation of a sparse bus impedance matrix and its application862
to short circuit study. In Proceedings of the 8th PICA Conference.863

J. M. Tang and Y. Saad. 2012. A probing method for computing the diagonal of a matrix inverse. Numerical864
Linear Algebra with Applications 19, 485–501.865

C. Vömel. 2010. ScaLAPACK’s MRRR algorithm. ACM Transactions on Mathematical Software 37, 1.866
Z. Xu and A. C. Maggs. 2013. Solving fluctuation-enhanced Poisson-Boltzmann equations. arXiv:1310.4682.867

Received April 2014; revised May 2015; accepted May 2015

ACM Transactions on Mathematical Software, Vol. 43, No. 3, Article 21, Publication date: November 2016.

TOMS4303-21 ACM-TRANSACTION November 18, 2016 14:1

QUERIES

Q1: AU: Please provide full mailing and email addresses for all authors per ACM style.
Q2: AU: Throughout, please note that “LU” is sometimes italicized in text (same with “LDL”). Streamline

style?
Q3: AU: The URL in footnot 1 redirects. Update?
Q4: AU: Please confirm position of closing parenthesis in the Output section of Algorithm 1.
Q5: AU: Add a comma before “gives,” or delete comma after “lists”?
Q6: AU: Streamline font of terms such as “MUMPS”?

