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We present a numerical integration scheme for evaluating the convolution of a

Green’s function with a screened Coulomb potential on the real axis in the GW ap-

proximation of the self energy. Our scheme takes the zero broadening limit in Green’s

function first, replaces the numerator of the integrand with a piecewise polynomial

approximation, and performs principal value integration on subintervals analytically.

We give the error bound of our numerical integration scheme and show by numerical

examples that it is more reliable and accurate than the standard quadrature rules

such as the composite trapezoidal rule. We also discuss the benefit of using different

self energy expressions to perform the numerical convolution at different frequencies.
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I. INTRODUCTION

The computational modeling and simulation of single-electron excitations of molecules

and solids including many-electron effects is important for interpreting spectroscopy exper-
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iments and predicting excited-state properties of materials. One way to calculate single-

particle excitation energies or quasiparticle energies is through Green’s function theory1–5.

In such a theory, the quasiparticle energies εj’s and wavefunctions φj(r)’s are obtained by

solving Dyson’s equation2,6 (in atomic units ~ = 1, e = 1, and electron mass me = 1)

[

−1

2
∇2(r) + vH(r)

]

φj(r) +

∫

dr′Σ(r, r′; εj)φj(r
′) = εjφj(r), (1)

where vH(r) is the Hartree potential and Σ(r, r′; εj) is the energy (or frequency) dependent

self energy operator.

The main challenge in solving (1) is the approximation and evaluation of Σ. One widely

used approximation is the GW approximation in which Σ is set to the product of a single-

particle Green’s function G and a screened Coulomb potential W . In the frequency domain,

the product is evaluated as a convolution of the time-ordered Fourier transforms of these two

functions. Due to the presence of singularities in both functions, the numerical convolution

must be carried out with care. This is particularly important for molecules because the

poles of W for such systems have more discrete features than those in solids. These poles

must be treated properly in the self energy calculation.

There are a number of ways to perform the energy dependent (or full frequency) self

energy calculation numerically. One way is use analytic continuation method proposed in7–9,

another is to perform a contour deformation10,11. A more direct approach is to perform the

numerical integration on the real axis, which is the approach we take in this paper. All

of these approaches have positive and negative aspects and each approach represents a

different way to overcome potential numerical difficulties introduced by the singularity of

the integrand.

We will show in this paper that it is important to use a numerical integration scheme

that approximates the principal value integral of a singular integrand when the self energy

convolution is performed directly on the real axis. We show that failure to do so may lead

to significant error in integration over some frequency regions. In this study, we address the

singularities in the integration that arise from taking the zero broadening limit in Green’s

function only. The approximation to the principal value is obtained by replacing the numer-

ator of the integrand with a piecewise polynomial approximation and performing a principal

value integration analytically on the approximate integrand. We show that taking the zero

broadening limit improves the accuracy of the numerical integration.
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When the spectral representations of G and W are used to derive an expression for Σ,

there are a number of ways to group different terms. These different groupings lead to

different expressions. We show that applying the numerical integration scheme proposed in

this paper to different expressions may lead to different numerical accuracy. For particular

frequency ranges, one expression may be preferred over the other.

II. SELF ENERGY INTEGRATION

In the GW approximation, the electron self energy is expressed as i times the product

of the time-ordered one-particle Green’s function, denoted by G(r, r′; t), and a screened

Coulomb term, denoted by W (r, r′; t), in the time domain. Taking a Fourier transform with

respect to t yields the frequency representation of the self energy,

Σ(r, r′;ω) =
i

2π

∫ ∞

−∞

dω′G(r, r′;ω − ω′)W (r, r′, ω′)e−iω′η, (2)

where G(r, r′;ω) and W (r, r′;ω) are obtained from Fourier transforms of G(r, r′; t) and

W (r, r′; t), respectively. Note that the e−iω′η term with a positive infinitesimally small η

factor is introduced to ensure the proper convergence of the Fourier transform. Such a fac-

tor should also appear in the Fourier transforms for G(r, r′;ω) and W (r, r′;ω) themselves.

In practice, this convolution (2) must be evaluated numerically. The accuracy of the nu-

merical integration can have a significant effect on the quantitative and qualitative behaviors

of the approximate solution to Dyson’s equation.

In the frequency domain, Green’s function has the spectral representation

G(r, r′;ω) =
∑

j

φj(r)φ
∗
j(r

′)

ω − εj + iηsgn(εj − µ)
(3)

where (εj, φj), j = 1, 2, ... are quasi-particle eigenvalues (energies) and orbitals enumerated in

an increasing energy order. In a computational procedure, they are chosen to be approximate

solutions to Dyson’s equation with φj evaluated at ω = εj for the self energy Σ. The first nv

eigenpairs are called the valence (or occupied) states, and the remaining ones are referred to

as the conduction (or empty) states. The parameter µ is the chemical potential that satisfies

the condition εnv
≤ µ ≤ εnv+1.

The screened Coulomb interaction W can be expressed as

W (r, r′;ω) ≡
∫

ǫ−1(r, r′′;ω)v(r′′, r′)dr′′, (4)
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where the dielectric function ǫ, defined within the random phase approximation12,13, has the

form

ǫ(r, r′;ω) = δ(r, r′)−
∫

v(r, r′′)χ0(r
′′, r′;ω)dr′′,

with v(r, r′) = 1/|r − r′| being the bare Coulomb potential, and χ0(r, r
′;ω) being the time-

ordered Fourier transform of the independent particle polarizability function (operator) that

describes the linear density response to external potential perturbations. The analytical

expression for the non-interacting χ0(r, r
′;ω) from a mean-field solution of the system is

χ0(r, r
′;ω) =

1

2

nv
∑

i=1

∑

j>nv

φi(r)φ
∗
j(r)φ

∗
i (r

′)φj(r
′)

×
(

1

ω −∆εi,j + iη
− 1

ω +∆εi,j − iη

)

,

(5)

where ∆εi,j = εj − εi ≥ 0.

A. The analytic structure of the integrand

Because the time-ordered screened Coulomb operator W involves the inverse of the di-

electric operator, the analytic structure of the integrand in (2) is not immediately clear. In

the following, we examine the finite dimensional approximation of the integrand in (2) in

detail, and discuss how the integral (2) can be evaluated numerically.

Let us assume that a proper spatial discretization (e.g., plane-wave expansion) has been

used to represent G, W and Σ(ω) as n× n matrices. Using the spectral representation of G

and W , we can express the integral (2)1,2,6 as

Σ(ω) =−
nv
∑

j=1

(

φjφ
∗
j

)

⊙W (ω − εj)

− 1

π

n
∑

j=1

(φjφ
∗
j)⊙

∫ ∞

0

dω′ (W
r(ω′)−W a(ω′))/(2i)

ω − εj − ω′ + iη
,

(6)

where W r/a =
[

ǫr/a
]−1

V are the retarded and advanced screened Coulomb matrix defined

in terms of the retarded and advanced dielectric matrices ǫr/a, which are in turn defined in

terms of the retarded and advanced polarizability matrices

χ
r/a
0 (ω) =

1

2

nv
∑

i=1

n
∑

j=nv+1

(

φi ⊙ φj

) (

φi ⊙ φj

)∗

×
(

1

ω −∆εi,j ± iη
− 1

ω +∆εi,j ± iη

)

,

(7)
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and the discretized bare Coulomb matrix V . We use ⊙ to denote element-wise multiplication,

φ∗
j to denote the conjugate transpose of a column vector φj , and φj to denote the conjugate

of φj. The integral in (6) is performed element-wise. We should also mention that in a

practical calculation, the summation over j may be truncated so that the total number of

unoccupied states, which we will denote by nc, can be less than n− nv.

The expression given in (6) is a specific formulation of the self energy. The first term in

(6) is the so-called screened exchange (SEX) term and the second term is the Coulomb hole

(COH) term. The integrand in the second term of (6) is well behaved in the sense that the

integral does not diverge. Such an expression is also physically appealing, especially in the

static case (ω = 0)1.

Without loss of generality, we can write the matrix χr
0(ω) as

χr
0(ω) = M [Ω(ω)]−1M∗,

where M is an n×nvnc matrix. Each column of M represents the element-wise product of a

discretized φi and φj pair, for i = 1, 2, ..., nv, j = nv +1, nv +2, ..., nv +nc. The nvnc ×nvnc

diagonal matrix [Ω(ω)]−1 has elements

1

2

(

1

ω −∆εi,j + iη
− 1

ω +∆εi,j + iη

)

=
∆εi,j

(ω + iη)2 −∆ε2i,j
. (8)

If we let V be the matrix representation of a discretized unscreened Coulomb operator,

we can write ǫr(ω) as

ǫr(ω) = I − VM [Ω(ω)]−1M∗. (9)

It follows from the Sherman-Morrison-Woodbury formula14,15 and some additional alge-

braic manipulations16 that

[ǫr(ω)]−1 = I +

nvnc
∑

ℓ=1

1

2τℓ
VMsℓ

(

1

ω − τℓ + iη
− 1

ω + τℓ + iη

)

(Msℓ)
∗, (10)

where τℓ =
√
λℓ with λℓ being an eigenvalue of the matrixD2+DM∗VM , D is a diagonal ma-

trix with ∆εi,j, i = 1, 2, ..., nv, j = nv+1, ..., nv+nc on its diagonal, and sℓ is the ℓth column

of D1/2U with U being the matrix that contains all eigenvectors of D2 +D1/2M∗VMD1/2.

A similar expression can be obtained for [ǫa(ω)]−1. Consequently,

(W r(ω)−W a(ω))/(2i)

=

nvnc
∑

ℓ=1

1

2τℓ
VMsℓ

[

η

(ω + τℓ)2 + η2
− η

(ω − τℓ)2 + η2

]

(VMsℓ)
∗.

(11)
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The expression given by (11) indicates that all matrix elements of the integrand of the

integration in (6) (in any basis) have the same analytic structure.

In principle, if τℓ’s are known, the integration in (6) can be evaluated analytically for all

ω. In the limit of η → 0, η/[(ω′ ± τℓ)
2 + η2] becomes a δ-function centered at ω′ = ∓τℓ.

Because τℓ =
√
λℓ is nonnegative, the COH term in (6) simplifies to

ICOH =
1

π

n
∑

j=1

(

φjφ
∗
j

)

⊙
[

nvnc
∑

ℓ=1

1

2τℓ

VMsℓ(VMsℓ)
∗

ω − εj − τℓ

]

. (12)

However, obtaining τℓ requires computing all eigenvalues of an nvnc × nvnc matrix, a

task that requires O(n6) operations even though Σ and ǫr/a are n × n matrices17–19. This

can be costly for large systems that contain many atoms. An alternative way to evaluate

the integral in (6) numerically is to evaluate the integrand at multiple values of ω′ and use

an appropriate quadrature rule to sum up these function evaluations. In this approach, the

ǫr/a(ω′) matrices must be evaluated at a number of frequencies. Each evaluation is expensive,

because it requires computing χ
r/a
0 (ω′) for each ω′, multiplying χ

r/a
0 (ω′) with V and inverting

the product. The complexity of the evaluation is O(n4) for each ω′, where n scales linearly

with the number of atoms in the system. Therefore, we would like to minimize the number

of such evaluations as much as possible without sacrificing the accuracy of the integration.

B. Separating the low and high frequency regions

Let Sη(ω
′) = (W r(ω′)−W a(ω′))/(2i). In frequency regions where the poles of Sη(ω

′) are

near ω − εj, the direct numerical integration of (6) may be difficult due to the presence of

singularities in the integrand. As a result, more quadrature points need to be placed near

the poles of Sη(ω
′). However, in the tail regions of 1/(ω − εj − ω′ + iη), that are far away

from these poles, the Lorentzians in Sη(ω
′) should decay to zero rapidly. Fewer quadrature

points are thus needed to approximate the COH term in that region by a weighted sum. In

particular, we can use a Gauss quadrature rule, i.e.

∫ b

a

dω′ Sη(ω
′)

ω − εj − ω′ + iη
≈

P
∑

i=1

Sη(ω
′
i)

ω − εj − ω′
i + iη

νi, (13)

where ω′
i are quadrature points at which the integrand is evaluated and νi are the properly

chosen weights. Typically, ten or twenty quadrature points are sufficient to produce a highly

accurate integral.
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For a given ω, we can apply (13) to the high frequency interval [ξ,∞) where ξ = max(ω−
ε1,maxℓ τℓ)+ζ , for some modest constant ζ ≥ 0. Here τℓ, ℓ = 1, 2, · · · , nvnc are the position

of poles of Sη(ω
′) for ω′ ≥ 0 as shown in (11). If we view the matrix DM∗VM as a

small perturbation to the diagonal matrix D2 whose diagonal elements are (∆εi,j)
2, the

poles of Sη(ω
′) should not be too far away from ±∆εi,j. Hence we can simply estimate

maxℓ τℓ by εmax − ε1, where max = nv + nc. Because the ω’s of interest are often within

[ε1, εmax], choosing ξ = εmax−ε1+ ζ as the starting point of the high frequency region is not

unreasonable. Below this region, i.e., within the interval (0, εmax− ε1), a different numerical

integration strategy that accounts for the singular nature of the integrand must be used.

We will describe that strategy in the next section.

To confirm the above observation, we plot both the poles of a typical matrix element of the

ǫr(ω) and Sη(ω) associated with a SiH4 molecule in Figure 1. Our calculation is performed

using KSSOLV20, which is a MATLAB toolbox for solving the Kohn-Sham problem. The

plane-wave expansion is used for discretizing ǫr(ω) and Sη(ω). (εj, φj)’s are taken to be

the Kohn-Sham DFT eigenpairs. We will use εLUMO and εHOMO to denote the lowest

unoccupied (empty) and the highest occupied Kohn-Sham single-particle eigenvalues below,

i.e. εLUMO = εnv+1 and εHOMO = εnv
.

Figure 1 shows that poles of ǫr(ω), which are at ∆εi,j, and those of Sη(ω), which are at

τℓ, match up pretty well. In particular, they are both in the domain [min∆εi,j,max∆εi,j] =

[εLUMO − εHOMO, εmax − ε1] = [3.2, 20.9] eV. Outside of this region, the magnitude of Sη(ω)

decreases rapidly to zero.

C. Quadrature for the low frequency region

The fundamental problem we need to solve in order to evaluate (6) efficiently and accu-

rately is to properly evaluate an integral of the form

Iη(γ) =

∫ ∞

0

f(ω′)

ω′ − γ + iη
dω′ (14)

for γ > 0, where f(ω′) contains a linear combination of a number of Lorentzians centered at

τℓ’s, which we do not know in advance.

Taking the η → 0 limit in the denominator of the integrand reduces the integral to

Iη(γ) = −iπf(γ) + PV

∫ ∞

0

f(ω′)

ω′ − γ
dω′, (15)
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FIG. 1: The diagonal element of |Sη(ω)| of SiH4, associated with G = G′ = [2 0 0], is shown as

the black curve. G, G′ are in units of the reciprocal basis 2π/a0 of the supercell containing the

molecule with a0 = 10 Bohr. The top of the figure shows the positions of the poles associated with

the corresponding entry in the ǫr(ω) matrix (the red crosses), as well as the positions of poles of

|Sη(ω)| (the blue circles).

where PV denotes the principal value.

Hence, we shall now focus on the numerical evaluation of the principal value integral

in (15).

A simple quadrature rule for integrating f(ω′)/(ω′ − γ) numerically on the interval [a, b]

is the composite trapezoidal rule. If we let

ω′
i = a+ (i− 1)h, i = 1, . . . , N,

where h = (b− a)/(N − 1), the trapezoidal rule gives the following approximation:

∫ b

a

f(ω′)

ω′ − γ
dω′ =

N−1
∑

i=1

1

2

(

1

ω′
i − γ

f(ω′
i) +

1

ω′
i+1 − γ

f(ω′
i+1)

)

h. (16)

However, the trapezoidal rule generally does not converge to the principal value of integral

in (15), even if h is chosen to be very small. To see this, let us assume that that γ ∈ (ω′
I , ω

′
I+1),
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for some 1 ≤ I ≤ N − 1. (If γ = ω′
i for some i, we move ω′

i slightly away from γ to avoid

floating point overflow.) That is, we assume that γ can be close to an integration point ω′
I ,

but never be exactly equal to ω′
I .

If γ − ω′
I = αh for some 0 < α ≪ 1, it follows that the term

∣

∣

∣

∣

f(ω′
I)h

ω′
I − γ

∣

∣

∣

∣

=

∣

∣

∣

∣

f(ω′
I)

α

∣

∣

∣

∣

(17)

in the summation will dominate over other terms in Eq. (16) if α ≪ |f(ω′
I)|. As α → 0,

the right hand side of (16) behaves like 1/α, and it rapidly approaches ∞ independent of h.

No other term with an opposite sign can offset this large spike. This undesirable behavior

can lead to sharp artificial peaks in the self energy at some ω values, as we will show in

the next section. This issue cannot be addressed by simply using a higher order numerical

integration scheme (such as Simpson’s rule) that does not preserve the principal value of the

integral.

One way to mitigate the singularity issue is to resort to an alternative numerical integra-

tion scheme that replaces f(ω′), instead of the entire integrand, with an approximation, and

perform a principal value integration of the approximated integrand analytically on each

interval [ω′
i, ω

′
i+1]. The simplest approximation of f(ω′) is the piecewise constant approxi-

mation f(ω′) ≈ [f(ω′
i) + f(ω′

i+1)]/2 for ω′ ∈ [ω′
i, ω

′
i+1]. Such an approximation leads to the

following quadrature rule:

PV

∫ b

a

f(ω′)

ω′ − γ
dω′ ≈

∑

i

1

2

[

f(ω′
i) + f(ω′

i+1)
]

log

∣

∣

∣

∣

ω′
i+1 − γ

ω′
i − γ

∣

∣

∣

∣

. (18)

A more accurate approximation is a piecewise linear approximation of f(ω′), which leads

to the following quadrature rule:

PV

∫ b

a

f(ω′)

ω′ − γ
dω′ ≈

∑

i

[

f(ω′
i+1)− f(ω′

i)

+

(

f(ω′
i) +

f(ω′
i+1)− f(ω′

i)

ω′
i+1 − ω′

i

(γ − ω′
i)

)

log

∣

∣

∣

∣

ω′
i+1 − γ

ω′
i − γ

∣

∣

∣

∣

]

.

(19)

If we denote the absolute error made in (18) and (19) by Ec and El respectively, it is not

difficult to show16 that

Ec ≤ Cch||f ′||∞ (1 + |log h|+ |logα|+ |log(1− α)|) , (20)

El ≤ Clh
2||f ′′||∞(1 + |log h|), (21)
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for some constants Cc and Cl that are independent of h. These error bounds indicate that

the accuracy of the quadrature should improve as we decrease h.

In (18) consider γ − ω′
I = αh with 0 < α ≪ 1 and the term

1

2

(

f(ω′
I−1) + f(ω′

I)
)

log |ω′
I − γ| − 1

2

(

f(ω′
I) + f(ω′

I+1)
)

log |ω′
I − γ|

=
1

2

(

f(ω′
I−1)− f(ω′

I+1)
)

log(αh).
(22)

This term becomes the dominating term if α ≪ exp{− 1

|f(ω′

I−1
)−f(ω′

I+1
)|}/h.

Note that
∣

∣f(ω′
I−1)− f(ω′

I+1)
∣

∣ ∼ O(h), and that limh→0 e
−C/h/h = 0. Thus, for a given α,

we can always find an h small enough such that (22) does not become the dominating term.

As a result, even if we replace f(ω′) by a piecewise constant, the corresponding quadrature

is more stable than the standard trapezoid rule. Using the piecewise linear approximation

further improves the accuracy of the numerical integration without incurring additional

function evaluation cost.

An alternative way to overcome the difficulty with the singularity is to keep the parameter

η finite in the denominator of the integrand in (14). In this case, we can also replace

f(ω′) with a piecewise polynomial (or spline) approximation and integrate the approximate

integrand analytically on each interval. For example, if we approximate f(ω′) by a piecewise

linear function, the quadrature rule, which is used in21, becomes
∫ b

a

f(ω′)

ω′ − γ + iη
dω′

=
∑

i

[

f(ω′
i)

ω′
i − ω′

i−1

∫ ω′

i

ω′

i−1

ω′ − ω′
i−1

ω′ − γ + iη
dω′ +

f(ω′
i+1)

ω′
i − ω′

i+1

∫ ω′

i+1

ω′

i

ω′ − ω′
i+1

ω′ − γ + iη
dω′

]

.

(23)

The integrals within the square brackets above can be evaluated analytically. To simplify our

discussion, we do not give the analytical expression here, which is slightly more complicated

than the log function that appears in (19).

Our numerical examples in the next section show that the quadrature rule based on (23)

is not as accurate as the one based on (15) and (19). The effect of the broadening parameter

is visible near at least some frequencies.

D. Different explicit forms: full-frequency COHSEX vs. XCOR

We should mention that applying the numerical integration scheme to the full-frequency

COH term in (6) and evaluating the SEX term directly by computing W (ω − εj) according
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to (4) can create a potential numerical issue. To see this, we express W (ω − εj) in terms of

its spectral representation

W (ω − εj) = V − 1

π

∫ ∞

0

dω′Sη(ω
′)

[

1

ω − εj − ω′ + iη
− 1

ω − εj + ω′ − iη

]

. (24)

Under this representation, the SEX term can be seen to contain the component

1

π

nv
∑

j=1

(φjφ
∗
j)⊙

∫ ∞

0

dω′ Sη(ω
′)

ω − εj − ω′ + iη
, (25)

which cancels with the summation over the occupied states in the COH term. After the

cancellation, what is left can be written as

Σ(ω) =−
nv
∑

j=1

(φjφ
∗
j)⊙ V − 1

π

nv
∑

j=1

(φjφ
∗
j)⊙

∫ ∞

0

dω′ Sη(ω
′)

ω − εj + ω′ − iη

− 1

π

n
∑

j=nv+1

(φjφ
∗
j)⊙

∫ ∞

0

dω′ Sη(ω
′)

ω − εj − ω′ + iη
.

(26)

We call this expression for the self energy the XCOR expression because the first term of

the expression is exactly the exchange (X) term, and what is left over can be viewed as the

correlation (COR) term.

The XCOR and COHSEX expressions are mathematically equivalent. They correspond

to different ways of grouping different terms when spectral representations of G and W are

substituted into (2). However, because the denominator of the first integrand in (26) is

slightly different from that in (6), and the single-particle states over which the summations

are performed are also different in these expressions, numerical integration can give different

results. Depending on the ω value of interest, it may be more advantageous to numerically

integrate one expression than the other. More precisely, we should choose an expression in

which the centers of the Lorentzians in the numerator (Sη(ω
′)) of the integrand do not lie

in a region that contains ω′ values that make the denominator nearly zero. We will refer to

this criterion as the singularity-free criterion (SFC).

For simplicity, from now on, we use the following notations for different groups of indexes.

Let Iocc = {1, 2, · · · , nv}, Iemp = {nv + 1, nv + 2, · · · ,max}, Iall = {1, 2, · · · ,max}, and
Iℓ = {1, 2, · · · , nvnc}. Because the centers of the Lorentzians in the numerators, denoted

by τℓ’s (ℓ ∈ Iℓ), are the positions of the poles of
[

ǫr/a
]−1

, which roughly lie in the region

[εLUMO − εHOMO, εmax − ε1] as we explained in Section IIB, we can estimate regions of ω in
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FIG. 2: The regions of ω in which the SFC is violated for the full-frequency COHSEX (blue slashes)

and XCOR (red backslashes) expressions. In (a), we assume 2εHOMO − εLUMO < ε1 + εLUMO −

εHOMO. In (b), we assume 2εHOMO − εLUMO > ε1 + εLUMO − εHOMO.

which the SFC is violated for both the COHSEX and the XCOR expressions. The integrand

in the COHSEX expression (6) has poles near ω − εj(j ∈ Iall). Thus, the SFC is violated

when ω ≈ εj + τℓ. Hence, the region in which SFC is violated can be estimated by

[

min
j∈Iall
ℓ∈Iℓ

{εj + τℓ},max
j∈Iall
ℓ∈Iℓ

{εj + τℓ}
]

≈ [ε1 + εLUMO − εHOMO, 2εmax − ε1] . (27)

This region is marked by blue slashes in Figure 2. A similar analysis shows that the integrand

in (26) has singularities near ω ≈ εj − τℓ(j ∈ Iocc) due to the second term in (26) and near

ω ≈ εj + τℓ(j ∈ Iemp) due to the third term. Hence, the regions in which the SFC is violated

for the XCOR expression can be estimated by

[

min
j∈Iocc
ℓ∈Iℓ

{εj − τℓ}, max
j∈Iocc
ℓ∈Iℓ

{εj − τℓ}
]

⋃

[

min
j∈Iemp
ℓ∈Iℓ

{εj + τℓ}, max
j∈Iemp
ℓ∈Iℓ

{εj + τℓ}
]

= [ε1 −max τℓ, εHOMO −min τℓ]
⋃

[εLUMO +min τℓ, εmax +max τℓ]

≈ [2ε1 − εmax, 2εHOMO − εLUMO]
⋃

[2εLUMO − εHOMO, 2εmax − ε1] .

(28)

These regions are marked by the red backslash symbols in Figure 2.
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Since ε1 + εLUMO − εHOMO is not always greater (or less) than 2εHOMO − εLUMO, two

scenarios must be considered. They are shown in Figure 2 (a) and (b) seperately. Clearly,

Figure 2 shows that the XCOR expression is always better than the COHSEX expression

in the frequency region [2εHOMO − εLUMO, 2εLUMO − εHOMO], because in this region the

SFC always holds for the XCOR expression but not necessarily for COHSEX. Thus, even

the trapezoidal rule may work reasonably well for the XCOR expression. The COHSEX

expression is always preferred in [2ε1 − εmax, ε1 + εLUMO − εHOMO]. We can also see that

in [2εLUMO − εHOMO, 2εmax − ε1] , the SFC is violated for both the COHSEX and XCOR

expressions. Therefore, in this region (where the blue slashes intersect with the red black-

slashes in Figure 2), the use of the trapezoidal rule is likely to result in large errors regardless

whether the COHSEX or XCOR expression is used.

III. NUMERICAL EXAMPLE

In this section, we demonstrate the advantage of using the principal value integration

based on quadrature rule such as (19) to perform the self energy integration. We will first

illustrate this point by using a simple model test problem in section IIIA of which we

know the exact solution. We then show the effects of using different numerical integration

schemes on the full-frequency COHSEX and XCOR expressions of the self energy for a small

molecule. These tests are performed by modifying and running the BerkeleyGW software

package22.

A. Model test problem

In the simple model test problem, we choose f(ω′) in (14) to be a single Lorentzian

centered at 0, i.e., we let

f(ω′) =
η

ω′2 + η2
,

with η set to 0.1, and evaluate

I(γ) =

∫ 10

−10

f(ω′)

ω′ − γ
dω′, (29)
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for a set of γ values within [−1, 1]. The analytical solution to this integration problem is

I(γ) =− 1

2(γ2 + η2)

[

η log

∣

∣

∣

∣

(10 + γ)2 + η2

(−10 + γ)2 + η2

∣

∣

∣

∣

+2γ

(

arctan

(

10 + γ

η

)

− arctan

(−10 + γ

η

))]

.

Hence, we can compute the errors associated with different numerical integration schemes.

In all our numerical integration schemes, we choose the integration step size to be h =

η = 0.1.

In Figure 3, the exact I(γ), the approximation obtained from different numerical inte-

gration schemes ((16), (18) and (19)) and their corresponding relative errors are shown. We

can clearly see that the relative errors associated with the trapezoidal rule can be two orders

of magnitude larger than those associated with the alternative quadrature rules (18) and

(19).
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FIG. 3: The results produced by the trapezoidal rule (TRAP) applied directly to (29) and al-

ternative quadrature rules that perform a principal value integration analytically after f(ω′) is

approximated by a piecewise constant function (PVC) and a piecewise linear function (PVL). Left:

the analytic (“exact”) integral I(γ) and the numerical approximations of I(γ). Right: the relative

errors.

We observe that the largest error occurs near (but not at) γ = 0 where the Lorentzian

has a relatively large value, and the nearest two integration points are not symmetric with

respect to γ. This observation is consistent with the analysis in section IIC.
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B. The self energy of methane

We now show how different integration schemes perform for the self energy calculation

of a methane molecule. We implemented (16), (18), (19), and (23) in the BerkeleyGW

software22. We applied these integration schemes to both the full-frequency COHSEX and

XCOR self energy expressions. The abbreviations for these schemes and the corresponding

legends we use for plotting are listed in Table I.

Label Integration scheme Legend for plot-

ting

COHSEX-

TRAP

Trapezoidal rule applied to the full-

frequency COHSEX expression

cyan line (square)

COHSEX-

PVC

Replace the numerator of the COH

term by a piecewise constant ap-

proximation and perform principal

value integration analytically (18)

black dash line

(cross)

COHSEX-

PVL

Replace the numerator of the COH

term by a piecewise linear approxi-

mation and perform principal value

integration analytically (19)

blue line (circle)

XCOR-TRAP Trapezoidal rule applied to the

XCOR expression

green line (dia-

mond)

XCOR-PVC Replace the numerator of the COR

term by a piecewise constant ap-

proximation and perform principal

value integration analytically (18)

blue dash line

(circle)

XCOR-PVL Replace the numerator of the COR

term by a piecewise linear approxi-

mation and perform principal value

integration analytically (19)

black line (cross)

TABLE I: Labels for different numerical integration schemes tested.



16

We compare our results with an analytical integration scheme based on (12)17–19. Be-

cause the analytical integration scheme takes the η → 0 limit in both the numerator and

denominator of the integrand, and introduces broadening later on for plotting, our numerical

integration results will never be exactly the same as analytical results. However, a numer-

ically accurate integration scheme should be close to the analytical result, and should not

exhibit unexpected features (e.g., peaks) not present in the analytical results.

We use the plane-wave density-functional theory (DFT) program Quantum Espresso23

to compute the ground-state Kohn-Sham eigenvalues εj and wavefunctions φj of a methane

molecule placed in a supercell of size 16 × 16 × 16 Bohr3. The Perdew-Burke-Ernzherhof

(PBE) approximation24 to the exchange-correlation functional, and Troullier-Martins norm-

conserving pseudopotentials25 are used in the DFT calculation. The plane-wave kinetic

energy cutoff used in the calculation is 90 Ry. The self energy is approximated by the so-

called G0W0 scheme in which both Green’s function (3) and the screened Coulomb term (4)

are constructed from the ground-state Kohn-Sham eigenpairs. The polarizability, dielectric

function and self energy are all calculated using the BerkeleyGW software package22. In the

polarizability calculation, we truncate the empty states summation and use only nc = 52

conduction (empty) states. The number of valence (occupied) states is nv = 4. We employ

a 5.0 Ry dielectric matrix truncation cutoff and truncate the bare Coulomb in the real

space beyond the 10 Bohr radius. It should be pointed out that this is not a converged

calculation considering the small number of empty states and (G,G′) pairs determined by

the dielectric matrix truncation. The purpose of this calculation is merely to analyze and

compare different numerical integration schemes.

The broadening parameter η is set to 0.1 eV. As we explained in the previous section, the

numerical integration of (2) is performed separately on two regions. In the low frequency

region [0.0, 30.0] eV, the integration is performed by using a uniform grid with 0.1 eV spacing

between the grid points. This is the region where all of the poles of the Sη(ω
′) lie. A coarser

grid is chosen for the integration performed on [30.0, 120.0] eV because the integrand varies

slowly with respect to ω′ in this region and its magnitude is relatively small. Beyond 120.0

eV, the integrand is negligibly small so that the integral of the tail can be ignored.

In Figure 4, we plot the real part of the HOMO component of Σ(ω) : 〈φ4|Σ(ω)|φ4〉 where
the vacuum correction −0.254 eV is included, for a number of ω values between −30 eV and

10 eV. Four different integration schemes are used to generate the plot. As a reference, we
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also show the self energy values computed from the analytic expression (12), which we con-

sider to be “exact”. This figure shows that the use of principal value integration is the key to

maintaining the accuracy of the numerical integration scheme regardless whether the COH-

SEX or XCOR expression of the self energy is used. If we simply apply the trapezoidal rule

to integrate the COHSEX expression, large errors are observed in the frequency region [-8,

10] eV. Similarly, large error is observed in the [-30, -20] eV region when the trapezoidal rule

is applied to the XCOR expression. This observation is consistent with the analysis given in

section IID. Using the parameters given in Table II, we can estimate the region of ω in which

the SFC is violated for the COHSEX expression to be [ε1 + εLUMO − εHOMO, 2εmax − ε1] = [-

8.1, 37.0] eV. This interval contains the interval [-8, 10] eV in which large errors are observed

for integrating the COHSEX expression with the trapezoidal rule. Similarly, the estimated

region in which the SFC is violated for the XCOR expression is [−43.7,−17.9] ∪ [8.2, 37.0]

eV. This is also consistent with our observation.

ε1 εHOMO εLUMO εmax εLUMO − εHOMO εmax − ε1

-16.8 -9.2 -0.5 10.1 8.7 26.9

TABLE II: The ground-state Kohn-Sham eigenvalues εj (in unit eV) for methane obtained from

Quantum Espresso23.

In Figure 5, we zoom in Figure 4 and observe that the use of principal value integration

indeed dramatically reduces the amount of numerical integration error for both the COHSEX

and XCOR expression. For example, for ω ∈ [−25,−23.5] eV, COHSEX is the preferred

expression to integrate because the COH terms does not have any pole in the region of

integration. For ω ∈ [−6, 4] eV, XCOR is clearly the preferred expression to integrate.

However, even if the preferred expression is not used for the integration, the accuracy of the

principal value integration improves when a better approximation of the numerator (e.g.,

piecewise linear) is used. The use of higher order approximation of the numerator also allows

us to use a larger h and fewer function evaluations.

In Figure 6, we demonstrate the benefit of taking the η → 0 limit in the denominator

of (14) first before performing the principal value integration. Without taking this limit

first, the principal value integration based on (23) produces much larger error for both the

COHSEX and XCOR expressions in different frequency regions.
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FIG. 4: The real part of 〈φ4|Σ(ω)|φ4〉 for a methane molecule computed by four different numerical

integration schemes.

IV. CONCLUSION

We presented a technique for performing numerical convolution of a Green’s function with

a screened Coulomb potential for the GW approximation of the self energy term in a Dyson’s

equation. Our numerical integration is performed directly on the real frequency axis. To

overcome the difficulty associated with the singularities of the integrand, we take the zero

broadening limit in Green’s function first and replace the numerator of the integrand with

piecewise polynomial approximations so that the principal value integral of the approximate

integrand can be obtained analytically. We presented the error bound associated with this

integration scheme and showed by numerical examples that this technique produced more

accurate results than standard numerical quadrature rules such as the trapezoidal rule.

Consequently, to achieve the same level accuracy, fewer quadrature points are needed. This

leads to a reduction in computational cost. We also showed that applying the same numerical

integration to different expressions of the GW self energy approximation (e.g. the full-
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FIG. 5: The computed real part of 〈φ4|Σ(ω)|φ4〉 for a methane molecule where ω ∈ [−25,−23.5] ∪

[−6, 4] eV.
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FIG. 6: The real part of 〈φ4|Σ(ω)|φ4〉 for a methane molecule computed by using (19) and (23) to

the XCOR (left) and the COHSEX (right) expressions.

frequency COHSEX and XCOR) may lead to different levels of numerical accuracy. For a

given frequency, one expression may be preferred over the other. Our technique has been

implemented in the BerkeleyGW software package22, and it gives a significant improvement

over the previous integration scheme. We should mention that there are other techniques

for treating singularities of the integrand in the GW convolution7–11. We will compare the

efficiency and accuracy of the technique presented in this paper with other techniques in our

future work. Moreover, in this work both theoretical analysis and numerical results are for

molecules. We will generalize and apply our technique to the GW approximation for solids

in the future.
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