
Interpolative Separable Density Fitting through Centroidal Voronoi
Tessellation with Applications to Hybrid Functional Electronic
Structure Calculations
Kun Dong,*,† Wei Hu,*,‡ and Lin Lin*,§,‡

†Center for Applied Mathematics, Cornell University, Ithaca, New York 14853, United States
‡Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
§Department of Mathematics, University of California, Berkeley, California 94720, United States

ABSTRACT: The recently developed interpolative separable density
fitting (ISDF) decomposition is a powerful way for compressing the
redundant information in the set of orbital pairs and has been used to
accelerate quantum chemistry calculations in a number of contexts. The
key ingredient of the ISDF decomposition is to select a set of nonuniform
grid points, so that the values of the orbital pairs evaluated at such grid
points can be used to accurately interpolate those evaluated at all grid
points. The set of nonuniform grid points, called the interpolation points,
can be automatically selected by a QR factorization with column pivoting
(QRCP) procedure. This is the computationally most expensive step in
the construction of the ISDF decomposition. In this work, we propose a
new approach to find the interpolation points based on the centroidal
Voronoi tessellation (CVT) method, which offers a much less expensive
alternative to the QRCP procedure when ISDF is used in the context of
hybrid functional electronic structure calculations. The CVT method only uses information from the electron density and can be
efficiently implemented using a K-Means algorithm. We find that this new method achieves comparable accuracy to the ISDF-
QRCP method, at a cost that is negligible in the overall hybrid functional calculations. For instance, for a system containing 1000
silicon atoms simulated using the HSE06 hybrid functional on 2000 computational cores, the cost of the QRCP-based method
for finding the interpolation points is 38.1 s, while the CVT procedure only takes 0.7 s. We also find that the ISDF-CVT method
enhances the smoothness of the potential energy surface in the context of ab initio molecular dynamics (AIMD) simulations with
hybrid functionals.

1. INTRODUCTION

Orbital pairs of the form {φi(r)ψj(r)}i,j=1
N , where φi, ψj are single

particle orbitals, appear ubiquitously in quantum chemistry. A
few examples include the Fock exchange operator, the MP2
amplitude, and the polarizability operator.1,2 When N is
proportional to the number of electrons Ne in the system, the
total number of orbital pairs is ∼N N( )e

2 2 . On the other
hand, the number of degrees of freedom needed to resolve all
orbital pairs on a dense grid is only N( )e . Hence as Ne

becomes large, the set of all orbital pairs contains apparent
redundant information. In order to compress the redundant
information and to design more efficient numerical algorithms,
many algorithms in the past few decades have been developed.
Pseudospectral decomposition,3,4 Cholesky decomposition,5−8

density fitting (DF) or resolution of identity (RI),9,10 and
tensor hypercontraction (THC)11,12 are only a few examples
toward this goal. When the single particle orbitals φi, ψj are
already localized functions, “local methods” or “linear scaling
methods”13−16 can be applied to construct such decomposition
with cost that scales linearly with respect to Ne. Otherwise, the
storage cost of the matrix to represent all orbital pairs on a grid

is already N( )e
3 , and the computational cost of compressing

the orbital pairs is then typically N( )e
4 .

Recently, Lu and Ying developed a new decomposition called
the interpolative separable density fitting (ISDF),17 which takes
the following form

∑φ ψ ζ φ ψ≈ ̂ ̂
μ

μ μ μ
=

μ

r r r r r( ) ( ) ( )( ( ) ( ))i j

N

i j
1 (1)

For a given r, if we view φi(r)ψj(r) as a row of the matrix {φiψj}
discretized on a dense grid, then the ISDF decomposition states
that all such matrix rows can be approximately expanded using
a linear combination of matrix rows with respect to a selected
set of interpolation points {rμ̂}μ=1

Nμ . The coefficients of such linear
combination, or interpolating vectors, are denoted by {ζμ(r)}μ=1

Nμ .
Here Nμ can be interpreted as the numerical rank of the ISDF
decomposition. Compared to the standard density fitting
method, the three-tensor (φi(rμ̂)ψj(rμ̂)) with three indices i, j,
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μ takes a separable form. This reduces the storage cost of the
decomposed tensor from N( )e

3 to N( )e
2 and the computa-

tional cost from N( )e
4 to N( )e

3 . Note that if the
interpolation points {rμ̂}μ=1

Nμ are chosen to be on a uniform
grid, then the ISDF decomposition reduces to the pseudo-
spectral decomposition, where ∼μN N( )e but with a large
preconstant. For instance, the pseudospectral decomposition
can be highly inefficient for molecular systems, where the grid
points in the vacuum contribute nearly negligibly to the orbital
pairs. On the other hand, by selecting the interpolation points
carefully, e.g., through a randomized QR factorization with
column pivoting (QRCP) procedure,18 the number of
interpolation points can be significantly reduced. The QRCP
based ISDF decomposition has been applied to accelerate a
number of applications, at least in the context of pseudopo-
tential approximation where the wave functions are smooth,
including two-electron integral computation,17 correlation
energy in the random phase approximation,19 density func-
tional perturbation theory,20 and hybrid density functional
calculations.21 For example, when iterative solvers are used for
hybrid density functional calculations, the Fock exchange
operator VX defined in terms of a set of orbitals {φi} needs
to be repeatedly applied to another set of Kohn−Sham orbitals
{ψj}

∫∑φ ψ φ φ ψ= − ′ ′ ′ ′
=

V Kr r r r r r r( [{ }] )( ) ( ) ( , ) ( ) ( )dX i j
i

N

i i j
1

e

(2)

where K(r, r′) is the kernel for the Coulomb or the screened
Coulomb operator. The integration in eq 2 is often carried out
by solving Poisson-like equations, using, e.g., a fast Fourier
transform (FFT) method, and the computational cost is N( )e

3

with a large preconstant. This is typically the most time-
consuming component in hybrid functional calculations and
can be accelerated by the ISDF decomposition for the orbital
pairs {φiψj}.
In ref 17, the interpolation points and the interpolation

vectors are determined simultaneously through a randomized
QR factorization with column pivoting (QRCP) applied to
{φi(r)ψj(r)} directly. We recently found that the randomized
QRCP procedure has N( )e

3 complexity but with a relatively
large preconstant and may not be competitive enough when
used repeatedly. In order to overcome such difficulty, we
proposed a different approach in ref 21 that determines the two
parts separately and reduces the computational cost. We use the
relatively expensive randomized QRCP procedure to find the
interpolation points in advance, and only recompute the
interpolation vectors whenever {φi(r)ψj(r)} has been updated
using an efficient least-squares procedure that exploits the
separable nature of the matrix to be approximated. As a result,
we can significantly accelerate hybrid functional calculations
using the ISDF decomposition in all but the first SCF iteration.
In this work, we further remove the need of performing the

QRCP decomposition completely and, hence, significantly
reduce the computational cost. Note that an effective choice of
the set of interpolation points should satisfy the following two
conditions. (1) The distribution of the interpolation points
should roughly follow the distribution of the electron density.
In particular, there should be more points when the electron
density is high and less or even zero points if the electron
density is very low. (2) The interpolation points should not be

very close to each other. Otherwise, matrix rows represented by
the interpolation points are nearly linearly dependent, and the
matrix formed by the interpolation vectors will be highly ill-
conditioned. The QRCP procedure satisfies both (1) and (2)
simultaneously and, thus, is an effective way for selecting the
interpolation points. Here we demonstrate that (1) and (2) can
also be satisfied through a much simpler centroidal Voronoi
tessellation (CVT) procedure applied to a weight vector such
as the electron density.
The Voronoi tessellation technique has been widely used in

computer science22 and scientific and engineering applications
such as image processing,23 pattern recognition,24 and
numerical integration.25 The concept of Voronoi tessellation
can be simply understood as follows. Given a discrete set of
weighted points, the CVT procedure divides a domain into a
number of regions, each consisting of a collection of points that
are closest to its weighted centroid. Here we choose the
electron density as the weight and the centroids as the
interpolation points. The centroids must be located where the
electron density is significant and, hence, satisfy requirement 1.
The centroids are also mutually separated from each other by a
finite distance due to the nearest neighbor principle and, hence,
satisfy requirement 2. Although detailed analysis of the error
stemming from such a choice of interpolation points is very
difficult for general nonlinear functions, we find that the CVT
procedure approximately minimizes the residual of the ISDF
decomposition (1). In practice, the CVT procedure only
applies to one vector (the electron density) instead of N( )e

2

vectors and hence is very efficient.
We apply the ISDF-CVT method to accelerate hybrid

functional calculations in a planewave basis set. We perform
such calculations for different systems with insulating (liquid
water), semiconducting (bulk silicon), and metallic (disordered
silicon aluminum alloy) characters, as well as ab initio
molecular dynamics (AIMD) simulations. We find that the
ISDF-CVT method achieves similar accuracy to that obtained
from the ISDF-QRCP method, with significantly improved
efficiency. For instance, for a bulk silicon system containing
1000 silicon atoms computed on 2000 computational cores
with kinetic energy cutoff being 10 Ha, the QRCP procedure
finds the interpolation points with 38.1 s, while the CVT
procedure only takes 0.7 s. Since the solution of the CVT
procedure is continuous with respect to changes in the electron
density, we also find that the CVT procedure produces a
smoother potential energy surface than that by the QRCP
procedure in the context of ab initio molecular dynamics
(AIMD) simulations.
The remainder of the paper is organized as follows. We

briefly introduce the ISDF decomposition in Section 2. In
Section 3 we describe the ISDF-CVT procedure and its
implementation for hybrid functional calculations. We present
numerical results of the ISDF-CVT method in Section 4 and
conclude in Section 5. We also provide the theoretical
justification of the CVT method in Appendix A.

2. INTERPOLATIVE SEPARABLE DENSITY FITTING
(ISDF) DECOMPOSITION

In this section, we briefly introduce the ISDF decomposition17

evaluated using the method developed in ref 21, which employs
a separate treatment of the interpolation points and
interpolation vectors.
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First, assume the interpolation points {rμ̂}μ=1
Nμ are known, and

then the interpolation vectors can be efficiently evaluated using
a least-squares method as follows. Using a linear algebra
notation, eq 1 can be written as

≈ ΘZ C (3)

where each column of Z is given by Zij(r) = φi(r)ψj(r) sampled
on a dense real space grids {ri}i=1

Ng , and Θ = [ζ1, ζ2, ..., ζNμ
]

contains the interpolating vectors. Each column of C indexed
by (i, j) is given by

φ ψ φ ψ φ ψ̂ ̂ ··· ̂ ̂ ··· ̂ ̂μ μ μ μ
r r r r r r[ ( ) ( ), , ( ) ( ), , ( ) ( )]i j i j i N j N

T
1 1

Equation 3 is an overdetermined linear system with respect to
the interpolation vectors Θ. The least-squares approximation to
the solution is given by

Θ = −ZC CC( )T T 1
(4)

It may appear that the matrix−matrix multiplications ZCT and
CCT take N( )e

4 operations because the size of Z is Ng × N2

and the size of C is Nμ × N2. However, both multiplications can
be carried out with fewer operations due to the separable
structure of Z and C. The computational complexity for
computing the interpolation vectors is N( )e

3 , and numerical
results indicate that the preconstant is also much smaller than
that involved in hybrid functional calculations.21 Hence the
interpolation vectors can be obtained efficiently using the least-
squares procedure.
The problem for finding a suitable set of interpolation points

{rμ̂}μ=1
Nμ can be formulated as the following linear algebra

problem. Consider the discretized matrix Z of size Ng × N2 and
find Nμ rows of Z so that the rest of the rows of Z can be
approximated by the linear combination of the selected Nμ

rows. This is called an interpolative decomposition,26 and a
standard method to achieve such a decomposition is the QR
factorization with column pivoting (QRCP) procedure26 as

Π =Z QRT (5)

Here ZT is the transpose of Z, Q is an N2 × Ng matrix that has
orthonormal columns, R is an upper triangular matrix, and Π is
a permutation matrix chosen so that the magnitude of the
diagonal elements of R form a nonincreasing sequence. The
magnitude of each diagonal element R indicates how important
the corresponding column of the permuted ZT is and whether
the corresponding grid point should be chosen as an
interpolation point. The QRCP factorization can be terminated
when the (Nμ + 1)th diagonal element of R becomes less than a
predetermined threshold. The leading Nμ columns of the
permuted ZT are considered to be linearly independent
numerically. The corresponding grid points are chosen as the
interpolation points. The indices for the chosen interpolation
points {rμ̂} can be obtained from indices of the nonzero entries
of the first Nμ columns of the permutation matrix Π.
The QRCP decomposition satisfies requirements 1 and 2

discussed in the Introduction. First, QRCP permutes matrix
columns of ZT with large norms to the front and pushes matrix
columns of ZT with small norms to the back. Note that the
square of the vector 2-norm of the column of ZT labeled by r is
just

∑ ∑ ∑φ ψ φ ψ=
= = =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟r r r r( ) ( ) ( ) ( )

i j

N

i j
i

N

i
j

N

j
, 1

2 2

1

2

1

2

(6)

In the case when φi, ψj are the set of occupied orbitals, the
norm of each column of ZT is simply the electron density.
Hence the interpolation points chosen by QRCP will occur
where the electron density is significant. Second, once a column
is selected, all other columns are immediately orthogonalized
with respect to the chosen column. Hence nearly linearly
dependent matrix columns will not be selected repeatedly. As a
result, the interpolation points chosen by QRCP are well
separated spatially.
It turns out that the direct application of the QRCP

procedure (eq 5) still requires N( )e
4 computational complex-

ity. The key idea used in ref 17 to lower the cost is to randomly
subsample columns of the matrix Z to form a smaller matrix Z̃
of size Ng × Ñμ, where Ñμ is only slightly larger than Nμ.
Applying the QRCP procedure to this subsampled matrix Z̃
approximately yields the choice of interpolation points, but the
computational complexity is reduced to N( )e

3 . In the context
of hybrid density functional calculations, we demonstrated that
the cost of the randomized QRCP method can be comparable
to that of applying the exchange operator in the planewave
basis set.21 However, the ISDF decomposition can still
significantly reduce the computational cost, since the
interpolation points only need to be performed once for a
fixed geometric configuration.

3. CENTROIDAL VORONOI TESSELLATION BASED
ISDF DECOMPOSITION

In this section, we demonstrate that the interpolation points
can also be selected from a Voronoi tessellation procedure. For
a d-dimensional space, the Voronoi tessellation partitions a set
of points {ri}i=1

Ng in d into a number of disjoint cells. The
partition is based on the distance of each point to a finite set of
points, called its generators. In our context, let {rμ̂}μ=1

Nμ denote
such a set of generators, and the corresponding cell of a given
generator rμ̂, is defined through a cluster of points μ is

μ ν= | ̂ ≤ ̂ ≠μ μ νr r r r r{ dist( , ) dist( , ) for all }i i i (7)

The distance can be chosen to be any metric, e.g., the L2

distance as dist(r, r′) = ∥r − r′∥. In the case when the distances
of a point r to rμ̂, rν̂ are exactly the same, we may arbitrarily
assign r to one of the clusters.
The Centroidal Voronoi tessellation (CVT) is a specific type

of Voronoi tessellation in which the generator rμ̂ is chosen to be
the centroid of its cell. Given a weight function ρ(r) (such as
the electron density), the centroid of a cluster μ is defined as

ρ

ρ
=

∑

∑μ
∈

∈

μ

μ

c
r r

r
( )

( )

( )

j j

j

r

r

j

j (8)

Combined with the L2 distance, CVT can be viewed as a
minimization problem over both all possible partition of the
cells and the centroids as27

∑ ∑ ρ* * = −μ μ
μ

μ
= ∈μ μ

μ

μ

c r r c{ , } argmin ( )
N

k i
c r{ , } 1

2

k (9)
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and the interpolation points are then chosen to be the
minimizers ̂ = * = *μ μ μ μr c c( ) . Following the discussion in the
Introduction, the electron density as the weight function 9
enforces that the interpolation points should locate at points
where the electron density is significant and hence satisfies
requirement 1. Since the cells *μ are disjoint, the centroids cμ*
are also separated by a finite distance away from each other,
which hence satisfies requirement 2. In Appendix A we provide
another theoretical justification in the sense that the CVT
method approximately minimizes the residual error of the ISDF
decomposition.
Many algorithms have been developed to efficiently compute

the Voronoi tessellation.28 One most widely used method is
Llyod’s algorithm,29 which in the discrete case is equivalent to
the K-Means algorithm.27 The K-Means algorithm is an
iterative method that greedily minimizes the objective by
taking alternating steps between μ{ } and {cμ}. In this work, we
adopt a weighted version of the K-Means algorithm, which is
demonstrated in Algorithm 1. Note that the K-Means algorithm

can be straightforwardly parallelized. We distribute the grid
points evenly at the beginning. The classification step is the
most time-consuming step and can be locally computed for
each group of grid points. After this step, the weighted sum and
total weight of all clusters can be reduced from and broadcast to
all processors for the next iteration.
In order to demonstrate the CVT procedure, we consider the

weight function ρ(r) given by the summation of four Gaussian
functions in a 2D domain. The initial choice of centroids, given
by 40 uniformly distributed random points, together with its
associated Voronoi tessellations are plotted in Figure 1a. Figure
1b demonstrates the converged centroids and the associated

Voronoi tessellation using the weighted K-Means algorithm.
We observe that the centroids concentrate on where the weight
function is significant and are well-separated.
We also show how the interpolation points are placed and

moved in real chemical systems, i.e., the ammonia−borane
(BH3NH3) decomposition reaction process. Figure 2a shows

the electron density of the molecule at the compressed,
equilibrium, and dissociated configurations, respectively,
according to the energy landscape in Figure 2c. We plot the
interpolation points found by the weighted K-Means algorithm
in Figure 2b. At the compressed configuration, all the
interpolation points are distributed evenly around the molecule.
As the bond length increases, some interpolation points are
transferred from BH3 to NH3. Finally at the dissociated
configuration, NH3 has more interpolation points around the
molecule, since there are more electrons in NH3 than BH3.
Along the decomposition reaction process, both the transfer of
the interpolation points and the potential energy landscape are
smooth with respect to the change of the bond length.

4. NUMERICAL RESULTS
We demonstrate the accuracy and efficiency of the ISDF-CVT
method for hybrid functional calculations by using the DGDFT
(Discontinuous Galerkin Density Functional Theory) software
package.30−34 DGDFT is a massively parallel electronic
structure software package designed for large scale DFT
calculations involving up to tens of thousands of atoms. It
includes a self-contained module called PWDFT for performing
planewave based electronic structure calculations (mostly for
benchmark and validation purposes). We implemented the
ISDF-CVT method in PWDFT. We use the Message Passing

Figure 1. Schematic illustration of the CVT procedure in a 2D
domain, including (a) initial random choice of centroids and Voronoi
tessellation and centroidal Voronoi tessellation generated by the
weighted K-Means algorithm. The weight function is given by the
linear superposition of four Gaussian functions.

Figure 2. Decomposition reaction process of BH3NH3 computed with
hybrid functional (HSE06) calculations by using the CVT procedure
to select interpolation points, including (a) the electron density
(yellow isosurfaces), (b) the interpolation points (yellow squares)
{rμ̂}μ=1

Nμ (Nμ = 8) selected from the real space grid points {ri}i=1
Ng (Ng =

1003 and Ecut = 60 Ha) when the BN distance respectively is 1.3, 1.7,
and 2.8 Å, and (c) the binding energy as a function of BN distance for
BH3NH3 in a 10 Å × 10 Å × 10 Å box. The white, pink, and blue pink
balls denote hydrogen, boron, and nitrogen atoms, respectively.
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Interface (MPI) to handle data communication. We use the
Hartwigsen−Goedecker−Hutter (HGH) norm-conserving
pseudopotential.35 The atomic valence electron configuration
is 1s1 for the H atom, 2s22p1 for the B atom, 2s22p3 for the N
atom, 2s22p4 for the O atom, and 3s23p2 for the Si atom in our
DFT calculations, respectively. All calculations use the HSE06
functional.36 All calculations are carried out on the Edison
systems at the National Energy Research Scientific Computing
Center (NERSC). Each node consists of two Intel “Ivy Bridge”
processors with 24 cores in total and 64 gigabytes (GB) of
memory. Our implementation only uses MPI. The number of
cores is equal to the number of MPI ranks used in the
simulation.
In this section, we demonstrate the performance of the

ISDF-CVT method for accelerating hybrid functional calcu-
lations by using three types of systems.37 They consist of bulk
silicon systems (Si64, Si216, and Si1000), a bulk water system with
64 molecules ((H2O)64), and a disordered silicon aluminum
alloy system (Al176Si24). Bulk silicon systems (Si64, Si216, and
Si1000) and the bulk water system ((H2O)64) are semi-
conducting with a relatively large energy gap Egap > 1.0 eV,
and the Al176Si24 system is metallic with a small energy gap Egap

< 0.1 eV. All systems are closed shell systems, and the number
of occupied bands is Nband = Ne/2, where Ne is the number of
valence electrons. In order to compute the energy gap in the
systems, we also include two unoccupied bands in all
calculations.
4.1. Accuracy: Si216 and Al176Si24. We demonstrate the

accuracy of the CVT-based ISDF decomposition in the hybrid

functional calculation for semiconducting Si216 and metallic
Al176Si24 systems, respectively. Although there is no general
theoretical guarantee for the convergence of the K-Means
algorithm and the convergence can depend sensitively on the
initialization,38,39 we find that, in the current context,
initialization has little impact on the final accuracy of the
approximation. Hence we use random initialization for the K-
Means algorithm. In all calculations, the adaptively compressed
exchange (ACE) technique is used to accelerate hybrid
functional calculations without loss of accuracy.40 The results
obtained in this work are labeled as ACE-ISDF (CVT), which
are compared against those obtained from the previous work
based on the QRCP decomposition21 labeled as ACE-ISDF
(QRCP). In both cases, we introduce a rank parameter c to
control the trade off between efficiency and accuracy, by setting
the number of interpolation points Nμ = cNe. We measure the
error using the valence band maximum (VBM) energy level, the
conduction band minimum (CBM) energy level, the energy
gap, the Hartree−Fock exchange energy, the total energy, and
the atomic forces, respectively. We remark that, in ISDF-CVT
and ISDF-QRCP, the atomic force is computed directly using
the Hellmann−Feynman formula and, hence, neglects the
Pulay force contribution from the change of the interpolation
points. On the other hand, there is no Pulay contribution in the
ACE formulation, and the Hellmann−Feynman force FI

ACE can
be used as the reference solution.
The last three quantities are defined as

Δ = | − |−E E E N/HF HF
ACE ISDF(CVT)

HF
ACE

A

Table 1. Accuracy of ACE-ISDF Based Hybrid Functional Calculations (HSE06) Obtained by Using the CVT Method To Select
Interpolation Points, with Varying Rank Parameter c for Semiconducting Si216 and Metallic Al176Si24 Systemsa

c EVBM ECBM Egap ΔEHF ΔE ΔF TKMEANS

ACE-ISDF: Semiconducting Si216 (Nband = 432)
4.0 6.7467 8.3433 −1.5967 2.69 × 10−03 3.08 × 10−03 5.04 × 10−03 0.228
5.0 6.6852 8.2231 −1.5379 9.46 × 10−04 1.12 × 10−03 2.29 × 10−03 0.248
6.0 6.6640 8.1522 −1.4882 3.76 × 10−04 4.62 × 10−04 1.05 × 10−03 0.301
7.0 6.6550 8.1163 −1.4613 1.55 × 10−04 1.98 × 10−04 6.49 × 10−04 0.312
8.0 6.6510 8.1030 −1.4520 7.33 × 10−05 9.55 × 10−05 3.07 × 10−04 0.349
9.0 6.6490 8.0980 −1.4490 3.60 × 10−05 4.96 × 10−05 2.30 × 10−04 0.398
10.0 6.6479 8.0959 −1.4480 1.78 × 10−05 2.64 × 10−05 1.30 × 10−04 0.477
12.0 6.6472 8.0945 −1.4473 4.46 × 10−06 8.91 × 10−06 8.37 × 10−05 0.530
16.0 6.6469 8.0937 −1.4468 1.51 × 10−07 1.41 × 10−06 3.20 × 10−05 0.773
20.0 6.6468 8.0935 −1.4467 4.06 × 10−07 3.33 × 10−07 1.20 × 10−05 0.830
24.0 6.6468 8.0935 −1.4467 2.99 × 10−07 1.06 × 10−07 5.18 × 10−06 0.931

ACE 6.6468 8.0934 −1.4466 0.00 × 1000 0.00 × 1000 0.00 × 1000 -
ACE-ISDF: Metallic Al176Si24 (Nband = 312)

4.0 7.9258 8.0335 −0.1076 3.80 × 10−03 4.03 × 10−03 8.01 × 10−03 0.430
5.0 7.8537 7.9596 −0.1059 1.60 × 10−03 1.69 × 10−03 3.18 × 10−03 0.535
6.0 7.8071 7.9127 −0.1056 6.07 × 10−04 6.39 × 10−04 1.48 × 10−03 0.611
7.0 7.7843 7.8860 −0.1017 2.07 × 10−04 2.17 × 10−04 1.03 × 10−03 0.731
8.0 7.7749 7.8749 −0.1000 7.43 × 10−05 7.77 × 10−05 4.40 × 10−04 0.948
9.0 7.7718 7.8710 −0.0992 3.02 × 10−05 3.20 × 10−05 1.98 × 10−04 0.947
10.0 7.7709 7.8697 −0.0989 1.48 × 10−05 1.60 × 10−05 1.80 × 10−04 1.096
12.0 7.7703 7.8690 −0.0987 4.64 × 10−06 5.60 × 10−06 8.51 × 10−05 1.305
16.0 7.7702 7.8688 −0.0986 6.35 × 10−07 1.41 × 10−06 3.24 × 10−05 1.646
20.0 7.7701 7.8687 −0.0986 1.70 × 10−08 5.30 × 10−07 1.91 × 10−05 2.037

ACE 7.7701 7.8687 −0.0986 0.00 × 1000 0.00 × 1000 0.00 × 1000 -
aThe unit for VBM (EVBM), CBM (ECBM), and the energy gap Egap is eV. The unit for the error in the Hartree-Fock exchange energy ΔEHF and the
total energy ΔE is Ha/atom, and the unit for the error in atomic forces ΔF is Ha/Bohr. We use the results from the ACE-enabled hybrid functional
calculations as the reference. The last column shows the time (in seconds) for K-Means with different c values, with 434 cores for Si216 and 314 cores
for Al176Si24 on Edison.
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Δ = | − |−E E E N/ACE ISDF(CVT) ACE
A

Δ = −−F F Fmax
I

I I
ACE ISDF(CVT) ACE

where NA is the number of atoms and I is the atom index.
Table 1 shows that the accuracy of the ACE-ISDF (CVT)

method can systematically improve as the rank parameter c
increases. When the rank parameter is large enough (≥20.0),
the results from ACE-ISDF (CVT) are fully comparable (the
energy error is below 10−6 Ha/atom and the force error is
below 10−5 Ha/Bohr) to those obtained from the benchmark
calculations. Furthermore, for a moderate choice of the rank
parameter c = 6.0, the error of the energy per atom reaches
below the chemical accuracy of 1 kcal/mol (1.6 × 10−3 Ha/
atom), and the error of the force is around 10−3 Ha/Bohr. This
is comparable to the accuracy obtained from ACE-ISDF
(QRCP) and to, e.g., linear scaling methods for insulating
systems with a reasonable amount of truncation needed to
achieve significant speedup.41 In fact, when compared with
ACE-ISDF (QRCP) in Figure 3, we find that the CVT based

ISDF decomposition achieves slightly higher accuracy, though
there is no theoretical guarantee for this to hold in general. The
last column of Table 1 shows the runtime of the K-Means
algorithm. As c increases, the number of interpolation points as
well as the number of cells increases proportionally. Hence we
observe that the runtime of K-Means scales linearly with
respect to c.
4.2. Efficiency: Si1000.We report the efficiency of the ISDF-

CVT method by performing hybrid DFT calculations for a bulk
silicon system with 1000 atoms (Nband = 2000) on 2000

computational cores as shown in Table 2, with respect to
various choices of the kinetic energy cutoff (Ecut). With the

number of interpolation points fixed at Nμ = 12 000, both
QRCP and K-Means scales linearly with the number of grid
points Ng. Yet the runtime of K-Means is around 2 orders of
magnitude faster than that of QRCP. The determination of
interpolation vectors, which consists of solving a least-squares
problem, previously costs a fifth of the ISDF runtime but now
becomes the dominating component in CVT-based ISDF
decomposition. Notice that the ISDF method allows us to
reduce the number of Poisson-like equations from Ne

2 = 4 ×
106 to Nμ = 12000, which results in a significant speedup in
terms of the cost of the FFT operations.

4.3. AIMD: Si64 and (H2O)64. In this section, we
demonstrate the accuracy of the ACE-ISDF (CVT) method
in the context of AIMD simulations for a bulk silicon system
Si64 under the NVE ensemble and a liquid water system
(H2O)64 under the NVT ensemble, respectively. For the Si64
system, the initial MD structure (initial temperature T = 300 K)
is optimized by hybrid DFT calculations, and we perform the
simulation (Ecut = 20 Ha) for 1.0 ps with a MD time step of 1.0
fs. For the (H2O)64 system, we perform the simulation (Ecut =
60 Ha) for 2.0 ps with a MD time step of 0.5 fs to sample the
radial distribution function after equilibrating the system
starting from a prepared initial guess.42 In this case, the van
der Waals (VdW) interaction is modeled at the level of the
DFT-D2 method.43 We use a single level Nose-Hoover
thermostat44,45 at T = 295 K, and the choice of mass of the
Nose-Hoover thermostat is 85 000 au.
In the AIMD simulation, the interpolation points need to be

recomputed for each atomic configuration. At the initial MD
step, although the initialization strategy does not impact the
accuracy of the physical observable, it can impact the
convergence rate of the K-Means algorithm. We measure the
convergence in terms of the fraction of points that switch
clusters during two consecutive iterations. Figure 4a shows the
convergence of the K-Means algorithm with interpolation
points initially chosen from a random distribution and from the
QRCP solution, respectively. We find that the K-Means
algorithm spends around half the number of iterations to
wait for 0.1% of the points to settle on the respective clusters.
However, these points often belong to the boundary of the
clusters and have little effect on the positions of the centroids
(interpolation points). Therefore, we decide to terminate the
K-Means algorithm whenever the fraction of points that switch
clusters falls below the 0.1% threshold. It is evident that QRCP
initialization leads to faster convergence than random sampling.

Figure 3. Accuracy of ACE-ISDF based hybrid functional calculations
(HSE06) obtained by using the CVT and QRCP procedures to select
the interpolation points, with varying rank parameter c from 4 to 20
for Si216 and Al176Si24, including the error of (a) Hartree−Fock
exchange energy ΔEHF (Ha/atom) and (b) total energy ΔE (Ha/
atom).

Table 2. Wall Clock Time (in seconds) Spent in the
Components of the ACE-ISDF and ACE Enabled Hybrid
DFT Calculations Related to the Exchange Operator, for
Si1000 on 2002 Edison Cores at Different Ecut Levels

a

Si1000 ACE-ISDF ACE

Ecut Ng IPQRCP IPKMEANS IV (FFT) FFT

10 743 38.06 0.70 12.48 (0.33) 85.15
20 1043 126.39 1.24 36.48 (0.71) 143.54
30 1283 240.87 2.03 68.50 (1.43) 268.88
40 1483 434.16 3.26 108.18 (3.10) 783.27

aInterpolation points are selected via either the QRCP or the CVT
procedure with the same rank parameter c = 6.0. Ng is the number of
grid points in real space.
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However, in the AIMD simulation, a very good initial guess of
the interpolation points can be simply obtained from those
from the previous MD step. Figure 4b shows that the number
of K-Means iterations in the MD simulation can be very small,
which demonstrates the effectiveness of this initialization
strategy.
Figure 5a shows that both the CVT-based and QRCP-based

ISDF decomposition lead to controlled energy drift, defined as
Edrift(t) = (Etot(t) − Etot(0))/Etot(0). In the NVE simulation on

bulk silicon system Si64, the energy drifts per atom are 6.6 ×
10−5, 7.5 × 10−5, and 2.5 × 10−5 Ha/ps, respectively, for the
ISDF-CVT, ISDF-QRCP, and conventional nested two-level
SCF iteration procedure, indicating that ISDF is a promising
method for reducing the cost of hybrid functional calculations
with controllable loss of accuracy. Figure 5b shows the total
potential energy obtained by the three methods along the MD
trajectory, and the difference among the three methods is more
noticeable. This is due to the fact that ISDF decomposition is a

Figure 4. Comparison of the ISDF-CVT method by using either random or QRCP initialization for hybrid DFT AIMD simulations on bulk silicon
system Si64 and liquid water system (H2O)64, including (a) the fraction of points of the switch cluster in each K-Means iteration and (b) the number
of K-Means iterations during each MD step.

Figure 5. Comparison of hybrid HSE06 DFT AIMD simulations by using the ISDF-CVT and ISDF-QRCP methods as well as exact nested two-level
SCF iteration procedure as the reference on the bulk silicon Si64, including (a) relatively energy drift and (b) potential energy during MD steps.
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low rank decomposition for the pair product of orbitals, which
leads to error in the Fock exchange energy and hence the total
potential energy. Nonetheless, we find that such a difference
mainly results in a shift of the potential energy surface along the
MD trajectory and, hence, has little effect on physical
observables defined via relative potential energy differences.
Furthermore, the CVT method yields a potential energy
trajectory that is much smoother compared to that obtained
from QRCP. This is because the interpolation points obtained
from CVT are driven by the electron density, which varies
smoothly along the MD trajectory. Such properties do not hold
for the QRCP method. This means that the CVT method can
be more effective when a smooth potential energy surface is
desirable, such as in the case of geometry optimization. The
absolute error of the potential energy from the CVT method is
coincidentally smaller than that from QRCP, but again we are
not aware of any reason for this behavior to hold in general.
We also apply the ACE-ISDF (CVT) and ACE-ISDF

(QRCP) methods for hybrid DFT AIMD simulations on the
liquid water system (H2O)64 under the NVT ensemble to
sample the radial distribution function in Figure 6. We find that

the results from all three methods agree very well, and our
result is in quantitative agreement with previous hybrid
functional calculations,42 which uses a different exchange-
correlation functional (PBE0) and van der Waals functional
(TS-vdW46).

5. CONCLUSION
In this work, we demonstrate that the interpolative separable
density fitting decomposition (ISDF) can be efficiently
performed through a separated treatment of interpolation
points and interpolation vectors. We find that the centroidal
Voronoi tessellation method (CVT) provides an effective
choice of interpolation points using only the electron density as
the input information. The resulting interpolation points are by
design inhomogeneous in the real space, concentrated at
regions where the electron density is significant, and are well
separated from each other. These are all key ingredients for
obtaining a low rank decomposition that is accurate and a well
conditioned set of interpolation vectors. We demonstrate that
the CVT-based ISDF decomposition can be an effective
strategy for reducing the cost hybrid functional calculations
for large systems. The CVT-based method achieves similar

accuracy when compared with that obtained from QRCP, with
significantly improved efficiency. Since the solution of the CVT
method depends continuously on the electron density, we also
find that the CVT method produces a smoother potential
energy surface than that by the QRCP method in the context of
ab initio molecular dynamics simulation. Our analysis indicates
that it might be possible to further improve the quality of the
interpolation points by taking into account the gradient
information in the weight vector. We also expect that the
CVT-based strategy can also be useful in other contexts where
the ISDF decomposition is applicable, such as ground state
calculations with rung-5 exchange-correlation functionals, and
excited state calculations. These will be explored in future work.

■ APPENDIX A: MINIMIZATION OF THE
APPROXIMATE RESIDUAL

The ISDF decomposition is a highly nonlinear process, and in
general we cannot expect the choice of interpolation points
from CVT decomposition to maximally reduce the error of the
decomposition. Here we demonstrate that the choice of the
interpolation points from the centroidal Voronoi tessellation
algorithm approximately minimizes the residual for the ISDF
decomposition and, hence, provides a heuristic solution to the
problem of finding interpolation points.
For simplicity we assume φi = ψi, and, hence, each row of Z is

Z(r) = [φi(r)φj(r)]i,j=1
N . Now suppose we cluster all matrix rows

of Z into subcollections μ μ=
μ{ }N

1, and for each μ we choose a
representative matrix row Z(rμ). Then the error of the ISDF
can be approximately characterized as

∑ ∑= −
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μ

μ
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where the projection is defined according to the L2 inner
product as
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Let Φ be the Ng × N matrix with each row Φ(r) = [φi(r)]i=1
N ,

then the electron density ρ(r) is equal to Φ(r)·Φ(r). Using the
relation
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Here θ(rk, rμ) is the angle between the vectors Φ(rk) and
Φ(rμ). Use the fact that
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we have

Figure 6. Oxygen−oxygen radial distribution functions gOO(r) of the
liquid water system (H2O)64 at T = 295 K obtained from hybrid
HSE06 + DFT-D2 AIMD simulations with the ISDF-CVT and ISDF-
QRCP methods and exact nested two-level SCF iteration procedure
(as the reference) as well as previous hybrid PBE0 + TS-vdW
calculation.42
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If we further neglect the spatial inhomogeneity of the gradient
Φ(r), we arrive at the minimization criterion for the centroidal
Voronoi decomposition.
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