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Abstract. In physics, it is sometimes desirable to compute the so-called density of states (DOS),
also known as the spectral density, of a real symmetric matrix A. The spectral density
can be viewed as a probability density distribution that measures the likelihood of finding
eigenvalues near some point on the real line. The most straightforward way to obtain this
density is to compute all eigenvalues of A, but this approach is generally costly and wasteful,
especially for matrices of large dimension. There exist alternative methods that allow us to
estimate the spectral density function at much lower cost. The major computational cost of
these methods is in multiplying A with a number of vectors, which makes them appealing
for large-scale problems where products of the matrix A with arbitrary vectors are relatively
inexpensive. This article defines the problem of estimating the spectral density carefully
and discusses how to measure the accuracy of an approximate spectral density. It then
surveys a few known methods for estimating the spectral density and considers variations
of existing methods. All methods are discussed from a numerical linear algebra point of
view.
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1. Introduction. Given an n× n real symmetric and sparse matrix A, scientists
in various disciplines often want to compute its density of states (DOS), or spectral
density. Formally, the DOS is defined as

(1.1) φ(t) =
1

n

n∑
j=1

δ(t− λj),
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APPROXIMATING SPECTRAL DENSITIES OF LARGE MATRICES 35

where δ is the Dirac distribution commonly referred to as the Dirac δ-“function” [34,
4, 32] and the λj ’s are the eigenvalues of A, assumed here to be labeled nondecreas-
ingly. Using the DOS, the number of eigenvalues in an interval [a, b] can be formally
expressed as

(1.2) ν[a,b] =

∫ b

a

∑
j

δ(t− λj) dt ≡
∫ b

a

nφ(t)dt.

Therefore, one can view φ(t) as a probability distribution “function,” which gives the
probability of finding eigenvalues of A in a given infinitesimal interval near t. If one had
access to all the eigenvalues ofA, the task of computing the DOS would become trivial.
However, in many applications, the dimension of A is large and the computation of its
entire spectrum is prohibitively expensive, which leads to the need to develop efficient
alternative methods to estimate φ(t) without computing eigenvalues of A. Since φ(t)
is not a proper function, we need to clarify what we mean by “estimating” φ(t), and
this will be addressed in detail shortly. For now we can use our intuition to argue that
φ(t) can be approximated by dividing the interval containing the spectrum of A into
many subintervals and use a tool like Sylvester’s law of inertia to count the number of
eigenvalues within each of these subintervals. This approach yields a histogram of the
eigenvalues. Expression (1.2) will then provide us with an average “value” of φ(t) in
each small subinterval [a, b]. As the size of each subinterval decreases, the histogram
approaches the spectral density of A. However, this is not a practical approach since
performing such an inertia count requires us to compute the LDLT factorization [15]
of A − tiI, where the ti’s are the end points of the subintervals. In general, this
approach is prohibitively expensive because of the large number of intervals needed
and the sheer cost of each factorization. Therefore, a procedure that relies entirely
on multiplications of A with vectors is the only viable approach.

Because calculating the spectral density is such an important problem in quantum
mechanics, there is an abundant literature devoted to this problem and research in
this area was extremely active in the 1970s and 1980s, leading to clever and powerful
methods developed by physicists and chemists [10, 39, 9, 43] for this purpose.

In this survey paper, we review two classes of methods for approximating the
spectral density of a real symmetric matrix from a numerical linear algebra perspec-
tive. For simplicity, all methods are presented using real arithmetic operations, i.e.,
we assume the matrix is real symmetric. The generalization to Hermitian matrices
is straightforward. The first class of methods contains the kernel polynomial method
(KPM) [36, 41] and its variants. The KPM can be viewed as a formal polynomial
expansion of the spectral density. It uses a moment matching method to derive the
coefficients for the polynomials. The method, which is widely used in a variety of
calculations that require the DOS [42], has continued to receive a tremendous amount
of interest over the last few years [42, 6, 22, 35]. We show that a less well known, but
rather original, method due to Lanczos and known as the “Lanczos spectroscopic”
procedure, which samples the cosine transform of the spectral density, is closely re-
lated to the KPM. As another variant of the KPM, we present a spectral density
probing method called the Delta-Gauss–Legendre method, which can be viewed as a
polynomial expansion of a smoothed spectral density. The second class of methods we
consider uses the classical Lanczos procedure to partially tridiagonalize A. The eigen-
values and eigenvectors of a tridiagonal matrix are used to construct approximations
to the spectral density.

One of the key ingredients used in most of these methods is a well-established
artifice for estimating the trace of a matrix. For example, the expansion coefficients
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36 LIN LIN, YOUSEF SAAD, AND CHAO YANG

in the abovementioned KPM method can be obtained from the traces of the matrix
polynomials Tk(A), where Tk is the Chebyshev polynomial of degree k. Each of these
is in turn estimated as the mean of vTTk(A)v over a number of random vectors v. This
procedure for estimating the trace has been discovered more or less independently by
statisticians [18] and physicists and chemists [36, 41].

A natural question to ask is: among all the methods reviewed here, which is the
best one to use? The answer to this question is not simple. Since the methods dis-
cussed in this paper are all based on matrix-vector product operations (MATVECs),
the criterion for choosing the best method should be based on the quality of the ap-
proximation when approximately the same number of MATVECs is used. In order
to determine the quality, we must first establish a way to measure the accuracy of
the approximation. Because the spectral density is defined in terms of the Dirac δ-
“functions”, which are not proper functions but distributions [4, 32], the standard
error metrics used for approximating smooth functions are not appropriate. Fur-
thermore, the accuracy measure should depend on the desired resolution. In many
applications, it is not necessary to obtain a high-resolution spectral density. If fact,
such a high-resolution density would be highly discontinuous, considering the previ-
ously mentioned intuitive interpretation in terms of a histogram. For these reasons
our proposed metric for measuring the accuracy of spectral density approximation, as
defined in section 2, allows rigorous quantitative comparisons of the different spectral
density approximation methods, instead of relying on a subjective visual measure as
is often done in practice.

All the approximation methods we consider are presented in section 3. We give
some numerical examples in section 4 to compare different numerical methods for
approximating spectral densities. We illustrate the effectiveness of our error metric for
evaluating the quality of the approximation, and describe some general observations
on the behavior of different methods.

2. Assessing the Quality of Spectral Density Approximation. We will denote

the approximate spectral density by φ̃(t), which is a regular function. The types of
approximate spectral densities we consider in this paper are all continuous functions.
However, since φ(t) is defined in terms of a number of Dirac δ-functions that are not
proper functions but distributions, we cannot use the standard Lp-norm with e.g.,
p = 1, 2, or ∞, to evaluate the approximation error defined in terms of φ(t) − φ̃(t);
note that in this difference, φ̃ is interpreted as a distribution.

We discuss two approaches to get around this difficulty. In the first approach, we
use the fact that δ(t) is a distribution, i.e., it is formally defined through applications
to a test function g:

〈δ(· − λ), g〉 ≡
∫ ∞

−∞
δ(t− λ)g(t)dt ≡ g(λ).

Here we use δ(·−λ) to denote a Dirac δ centered at λ. The test function g ∈ C∞(R),
and for all p, k ∈ N,

sup
t∈R

|tpg(k)(t)| <∞.

Here g(k)(t) is the kth derivative of g(t). The test function g is chosen to be a member
of the Schwartz space (or Schwartz class) [32], denoted by S. In other words, the test
function g should be smooth and decay sufficiently fast toward 0 when |t| approaches
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APPROXIMATING SPECTRAL DENSITIES OF LARGE MATRICES 37

infinity. The error is then measured as

(2.1) ε1 = sup
g∈S
|〈φ, g〉 − 〈φ̃, g〉|.

In practice, we restrict S to be a subspace of the Schwartz space that allows us to
compute (2.1) at a finite resolution. We will elaborate on the choice of g and S in
section 2.1.

In the second approach, we regularize δ-functions and replace them with contin-
uous and smooth functions such as Gaussians with an appropriately chosen standard
deviation σ. The resulting regularized spectral density, which we denote by φσ(t), is
a well-defined function. Hence, it is meaningful to compute the approximation error

(2.2) ε2 = ‖φσ(t)− φ̃(t)‖p
for p = 1, 2, and ∞. There is a close connection between the first and second ap-
proaches, on which we will elaborate in the next section.

We should note that the notion of regularization, which is rarely discussed in the
existing physics and chemistry literature, is important for assessing the accuracy of
spectral density approximation. A fully accurate approximation amounts to comput-
ing all eigenvalues of A, but for most applications, one only needs to know the number
of eigenvalues within any small subinterval contained in the spectrum of A. The size
of the interval represents the “resolution” of the approximation. The accuracy of the
approximation is only meaningful up to the desired resolution. When (2.2) is used
to assess the quality of the approximation, the resolution is defined in terms of the
regularization parameter σ. A smaller σ corresponds to higher resolution.

The notion of resolution can also be built into the error metric (2.1) if the trial
function g belongs to a certain class of functions, which we will discuss in the next
section.

2.1. Restricting the Test Function Space S. The fact that the spectral density
φ(t) is defined in terms of Dirac δ-functions suggests that no fixed smooth function
can approximate the spectral density well in the limit of infinite resolution.

To see this, consider ν[a,b] defined in (1.2) and the associated approximation ob-

tained from a smooth approximation φ̃(t) as

ν̃[a,b] =

∫ b

a

nφ̃(t)dt.

For simplicity, let the spectral density φ(t) = δ(t) be a single δ-function and the
number of eigenvalues be n = 1. Infinite resolution means that |ν[a,b] − ν̃[a,b]| should
be small for any choice of [a, b]. Now suppose a = −ε, b = ε. It is easy to verify that

lim
ε→0+

ν[−ε,ε] = 1, lim
ε→0+

ν̃[−ε,ε] = 0.

In this sense, all smooth approximations of the spectral density result in the same
accuracy, i.e., there is no difference between a carefully designed approximation of the
spectral density and a constant approximation. Hence, the distribution φ(t) behaves
very much like a highly discontinuous function and cannot be approximated by smooth
functions with infinite resolution.

In practice, physical quantities and observables can often be deduced from spectral
density at finite resolution, i.e., the eigenvalue count only needs to be approximately
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38 LIN LIN, YOUSEF SAAD, AND CHAO YANG

correct for an interval of a given finite size. For instance, in condensed matter physics,
such information is sufficient to provide material properties such as the band gap or
the Van Hove singularity [1] within a given target accuracy. The reduced resolution
requirement suggests that we might not need to take the test space S in (2.1) to
be the whole Schwartz space. Instead, we can choose functions that have “limited
resolution” as test functions. For example, we may consider using Gaussian functions
of the form

(2.3) gσ(t) =
1

(2πσ2)1/2
e−

t2

2σ2 ,

and restrict S to the subspace

S(σ; [λlb, λub]) =
{
g
∣∣∣g(t) ≡ gσ(t− λ), λ ∈ [λlb, λub]

}
,

where λlb and λub are lower and upper bounds of the eigenvalues ofA, respectively, and
the parameter σ defines the target resolution up to which we intend to measure. The
use of Gaussian functions in the space S(σ; [λlb, λub]) can be understood as a smooth
way of counting the number of eigenvalues in an interval whose size is proportional
to σ.

Using this choice of the test space, we can measure the quality of any approxima-
tion by the metric

(2.4) E[φ̃;S(σ; [λlb, λub])] = sup
g∈S(σ;[λlb,λub])

|〈φ, g〉 − 〈φ̃, g〉|.

We remark that the use of Gaussians is not the only way to restrict the test
space. In some applications, the DOS is often used as a measure for integrating
certain physical quantities of interest. If the quantity of interest can be expressed as

〈φ, g〉 ≡
∫
g(λ)φ(λ)dλ ≡ 1

n

n∑
j=1

g(λj)

for some smooth function g, then S can be chosen to contain only one function g, and
the approximation error is naturally defined as

(2.5) E[φ̃; g] = |〈φ(t), g〉 − 〈φ̃(t), g〉|

for that particular function g. We give an example of this measure in section 4.3.

2.2. Regularizing the Spectral Density. The error metric in (2.4) can also be
understood in the following sense. Let

(2.6) φσ(t) = 〈φ(·), gσ(· − t)〉 =
n∑

j=1

gσ(t− λj).

Then φσ(t) is nothing but a blurred or regularized spectral density, and the blurring

is given by a Gaussian function with width σ. Similarly, 〈φ̃(·), gσ(· − t)〉 can be
understood as a blurred version of an approximate spectral density. Therefore, the
error metric in (2.4) is equivalent to the L∞ error between two well-defined functions

〈φ̃(·), gσ(· − t)〉 and φσ(t).
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APPROXIMATING SPECTRAL DENSITIES OF LARGE MATRICES 39

This point of view leads to another way to construct and measure the approxima-
tion to the spectral density function. Instead of trying to approximate φ(t) directly,
which might be difficult due to the presence of δ-functions in φ(t), we first construct
a smooth representation of the δ-function. The representation we choose should be
commensurate with the desired resolution of the spectral density. This regularization
process allows us to expand smooth functions in terms of other smooth functions such
as orthogonal polynomials, and the approximation error associated with such expan-
sions can be evaluated directly and without introducing an additional regularization
procedure.

The φσ(t) function defined in (2.6) is one way to construct a regularized spectral
density. Again, the parameter σ controls the resolution. Larger values of σ will lead
to smooth curves at the expense of accuracy. Smaller values of σ will lead to rough
curves that have peaks at the eigenvalues and zeros elsewhere. This is illustrated
in Figure 2.1, where σ takes four different values. We can see that as σ increases,
φσ becomes smoother. When σ = 0.96, which corresponds to a very smooth spectral
density, we can still see the global profile of the eigenvalue distribution, although local
variation of the spectral density is mostly averaged out.
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Fig. 2.1 The eigenvalues as well as various regularized DOS φσ obtained by blurring the exact DOS
(sum of δ-functions positioned at eigenvalues) of a matrix with Gaussians of the form
(2.3).

We remark that the optimal choice of σ, and therefore the smoothness of the
approximate DOS, is application dependent. On the one hand, σ should be chosen
to be as large as possible so that the regularized DOS φσ is easy to approximate
numerically. On the other hand, increasing σ could cause an undesirable loss of detail
and yield an erroneous result. It is up to the user to select a value of σ that balances
accuracy and efficiency: σ should be chosen to be small enough to reach the target
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40 LIN LIN, YOUSEF SAAD, AND CHAO YANG

accuracy, but not too small, which would require a large number of MATVECs to
approximate the DOS.

We should also note that (2.6) is not the only way to regularize the DOS. Another
choice is the Lorentzian function defined as

(2.7)
η

(t− λ)2 + η2
= −Im

(
1

t− λ+ iη

)
,

where Im(z) denotes the imaginary part of a complex number z, and η is a small
regularization constant that controls the width of the peak centered at λ. As η
approaches zero, (2.7) approaches a Dirac δ-function centered at λ. This approach
is used in Haydock’s method, to be discussed in section 3.2.2. We also examine
the differences between the regularization procedures in section 4 through numerical
experiments.

2.3. Nonnegativity Condition. Since the DOS can be viewed as a probability
distribution function, it satisfies the nonnegativity condition in the sense that

(2.8) 〈φ, g〉 ≥ 0

for all nonnegative functions g(t) ≥ 0 in the Schwartz space. Not all numerical meth-
ods described in what follows satisfy the nonnegativity condition by construction. We
will see in section 4 that failure to preserve the nonnegativity condition can possibly
lead to large numerical errors.

3. Numerical Methods for Estimating Spectral Density. In this section, we
review two classes of methods for approximating the DOS of A. We begin with the
KPM, which can be viewed as a polynomial approximation to the DOS. We show
that two other approaches that are derived from different viewpoints are equivalent
to KPM. We then describe a second class of methods based on the use of the familiar
Lanczos partial tridiagonalization procedure [24]. These methods use blurring (or
regularization) techniques to construct an approximate DOS from Ritz values. They
differ in the types of blurring they utilize. One of them, which we will simply call the
Lanczos method, uses Gaussian blurring, whereas the other method, which we call
Haydock’s method [17, 3, 28, 5], uses a Lorentzian blurring.

A common characteristic of these methods is that they all use a stochastic sam-
pling and averaging technique to obtain an approximate DOS. The stochastic sampling
and averaging technique is based on the following key result [18, 36, 2].

Theorem 3.1. Let A be a real symmetric matrix of dimension n×n with eigen-
decomposition A =

∑n
j=1 λjuju

T
j and uTi uj = δij, i, j = 1, . . . , n. Here, δij is the

Kronecker δ symbol. Let v be a vector of dimension n, and suppose v can be represented
as the following linear combination of {ui}ni=1:

(3.1) v =

n∑
j=1

βjuj.

If each component of v is obtained independently from a normal distribution with zero
mean and unit standard deviation, i.e.,

(3.2) E[v] = 0, E[vvT ] = I,

then

(3.3) E[βiβj ] = δij , i, j = 1, . . . , n.
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APPROXIMATING SPECTRAL DENSITIES OF LARGE MATRICES 41

The proof of Theorem 3.1 is straightforward. The theorem suggests that the trace
of a matrix function f(A), which we need to compute in the KPM, for example, can
be obtained by simply averaging vT f(A)v for a number of randomly generated vectors
v that satisfy the conditions given in (3.2), because

(3.4) E[vT f(A)v] = E

[
n∑

j=1

β2
j f(λj)

]
=

n∑
j=1

f(λj) = Trace[f(A)].

3.1. The Kernel Polynomial Method. The KPM was proposed by Silver and
Röder [36] andWang [41] in the mid-1990s to calculate the DOS. See also [37, 38, 9, 30],
among others, where similar approaches were also used.

3.1.1. Derivation of the original KPM. The KPM constructs an approximation
to the exact DOS of a matrix A by formally expanding Dirac δ-functions in terms
of Chebyshev polynomials Tk(t) = cos(k arccos(t)). For simplicity, we assume that
the eigenvalues are in the interval [−1, 1]. As is the case for all methods which
rely on Chebyshev expansions, a change of variables must first be performed to map
an interval that contains [λmin, λmax] to [−1, 1] if this assumption does not hold.
Following the Silver–Röder paper [36], we include, for convenience, the inverse of the
weight function into the spectral density function,

(3.5) φ̂(t) =
√
1− t2φ(t) =

√
1− t2 × 1

n

n∑
j=1

δ(t− λj).

Then we expand the distribution φ̂(t) as

(3.6) φ̂(t) =

∞∑
k=0

μkTk(t).

Equation (3.6) should be understood in the sense of distributions, i.e., for any test
function g ∈ S, ∫ 1

−1

φ̂(t)g(t) dt =

∫ 1

−1

∞∑
k=0

μkTk(t)g(t) dt.

The same notation applies to the expansion of the DOS using other methods in
the following discussion. By means of a formal moment matching procedure, the
expansion coefficients μk are also defined by

μk =
2− δk0
π

∫ 1

−1

1√
1− t2Tk(t)φ̂(t)dt

=
2− δk0
π

∫ 1

−1

1√
1− t2Tk(t)

√
1− t2φ(t)dt

=
2− δk0
nπ

n∑
j=1

Tk(λj).(3.7)

Here δij is the Kronecker δ symbol so that 2− δk0 is equal to 1 when k = 0 and to 2
otherwise.
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42 LIN LIN, YOUSEF SAAD, AND CHAO YANG

Thus, apart from the scaling factor (2 − δk0)/(nπ), μk is the trace of Tk(A). It
follows from Theorem 3.1 that

(3.8) ζk =
1

nvec

nvec∑
l=1

(
v
(l)
0

)T
Tk(A)v

(l)
0

is a good estimation of the trace of Tk(A), for a set of randomly generated vectors

v
(1)
0 , v

(2)
0 , . . . , v

(nvec)
0 that satisfy the conditions given by (3.2). Here the subscript 0

is added to indicate that the vectors have not been multiplied by the matrix A. Then
μk can be estimated by

(3.9) μk ≈ 2− δk0
nπ

ζk.

Now we consider the computation of each term
(
v
(l)
0

)T
Tk(A)v

(l)
0 . For simplic-

ity, we drop the superscript l so that v0 ≡ v
(l)
0 . The three-term recurrence of the

Chebyshev polynomial is exploited to compute Tk(A)v0,

Tk+1(A)v0 = 2ATk(A)v0 − Tk−1(A)v0,

so if we let vk ≡ Tk(A)v0, we have

(3.10) vk+1 = 2Avk − vk−1.

Once the scalars {μk} are determined, we should in theory obtain the expansion for

φ(t) = 1√
1−t2

φ̂(t). In practice, μk decays to 0 as k → ∞, and the approximate DOS

will be limited to Chebyshev polynomials of degree M . So φ is approximated by

(3.11) φ̃M (t) =
1√

1− t2
M∑
k=0

μkTk(t).

For a general matrixA whose eigenvalues are not necessarily in the interval [−1, 1],
a linear transformation is first applied to A to bring its eigenvalues into the desired
interval. Specifically, we will apply the method to the matrix

B =
A− cI
d

,

where

(3.12) c =
λlb + λub

2
, d =

λub − λlb
2

,

and λlb and λub are lower and upper bounds of the smallest and largest eigenvalues
λmin and λmax of A, respectively.

It is important to ensure that the eigenvalues of B are within the interval [−1, 1].
Otherwise, the magnitude of the Chebyshev polynomial, hence the product of Tk(B)
and v0 computed through a three-term recurrence, will grow exponentially with k.

There are a number of ways [40, 46, 27] to obtain good lower and upper bounds
λlb and λub of the spectrum of A. For example, we can set λub to θk + ‖(A− θkI)uk)‖
and λlb to θ1−‖(A−θ1I)u1)‖, where θ1 (resp., θk) is the algebraically smallest (resp.,
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APPROXIMATING SPECTRAL DENSITIES OF LARGE MATRICES 43

largest) Ritz value obtained from a k-step Lanczos iteration and u1 (resp., uk) is the
associated normalized Ritz vector. Note that these residual norms are inexpensive to
compute since ‖(A − θjI)uj‖ can be easily expressed from the bottom entry of zj ,
the unit norm eigenvector of the k × k tridiagonal matrix obtained from the Lanczos
process. For details, see Parlett [31, sec. 13.2]. We should point out that λlb and λub
do not have to be very accurate approximations to λmin and λmax. It is demonstrated
in [27] that tight bounds can be obtained from a 20-step Lanczos iteration for matrices
of dimension larger than 100,000.

Algorithm 1: The KPM.

Input: Real symmetric matrix A with eigenvalues between [−1, 1]. A set of
points {ti} at which the DOS is to be evaluated, the degree M of the
expansion polynomial.

Output: Approximate DOS {φ̃M (ti)}.
1: Set ζk = 0 for k = 0, . . . ,M ;
2: for l = 1 : nvec do
3: Select a new random vector v

(l)
0 ;

4: for k = 0 :M do

5: Compute ζk ← ζk +
(
v
(l)
0

)T

v
(l)
k ;

6: Compute v
(l)
k+1 via the three-term recurrence v

(l)
k+1 = 2Av

(l)
k −v(l)k−1 (for k = 0,

v
(l)
1 = Av

(l)
0 );

7: end for
8: end for
9: Set ζk ← ζk/nvec, μk ← 2−δk0

nπ
ζk for k = 0, 1, . . . ,M ;

10: Evaluate {φ̃M (ti)} using {μk} and (3.11);

Because the KPM can be viewed as a way to approximate a series of δ-functions
which are highly discontinuous, Gibbs oscillation [21] can be observed near the peaks
of the spectral density. Figure 3.1 shows an approximation to δ(t) by a Chebyshev
polynomial expansion of the form (3.11) with M = 40. It can be seen that the ap-
proximation oscillates around 0 away from t = 0. As a result, it does not preserve
the nonnegativity of δ(t). The Gibbs oscillation can be reduced by a technique called
Jackson damping, which modifies the coefficients of the Chebyshev expansion. The
details of Jackson damping are given in Appendix A, and Figure 3.1 shows that Jack-
son damping indeed reduces the amount of Gibbs oscillation significantly. However,
Jackson damping tends to overregularize the approximate DOS and yields an approx-
imation to δ(t) that has a wider spread. We will discuss this again with numerical
results in section 4.

We should also point out that it is possible to replace Chebyshev polynomials in
the KPM by other orthogonal polynomials such as the Legendre polynomials. We will
denote by KPML the variant that uses Legendre polynomials to expand the spectral
density.

We also note that the cost for constructing the KPM can be reduced by techniques
presented in Appendix A. Because the KPM provides a finite polynomial expansion,
the approximate DOS φ̃ can be evaluated at any arbitrary point t once the {μk}’s
have been determined.

3.1.2. The Spectroscopic View of the KPM. In his 1956 Prentice-Hall book
Applied Analysis (reprinted by Dover as [25]), Lanczos described a method for com-
puting spectra of real symmetric matrices, which he termed “spectroscopic.” This
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Fig. 3.1 Chebyshev expansion with and without Jackson damping for Dirac δ-function δ(t). The
Chebyshev polynomial degree is set to 40.

approach, which also relies heavily on Chebyshev polynomials, is rather unusual in
that it associates the spectrum of a matrix to a collection of frequencies, and the
goal is to detect these frequencies by Fourier analysis. Because it is not competitive
with modern methods for computing eigenvalues, this technique has lost its appeal.
However, we will show in what follows that the spectroscopic approach is well suited
for computing approximate spectral densities, and it is closely connected to the KPM.

Let us assume that the eigenvalues of the matrix A are in [−1, 1]. The spec-
troscopy approach takes samples of a function of the form

(3.13) f(t) =

n∑
j=1

β2
j cos(θjt),

where the θj ’s are related to eigenvalues of A by θj = cosλj at t = 0, 1, 2, . . . ,M .
Then one can take the Fourier transform of f(t) to reveal the spectral density of A. If
a sufficient number of samples are taken, then the Fourier transform of the sampled
function should have peaks near cosλj , j = 1, 2, . . . , n, and an approximate spectral
density can be obtained.

Because λj ’s are not known, (3.13) cannot be evaluated directly. However,M +1
uniform samples of f(t), i.e., f(0), f(1), . . . , f(M), can be obtained from the average
of

(3.14) vT0 v0, v
T
0 T1(A)v0, . . . , v

T
0 TM (A)v0,

where Tk(t) is the same kth degree Chebyshev polynomial of the first kind used in
the previous section and v0 is a random starting vector.

Taking a discrete cosine transform of (3.14) yields

(3.15) F (p) =
1

2
(f(0) + (−1)pf(M)) +

M−1∑
k=1

f(k) cos
kpπ

M
, p = 0, . . . ,M.

Note that, as is customary, the end values are halved to account for the discontinuity
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APPROXIMATING SPECTRAL DENSITIES OF LARGE MATRICES 45

of the data at the interval boundaries. An approximation to the spectral density φ(t)
can be obtained from F (p), p = 0, 1, . . . ,M , via an interpolation procedure.

We now show that the spectroscopic approach is closely connected to the KPM.
This connection can be seen by noticing that the coefficient ζk in (3.8) essentially
gives an estimate of the following transform of the spectral density φ(t),

(3.16) f(s) =

∫ 1

−1

cos(s arccos t)φ(t)dt,

evaluated at an integer k.
Since t ∈ [−1, 1], we can rewrite (3.16) as the continuous cosine transform of a

related function by introducing an auxiliary variable ξ = arccos t and defining

ψ(ξ) = φ(cos ξ) sin ξ.

It is then easy to verify that (3.16) can be written as

f(s) =

∫ ∞

0

cos(sξ)ψ(ξ) dξ.

Here we take ψ(ξ) to be an even function and assume ψ(ξ) = 0 for ξ > π. Thus,
the integration range can be taken from 0 to ∞, and f(s) can indeed by obtained by
performing a cosine transform of ψ(ξ).

If f(s) is given, we can obtain ψ(ξ) via the inverse cosine transform

(3.17) ψ(ξ) =
2

π

∫ ∞

0

cos(sξ)f(s) ds.

Substituting ξ = arccos t back into (3.17) yields

(3.18) φ(t) =
2

π
√
1− t2

∫ ∞

0

cos(s arccos t)f(s) ds.

However, since we can only compute f(s) for s = k, k ∈ N by estimating the trace
of Tk(A) using a stochastic averaging technique discussed in section 3.1.1, the inte-
gration in (3.18) can only be performed numerically using, for example, a composite
trapezoidal rule:

(3.19) φ(t) ≈ 2

π
√
1− t2

[
1

2
f(0) +

M−1∑
k=1

f(k)Tk(t) +
1

2
f(M)TM (t)

]
.

Comparing (3.19) with (3.6), we find that (3.19) is exactly the KPM expansion, aside
from the fact that the coefficient for TM (t) is multiplied by a factor 1

2 . Therefore, the
spectroscopic method and the KPM are essentially equivalent.

3.1.3. The Delta-Gauss–Legendre Expansion Approach. In some sense, the
spectroscopy method discussed in the previous section samples the “reciprocal” space
of the spectrum by computing vT0 Tj(A)v0, where Tj(t) is the jth degree Chebyshev
polynomial of the first kind, for a number of different randomly generated vectors
v0 and j = 0, 1, . . . ,M . It uses the discrete cosine transform to reveal the spectral
density. In this section, we examine another way to directly sample or probe the
spectrum of A at an arbitrary point ti ∈ [−1, 1] by computing {vT0 pMi(A)v0}, where
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pMi(t) is an Mith degree polynomial of the form

(3.20) pMi(t) ≡
Mi∑
ki=0

μki(ti)Tki(t).

The expansion coefficient μki(ti) in the above expression is chosen, for each ti, to be

(3.21) μki(ti) =
2− δk0
nπ

∫ 1

−1

1√
1− t2Tki(t)δ(t− ti)dt =

2− δk0
nπ

Tki(ti)√
1− t2i

.

The polynomial pMi(t) defined in (3.20) can be viewed as a polynomial approxi-
mation to the δ-function δ(t − ti), which can be regarded as a spectral probe placed
at ti.

The reason why vT0 pMi(A)v0 can be regarded as a sample of the spectral density
at ti can be explained as follows. The presence of an eigenvalue at ti can be detected
by integrating δ(t− ti) over the entire spectrum of A with respect to a spectral point
measure defined at eigenvalues only. The integral returns +∞ if ti is an eigenvalue
of A and 0, otherwise. However, in practice, this integration cannot be performed
without knowing the eigenvalues of A in advance.

A practical probing scheme can be devised by replacing δ(t−ti) with a polynomial
approximation such as the one given in (3.20) and integrating, which amounts to
evaluating the trace of pMi(A). This trace evaluation can be done using the same
stochastic approach we introduced earlier for the KPM. We call this technique the
Delta-Chebyshev method.

If v0 is some random vector normalized to ‖v0‖ = 1, whose expansion in the
eigenbasis {uj} is given by

(3.22) v0 =
n∑

j=1

βjuj,

then vMi ≡ pMi(A)v0 will have the expansion

(3.23) vMi =

n∑
j=1

βjpMi(λj)uj .

Taking the inner product between v0 and vMi yields

(3.24) (vMi)
T v0 =

n∑
j=1

β2
j pMi(λj).

Since
∑n

j=1 β
2
j = 1, (3.24) can be viewed as an integral of pMi(t) associated with

a point measure {β2
j } defined at eigenvalues of the matrix A. In the case when

β2
j = 1/n for all j, we can then simply rewrite the integral as Trace[pMi(A)]/n. As we

have already shown in previous sections, such a trace can be approximated by choosing
multiple random vectors v0 that satisfy the conditions (3.2) and averaging vT0 pMi(A)v0
for all these vectors. The averaged value yields φ̃(ti), which is the approximation to
the spectral density φ(t) at an arbitrary sample point ti.

As we indicated in section 2, because δ(t − ti) is not a proper function, directly
constructing a good polynomial approximation may be difficult. A more plausible
approach is to “regularize” δ(t− ti) first by replacing it with a smooth function that
has a peak at t = ti, and then constructing a polynomial approximation to this smooth
function.
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We choose the regularized δ-function to be the Gaussian gσ(t − ti), where gσ is
defined in (2.3) and the standard deviation σ controls the smoothness or the amount
of regularization of the function.

It is possible to expand gσ(t − ti) in terms of Chebyshev polynomials. However,
we have found that it is easier to derive an expansion with closed form in terms of
Legendre polynomials. It can been shown (see Appendix A) that

(3.25) gσ(t− ti) = 1

n(2πσ2)1/2

∞∑
k=0

(
k +

1

2

)
γk(ti)Lk(t),

where Lk(t) is the Legendre polynomial of degree k, and the expansion coefficient
γk(ti) is defined by

(3.26) γk(ti) =

∫ 1

−1

Lk(s)e
− 1

2 ((s−ti)/σ)
2

ds.

It can be also shown (see Appendix A) that γk(ti) can be determined by a recursive
procedure that does not require us to explicitly compute the integral in (3.26).

If we take an approximation to gσ(t − ti) to be the first Mi + 1 terms in the
expansion (3.25), i.e.,

(3.27) φ̃Mi(t) =
1

(2πσ2)1/2

Mi∑
k=0

(
k +

1

2

)
γk(ti)Lk(t),

then a practical scheme for sampling the spectral density of A can be devised by
computing vT0 φ̃Mi(A)v0 for randomly generated and normalized v0’s and averaging
these quantities. Because this scheme is based on regularizing the δ function with a
Gaussian and expanding the Gaussian in Legendre polynomials, we call this scheme
a Delta-Gauss–Legendre (DGL) method and summarize it in Algorithm 2.

Algorithm 2: Multipoint DGL expansion.

Input: Real symmetric matrix A with eigenvalues between [−1, 1]. A set of
points {ti} at which the DOS is to be evaluated, with Mmax the maxi-
mum degree employed for all the points.

Output: Approximate DOS {φ̃M (ti)}.
1: for each ti do
2: Compute and store the expansion coefficients {γk(ti)}Mi

k=0 using (3.26);
3: end for
4: Set ζk = 0 for k = 0, . . . ,Mmax;
5: for l = 1 : nvec do
6: Select a new random vector v

(l)
0 ;

7: for k = 0 :Mmax do

8: Compute ζk ← ζk +
(
v
(l)
0

)T

v
(l)
k ;

9: Compute v
(l)
k+1 via the three-term recurrence v

(l)
k+1 = 2k+1

k+1
Av

(l)
k − k

k+1
v
(l)
k−1

(for k = 0, v
(l)
1 = Av

(l)
0 );

10: end for
11: end for
12: Set ζk ← ζk/nvec for all k = 0, 1, . . . ,Mmax;

13: Evaluate φ̃Mi(ti) using (3.27) with {ζk} and the stored {γk(ti)};
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Note that both the Delta-Chebyshev and the DGL methods compute quantities
such as vT0 pMiv0 at sampled point ti within the spectrum of A. This would be an
unacceptably expensive procedure were it not for the fact that the same vector se-
quences {Tk(A)v0} and {Lk(A)v0} for k = 0, 1, . . . can be used for all points ti at the
same time. They only need to be generated once.

Although the Delta-Chebyshev method and the KPM are derived from somewhat
different principles, there is a close connection between the two which may not be
entirely obvious. The key to recognizing this connection is to notice that the average
value of vT0 pMi(A)v0 can be viewed as an approximation to Trace(pMi(A)), which can
be written as

Trace(pMi(A)) =
1

n

Mi∑
ki=0

μki(ti)
n∑

j=1

Tki(λj)

=
1

n

Mi∑
ki=0

2− δki,0

π

Tki(ti)√
1− t2i

Trace(Tki(A))

=

Mi∑
ki=0

[
2− δki,0

nπ
Trace(Tki(A))

]
Tki(ti)√
1− t2i

.(3.28)

Note that the coefficients within the square bracket in (3.28) are exactly the same
coefficients as those in the KPM that appear in the expansion (3.6) of the function

φ̂(t) =
√
1− t2φ(t). Therefore, when Mi = M for all i, the Delta-Chebyshev expan-

sion method is identical to the KPM. Hence, the cost of this approach is the same as
that of the KPM if polynomials of the same degree and the same number of sampling
vectors are used at each ti.

When Mi is allowed to vary with respect to i, there is a slight advantage to us-
ing the Delta-Chebyshev method in terms of flexibility. We can use polynomials of
different degrees in different parts of the spectrum to obtain a more accurate approx-
imation. Note that, in this situation, if Mmax is the maximum degree employed for
all the points, the number of MATVECs employed remains the same and equal to
Mmax, since we will need to compute, for each random vector v0, the vectors Tk(A)v0
for k = 0, . . . ,Mmax, which are needed by the points requiring the highest degree.
However, some of the other calculations (inner products) required to obtain the spec-
tral density can be avoided, though in most cases applying Tk(A) to v0 dominates the
computational cost in the DOS calculation. The computational cost of DGL is similar
to that of the Delta-Chebyshev method. Similarly, one can also show that DGL is
closely related to KPML, i.e., it is an expansion of a regularized spectral density in
terms of Legendre polynomials. However, we will omit the alternative derivation here.

The close connection between the Delta-Chebyshev method and the KPM also
suggests that Gibbs oscillation can be observed in the approximate DOS produced by
Delta-Chebyshev and DGL, especially when σ is small. There is no guarantee that
the nonnegativity of φ(t) can be preserved by DGL.

3.2. The Lanczos Algorithm. Because finding a highly accurate DOS essentially
amounts to computing all eigenvalues of A, any method that can provide approxima-
tions to the spectrum of A can be used to construct an approximate DOS as well.
Since the Lanczos algorithm yields good approximations to extreme eigenvalues, it
is a good candidate for computing localized spectral densities at least at both ends
of the spectrum. In this section, we show that it is also possible to combine the
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Lanczos algorithm with multiple randomly generated starting vectors to construct a
good approximation to the complete DOS.

It should be noted that the spectral density φ as a probability distribution is
nonnegative, i.e., 〈φ, g〉 ≥ 0 if g ≥ 0 everywhere. This is an important property,
but the KPM and its variants as introduced in previous sections do not preserve
the nonnegativity of the spectral density. In contrast, the methods introduced in
this section, including the Lanczos method and the Haydock method, preserve the
nonnegativity by construction. This will become a clear advantage for certain spectral
densities, as is illustrated in section 4 using numerical experiments.

3.2.1. Constructing Spectral Density Approximations from Ritz Values and
Gaussian Blurring. For a given starting vector v0, an M -step Lanczos procedure for
a real symmetric matrix A can be succinctly described by

(3.29) AVM = VMTM + fMe
T
M , V T

MVM = I, V T
MfM = 0.

Here, TM is an M ×M tridiagonal matrix, VM is an n ×M matrix, and IM is an
M × M identity matrix. It is well known [15] that the kth column of VM can be
expressed as

VMek = pk−1(A)v0, k = 1, . . . ,M,

where {pk(t)}, k = 0, 1, 2, . . . ,M − 1, is a set of polynomials orthogonal with respect
to the weighted spectral distribution φv0(t) that takes the form

(3.30) φv0(t) =

n∑
j=1

β2
j δ(t− λj),

where the βj ’s are the expansion coefficients obtained from expanding v0 in the eigen-
vector basis of A as in (3.22).

It is also well known that these orthogonal polynomials can be generated by a
three-term recurrence whose coefficients are defined by the matrix elements of TM [12].
If (θk, yk), k = 0, 1, 2, . . . ,M , are eigenpairs of the tridiagonal matrix TM , and τk is
the first entry of yk, then the distribution function defined by

(3.31)

M∑
k=0

τ2k δ(t− θk)

serves as an approximation to the weighted spectral density function φv0(t), in the
sense that

(3.32)
n∑

j=1

β2
j pq(λj) =

M∑
k=0

τ2kpq(θk)

for all polynomials of degree 0 ≤ q ≤ 2M + 1. The moment matching property
described by (3.32) is well known [14] and is related to the Gaussian quadrature rules
[13, 16, 15].

Since, in most cases, we are interested in the standard spectral density defined
by (1.1), we would like to choose a starting vector v0 such that β2

j is uniform. However,
this is generally not possible without knowing the eigenvectors {uj} of A in advance.
To address this issue, we resort to the same stochastic approach we used in previous
sections.
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We repeat the Lanczos process with multiple randomly generated starting vectors

v
(l)
0 , l = 1, 2, . . . , nvec, that satisfy the conditions given by (3.2). It follows from (3.4)
that

(3.33)
1

nvecn

nvec∑
l=1

(
v
(l)
0

)T
δ(tI −A)v(l)0 =

1

n

n∑
j=1

(
1

nvec

nvec∑
l=1

(
β
(l)
j

)2)
δ(t− λj)

is a good approximation to the standard spectral density φ(t) in (1.1). Since each dis-
tribution (3.31) generated by the Lanczos procedure is a good approximation to (3.30),
the average of (3.31) over l, i.e.,

(3.34) φ̃(t) =
1

nvec

nvec∑
l=1

(
1

n

M∑
k=0

(
τ
(l)
k

)2
δ(t− θ(l)k )

)
,

should yield a good approximation to the standard spectral density (1.1).
Since (3.34) has far fewer peaks than φ(t) when M is small, a direct comparison

of (3.34) with φ(t) is not very meaningful. However, when φ(t) is regularized by

replacing δ(t−λi) with gσ(t−λi), we can replace δ(t− θ(l)k ) in (3.34) with a Gaussian

centered at the θ
(l)
k to yield a regularized DOS approximation, i.e., we define the

approximate DOS as

(3.35) φ̃σ(t) =
1

nvec

nvec∑
l=1

(
1

n

M∑
k=0

(
τ
(l)
k

)2
gσ(t− θ(l)k )

)
.

This regularization is well justified because in the limit of M = n, all Ritz values
are the eigenvalues and φ̃σ(t) is exactly the same as the regularized DOS φσ(t) for
the same σ. We will refer to the method that constructs the DOS approximation
from Ritz values obtained from an M -step Lanczos iteration as the Lanczos method
in what follows.

Because gσ(t) ≥ 0, the approximate DOS produced by the Lanczos method is
nonnegative. This is a desirable property not shared by the KPM, DGL, or the
spectroscopic method.

An alternative way to refine the Lanczos-based DOS approximation from an M -
step Lanczos run is to first construct an approximate cumulative spectral density or
cumulative density of states (CDOS), which is a monotonically increasing function,
and then take the derivative of the CDOS through a finite difference procedure or
other means. This technique is discussed in Appendix C.

3.2.2. Haydock’s Method. As indicated earlier, the use of Gaussians is not the
only way to regularize the spectral density. Another possibility is to replace δ(t− λi)
in (1.2) with a Lorentzian of the form (2.7) and centered at λi. The regularized DOS
can be written as

φη(t) =
1

nπ

n∑
j=1

η

(t− λj)2 + η2
.

Consequently, an alternative approximation to the spectral density can be ob-

tained by simply replacing δ(t − θ(k)k ) in (3.34) with a Lorentzian centered at θ
(k)
k ,

i.e.,

φ̃η(t) =
1

nvec

nvec∑
l=1

[
1

nπ

M∑
k=0

(
τ
(l)
k

)2 η

(t− θ(l)k )2 + η2

]
,
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where θ
(l)
k and τ

(l)
k are the same Ritz values and weighting factors that appear in (3.35)

and η is an appropriately chosen constant that corresponds to the resolution of the
spectral density to be approximated. This approximation was first suggested by Hay-
dock, Heine, and Kelly [17]. We will refer to this approach as Haydock’s method.

Haydock’s original method does not require computing Ritz values, even though
computing the eigenvalues of a small tridiagonal matrix is by no means costly nowa-
days. The method makes use of the fact that

φη(t) = − 1

nπ
Im

n∑
j=1

1

t− λj + iη
= − 1

nπ
Im Trace

[
(tI −A+ iηI)−1

]
.

Hence, once again, the task of approximating φη(t) reduces to that of approximating
the trace of (tI −A+ iηI)−1, which can be obtained by

(3.36)
1

nvec

nvec∑
l=1

(
v
(l)
0

)T
(tI −A+ iηI)−1v

(l)
0

for nvec randomly generated vectors v
(l)
0 that satisfy the conditions (3.2).

Note that a direct calculation of (3.36) requires solving linear systems of the form
[A − (t + iη)I]z = v0 repeatedly for any point t at which the spectral density is to
be evaluated. This approach can be prohibitively expensive. Haydock’s approach
approximates vT0 (tI − A + iηI)−1v0 for multiple t’s at the cost of performing a sin-
gle Lanczos factorization and some additional calculations that are much lower in
complexity.

If v0 is used as the starting vector of the Lanczos procedure, then it follows from
the shift-invariant property of the Lanczos algorithm that

(3.37) [A− (t+ iη)I]VM = VM [TM − (t+ iη)I] + feTM+1,

where VM and TM are the same orthonormal and tridiagonal matrices, respectively,
that appear in (3.29). After multiplying (3.37) from the left by [A − (t + iη)I]−1,
from the right by [TM − (t+ iη)I]−1, and rearranging terms, we obtain

[A−(t+iη)I]−1VM = VM [TM−(t+iη)I]−1− [A−(t+iη)I]−1feTM+1[TM−(t+iη)I]−1.

It follows that

vT0 [A− (t+ iη)I])−1v0 = eT1 V
T
M [A− (t+ iη)I]−1VMe1

= eT1 [TM − (t+ iη)I]−1e1 + ξ,

where ξ = − (vT0 [A− (t+ iη)I]−1f
) (
eTM+1[TM − (t+ iη)I]−1e1

)
. If ξ is sufficiently

small, computing vT0 (tI − A + iηI)−1v0 reduces to computing the (1, 1)-th entry of
the inverse of TM − (t+ iη)I. It is not difficult to show that this entry is exactly the
same as the expression given in (3.36) up to a constant scaling factor.

Because TM is tridiagonal with α1, α2, . . . , αM on the diagonal and β2, β3, . . . , βM
on the subdiagonals and superdiagonals, eT1 (zI − TM )−1e1 can be computed in a
recursive fashion using the continued fraction formula

(3.38) eT1 (zI − TM )−1e1 =
1

z − α1 +
β2
2

z−α2+···
.
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This formula can be verified from the identity following Cramer’s rule

eT1 (zI − TM )−1 e1 ≡ det(zI − T̂M )

det(zI − TM )
,

where T̂M is the trailing submatrix starting from the (2, 2) entry of TM (3.38) and
assuming the tridiagonal structure of both TM and T̂M matrices. It is also related to
the generation of Sturm sequences used in bisection methods for computing eigen-
values of tridiagonal matrices [31]. Although this is an elegant way to compute
eT1 (TM − zI)−1e1, its cost is not much lower than that of solving the linear sys-
tem (TM − zI)w = e1 and taking its first entry. For most problems, the cost for this
procedure is small compared to that required to perform the Lanczos procedure to
obtain TM .

We should point out that the nonnegativity of φ(t) is preserved by the Haydock
method. However, the Lorentzian function defined by (2.7) decreases to 0 at a much
slower rate than a Gaussian as t moves away from λ. Hence, when a high-resolution
approximation is required, we may need to choose a very small η in order to produce
an accurate approximation.

4. Numerical Results. In this section, we compare all methods discussed above
for approximating the spectral density of A through numerical examples. For a given
test problem, we first define the target resolution of the DOS to be approximated
by setting the parameter σ in either (2.2) or (2.4) or the parameter η in (2.7). We
use the metric defined in (2.4) to measure the approximation errors associated with
the KPM and its variants, with the exception of DGL. For DGL and the Lanczos
and Haydock methods, we simply use the error metric (2.2) with p = ∞. Since the
spectroscopic method is equivalent to the KPM, we do not show any numerical results
for the spectroscopic method.

4.1. Modified Laplacian Matrix. The first example is a modified two-dimensional
Laplacian operator with zero Dirichlet boundary condition defined on the domain
[0, 30]× [0, 30]. The operator is discretized using a five-point finite difference stencil
with Δh = 1. The modification involves adding a diagonal matrix, which can be
regarded as a discretized potential function. The diagonal matrix is generated by
adding two Gaussians, one centered at the point (4, 5) of the domain and the other at
the point (25, 15). The dimension of the matrix is 750, which is relatively small. We
set the parameters σ and η to 0.35. For all calculations shown in this section, we use
nvec = 100 random vectors whenever stochastic averaging is needed. Each calculation
is repeated 10 times. Each plotted value is the mean value of the computed quantities
produced from the 10 runs, with the error bar indicating the standard deviation of
the 10 runs.

In Figure 4.1, we compare all methods presented in the previous section. We
observe that the Lanczos method seems to outperform all other methods, especially
when M is relatively small. The use of Jackson damping in the KPM does not
appear to improve the accuracy of the approximation. To some extent, this is not
surprising because the true DOS has many sharp peaks (see Figure 4.2), even after
it is regularized. Hence, Jackson damping, which tends to overregularize the KPM
approximation, may not be able to capture these sharp peaks. The DGL method, the
KPM, and KPML behave similarly, as is expected.

In Figure 4.2, we compare φσ(t) and φ̃(t) directly for the Lanczos and Haydock
methods and the KPM with and without Jackson damping. To see the accuracy of
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20 40 60 80 100 120 140

0.02

0.1
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E

Lanczos
DGL
Haydock

KPM(w. Jackson)

KPM(w.o. Jackson)

KPM(Legendre)

Fig. 4.1 A comparison of approximation errors of all methods applied to the modified Laplacian
matrix for different M values.

the different methods more clearly, we choose a higher resolution by setting σ and η to
0.05. We note that the meaning of φ̃(t) is different for different methods. For Lanczos,

φ̃(t) is the approximate DOS obtained using Gaussian blurring. For Haydock, φ̃(t)
is the approximate DOS obtained using Lorentzian Gaussian blurring. For the KPM
(with and without Jackson damping), we first evaluate φ̃(t) as in section 3.1 and then

plot instead the quantity 〈φ̃(·), gσ(· − t)〉. In this sense, the exact and approximate
DOS are regularized on the same footing. The same procedure is adopted for other
numerical examples in this section as well.

We use M = 100, nvec = 100 for all methods. In this case, a visual inspection of
the approximate DOS plots in Figure 4.2 yields the same conclusion that we reached
earlier based on the measured errors shown in Figure 4.1. Lanczos appears to be the
most accurate among all the methods. The DOS curves generated from both the Lanc-
zos and the Haydock methods are above zero. The peaks in the DOS curve produced
by the Haydock method are not as sharp as those produced by the Lanczos method,
because Haydock uses a Lorentzian to regularize the Dirac δ-function, whereas the
Lanczos method uses a Gaussian function to blur the Dirac δ-function centered at Ritz
values. The KPM method without Jackson damping does not preserve the nonnega-
tivity of the approximate DOS, and Gibbs oscillation is clearly observed in Figure 4.2
(d). Finally, the KPM with Jackson damping preserves the nonnegativity of the ap-
proximate DOS. However, the use of Jackson damping leads to missing several peaks
in the DOS, as is illustrated in Figure 4.1. The behaviors of DGL and KPML are
similar to that of the KPM without Jackson damping.

4.2. Other Test Matrices. In this section, we compare different DOS approxi-
mation methods for two other matrices taken from the University of Florida Sparse
Matrix collection [8]. The pe3k matrix originates from the vibrational mode calcula-
tion of a polyethylene molecule with 3,000 atoms [45]. The shwater matrix originates
from a computational fluid dynamics simulation. The size of the pe3k matrix is 9,000,
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Fig. 4.2 Comparing the regularized DOS (with σ = 0.05) with the approximate DOS produced by
(a) the Lanczos method, (b) the Haydock method, (c) the KPM with Jackson damping, and
(d) the KPM without Jackson damping for M = 100.

and the size of the shwater matrix is 81,920. These two test matrices have quite dif-
ferent characteristics in their DOS. The spectrum of the pe3k matrix contains a large
gap as well as many peaks. The DOS of the shwater matrix is relatively smooth, as
we will see in what follows.

We set σ to 0.3 in tests presented in this section. We observe that the KPM with
Jackson damping only becomes accurate when the degree of the expanding polynomi-
als (M) is high enough, and the convergence with respect to M is rather slow. The
DGL method, the KPM without Jackson damping, and KPML behave similarly.

For the shwater matrix, which has a relatively smooth spectral density, the Lanc-
zos method is still the most accurate, as we can see from Figure 4.3. It only takes
M = 50 Lanczos steps to reach 10−3 accuracy. The KPM (without Jackson damping)
and KPML, as well as the DGL method, all requireM > 110 terms to reach the same
level of accuracy.

Figure 4.4 shows that when we set M = 100, nvec = 100, the KPM without
Jackson damping yields an accurate approximation to the DOS, whereas Jackson
damping introduces slightly larger errors near the locations of the peaks and valleys
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KPM(w.o. Jackson)

KPM(Legendre)

Fig. 4.3 A comparison of approximation errors of all DOS approximation methods applied to the
shwater matrix for different M values. The regularization parameter σ is set to 0.3.

of the DOS curve. This error is due to the use of extra smoothing. The DOS generated
by the Haydock method also has larger errors near the peaks and valleys of the DOS
curves, due to the use of Lorentzian regularization.

In Figure 4.5, we zoom into the tail of the DOS curves produced by the Lanczos
method and the KPM. It can be seen that Lanczos preserves the nonnegativity of
the DOS, whereas the KPM does not. However, since the DOS is smooth, the Gibbs
oscillation is very small and can only be seen clearly at the tail of the DOS curve.

For the pe3k matrix, Figure 4.6 shows that Lanczos method is significantly more
accurate than other methods, followed by the Haydock method. This difference in
accuracy can be further observed in Figure 4.7, which compares the regularized DOS
with the approximate DOS for the Lanczos method, the Haydock method, and the
KPM with and without Jackson damping. We useM = 100 and nvec = 100. The pe3k
matrix has a large gap between the low and high ends of the spectrum. Without the
use of Jackson damping, the KPM produces large oscillations over the entire spectrum.
We observed similar behavior for DGL and KPML. Adding Jackson damping reduces
oscillations in the approximate DOS. However, it leads to an overregularized DOS
approximation and is not accurate.

4.3. Application: Heat Capacity Calculation. At the end of section 2.1 we
described how there are different ways to regularize the DOS depending on the appli-
cations. Here we give an example of a heat capacity calculation for a molecule. The
heat capacity is a thermodynamic property and is defined as [29, 44]

(4.1) Cv =

∫ ∞

0

kB
(�ωc/kBT )

2e−�ωc/kBT

(1− e−�ωc/kBT )2
φ(ω)dω,

where kB is the Boltzmann constant, c is the speed of light, � is Planck’s constant, T
is the temperature, and ω =

√
λ is the vibration frequency.
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Fig. 4.4 Comparing the regularized DOS (with σ = 0.3) with the approximate DOS produced by (a)
the Lanczos method, (b) the Haydock method, (c) the KPM with Jackson damping, and
(d) the KPM without Jackson damping for the shwater matrix.

Here, if we define

(4.2) g(ω) = kB
(�ωc/kBT )

2e−�ωc/kBT

(1− e−�ωc/kBT )2

and define the DOS φ(ω) using the square root of the eigenvalues of the Hessian
associated with a molecular potential function with respect to atomic coordinates of
the molecule, we have

Cv = 〈φ, g〉.

Therefore, the error can be measured directly using (2.5).
In what follows, we take the Hessian to be the modified Laplacian matrix and

the pe3k matrix and compute the corresponding heat capacity Cv(T ) for different
temperature values T . We note that here the computed values of Cv(T ) do not
carry any physical meaning, but merely serve as a proof of principle for assessing the
accuracy of the estimated DOS. We compare the KPM and the Lanczos method. All
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Fig. 4.5 A comparison of approximation errors of the Lanczos method (left) with that of the KPM
without Jackson damping (right) at the higher end of the spectrum of the shwater matrix.
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Fig. 4.6 A comparison of approximation errors of all DOS approximation methods applied to the
pe3k matrix for different M values. The regularization parameter σ is set to 0.3.

computations use M = 40 MATVECs. Each computed Cv is an averaged value over
100 runs. To facilitate the comparison, we normalize Cv so that its maximum value
is 1. The Lanczos method is also fully flexible when the error metric is changed. To
this end, we regularize the distribution obtained from Ritz values not by Gaussians,
but by the function g in this application. In other words, in (3.35) we replace gσ by
the function g in (4.2).

Figure 4.8 shows that both the KPM and the Lanczos method correctly reproduce
the normalized Cv(T ) for the modified Laplacian matrix. We also plot the error
generated in both the KPM and the Lanczos method. We observe that the error
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Fig. 4.7 Comparing the regularized DOS (with σ = 0.3) with the approximate DOS produced by (a)
the Lanczos method, (b) the Haydock method, (c) the KPM with Jackson damping, and
(d) the KPM without Jackson damping for the pe3k matrix.

associated with the Lanczos method is slightly smaller. This observation agrees with
previous results that demonstrate the effectiveness and accuracy of both the KPM
and the Lanczos method for computing a relatively smooth DOS.

Figure 4.9 shows that, for the pe3k matrix, the KPM approximation of Cv(T )
exhibits much larger error than that produced by the Lanczos method. This obser-
vation agrees with the results shown in Figure 4.7, which suggests that the Lanczos
method yields a much more accurate DOS estimate, especially when M is relatively
small.

5. Conclusion. We have surveyed numerical algorithms for estimating the spec-
tral density of a real symmetric matrix A from a numerical linear algebra perspective.
The algorithms can be categorized into two classes. The first class contains the KPM
method and its variants. The KPM is based on constructing polynomial approxima-
tions to Dirac δ-“functions” or regularized δ-“functions.” We showed that the Lanczos
spectroscopic method is equivalent to the KPM even though it is derived from a dif-
ferent viewpoint. The DGL method is slightly different, but can be viewed as a
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Fig. 4.8 A comparison of the approximate heat capacity produced by the Lanczos method and the
KPM with the “exact” heat capacity at different temperatures (left), and the approximation
errors produced by these methods at different temperature values (right), for the modified
Laplacian.
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Fig. 4.9 A comparison of the approximate heat capacity produced by the Lanczos method and the
KPM with the “exact” heat capacity at different temperatures (left), and the approxima-
tion errors produced by these methods at different temperature values (right), for the pe3k
matrix.

polynomial expansion of a regularized spectral density. It is more flexible because it
allows polynomials of different degrees to be used at different spectral locations.

The second class of methods is based on the classical Lanczos procedure for par-
tially tridiagonalizing A. Both the Lanczos and the Haydock methods make use of
eigenvalues and eigenvectors of the tridiagonal matrix to construct approximations to
the DOS. They differ only in the type of regularization they use to interpolate spec-
tral density from Ritz values to other locations in the spectrum. The Lanczos method
uses a Gaussian blurring function, whereas the Haydock method uses a Lorentzian.
Because a Lorentzian decreases to zero at a much slower rate than a Gaussian away
from its peak, it can be less effective when a high-resolution spectral density is needed.

Regularization through the use of Gaussian blurring of δ-“functions” not only
allows us to specify the desired resolution of the approximation, but also allows us to
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properly define an error metric for measuring the accuracy of the approximation in a
rigorous and quantitative manner.

The KPM and its variants require estimating the trace of A or p(A), where p(t) is
a polynomial. An important technique for obtaining such an estimate is the stochas-
tic sampling and averaging of the Rayleigh quotient vT0 p(A)v0/v

T
0 v0. Averaging the

tridiagonal matrices produced by the Lanczos procedure started from randomly gen-
erated starting vectors ensures that the approximation contains equal contributions
from all spectral components of A. This is an important requirement of the Lanczos
and Haydock algorithms.

Our numerical tests show that the Lanczos method consistently outperforms the
other methods in terms of the accuracy of the approximation, especially when a
few MATVECs are used in the computation. Furthermore, both the Lanczos and
Haydock algorithms guarantee that the approximate DOS is nonnegative. This is a
desirable feature of any DOS approximation. Another nice property of the Lanczos
and Haydock algorithms is that in the limit ofM = n, they fully recover a regularized
DOS.

The KPM and its variants appear to work well when the DOS to be approximated
is relatively smooth. They are less effective when the DOS contains many peaks or
when the spectrum of A contains large gaps. We found the use of Jackson damping
can remove the Gibbs oscillation of the KPM. However, it tends to overregularize the
approximate DOS and misses important features (peaks) of the DOS.

Appendix A. Further Discussion on the KPM. For the KPM, a common ap-
proach used to damp the Gibbs oscillations is to use the Chebyshev–Jackson approx-
imation [19, 33, 20], which modulates the coefficients μk with a damping factor gMk
defined by

(A.1) gMk =

(
1− k

M+2

)
sin(αM ) cos(kαM ) + 1

M+2 cos(αM ) sin(kαM )

sin(αM )
,

where αM = π
M+2 . Consequently, the damped Chebyshev expansion has the form

φ̃M (t) =

M∑
k=0

μkg
M
k Tk(t).

The approximation of Jackson damping is demonstrated in Figure 3.1.
Another variant can be derived assuming that Chebyshev polynomials are not

the only type of orthogonal polynomials that can be used in the expansion. The
only practical requirement for an orthogonal polynomial is that we explicitly know
its three-term recurrence. For example, we can use the Legendre polynomials Lk(t),
which obey the three-term recursion

L0(t) = 1, L1(t) = t, (k + 1)Lk+1(t) = (2k + 1)tLk(t)− kLk−1(t).

See, for example, [7], for three-term recurrences for a wide class of such polynomials,
e.g., all those belonging to the Jacobi class, which include Legendre and Chebyshev
polynomials as particular cases.

From a computational point of view, some savings in time can be achieved if we
are willing to store more vectors. This is due to the formula

Tp(t)Tq(t) =
1

2

[
Tp+q(t)− T|p−q|(t)

]
,

D
ow

nl
oa

de
d 

04
/0

8/
16

 to
 1

69
.2

29
.5

8.
19

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

APPROXIMATING SPECTRAL DENSITIES OF LARGE MATRICES 61

from which we obtain

Tp+q(t) = 2 Tp(t)Tq(t) + T|p−q|(t).

For a given k we can use the above formula with p = k/2� and q = k − p. This
requires that we compute and store vr = Tr(A)v0 for r ≤ p. Then, the moments
vT0 Tr(A)v0 for r ≤ p can be computed in the usual way, and for r = p+ q > p we can
use the formula

vT0 Tp+q(A)v0 = 2 vTp vq + vT0 v|p−q|.

This saves half of the matrix-vector products at the expense of storing all the previous
{vr}, and therefore it is not practical for high degree polynomials.

Appendix B. Details on the Derivation of the DGL Method. We now calculate
the γk’s starting with γ0. Since L0(λ) = 1, a change of variable t ← (s − t)/√2σ2

yields
(B.1)

γ0 = σ

√
π

2

[
erf

(
1− t√
2σ

)
− erf

(−1− t√
2σ

)]
= σ

√
π

2

[
erf

(
1− t√
2σ

)
+ erf

(
1 + t√
2σ

)]
,

where we have used the standard error function

erf(x) =
2√
π

∫ x

0

e−t2dt .

Now consider a general coefficient γk+1 with k ≥ 0. There does not seem to
exist a closed form formula for γk for a general k. However, these coefficients can be
obtained by a recurrence relation. To this end, we need to determine concurrently
the sequence

(B.2) ψk =

∫ 1

−1

L′
k(s)e

− 1
2 ((s−t)/σ)2ds.

From the three-term recurrence of the Legendre polynomials,

(B.3) (k + 1)Lk+1(λ) = (2k + 1)λLk(λ)− kLk−1(λ),

we find by integration that

(B.4) (k + 1)γk+1 = (2k + 1)

∫ 1

−1

sLk(s)e
− 1

2 ((s−t)/σ)2ds− kγk−1.

A useful observation is that the above formula is valid for k = 0 if we set γ−1 ≡ 0.
This comes from (B.3), which is valid for k = 0 on setting L−1(λ) ≡ 0. Next we
expand the integral term in the above equality,∫ 1

−1

se−
1
2 ((s−t)/σ)2Lk(s)ds = σ2

∫ 1

−1

s− t
σ2

e−
1
2 ((s−t)/σ)2Lk(s)ds+ tγk(B.5)

= σ2

∫ 1

−1

d

ds
[−e− 1

2 ((s−t)/σ)2 ]Lk(s)ds+ tγk.(B.6)
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The next step is to proceed with integration by parts for the integral in the above
expression: ∫ 1

−1

d

ds
[−e− 1

2 ((s−t)/σ)2 ]Lk(s)ds = −Lk(s)e
− 1

2 ((s−t)/σ)2
∣∣∣1
−1

+

∫ 1

−1

e−
1
2 ((s−t)/σ)2L′

k(s)ds.(B.7)

Noting that Lk(1) = 1 and Lk(−1) = (−1)k for all k, we find∫ 1

−1

d

ds
[−e− 1

2
((s−t)/σ)2 ]Lk(s)ds = −e− 1

2
((1−t)/σ)2 + (−1)ke− 1

2
((1+t)/σ)2 + ψk(B.8)

= −e− 1
2
(1+t2)/σ2

[
et/σ

2 − (−1)ke−t/σ2
]
+ ψk(B.9)

≡ ψk − ζk,(B.10)

where we have defined

ψk =

∫ 1

−1

e−
1
2 ((s−t)/σ)2L′

k(s)ds,

ζk = e−
1
2 ((1−t)/σ)2 − (−1)ke− 1

2 ((1+t)/σ)2 .

(B.11)

We note in passing that according to (B.9), ζk can be written as

ζk =

{
2e−

1
2 (1+t2)/σ2

sh(t/σ2) for k even,

2e−
1
2 (1+t2)/σ2

ch(t/σ2) for k odd.

Substituting (B.8) into (B.6) and the result into (B.4) yields

(B.12) (k + 1)γk+1 = (2k + 1)
[
σ2(ψk − ζk) + tγk

]− kγk−1.

The only thing left to do is to find a recurrence for the ψk’s. Here we use the
elegant formula found in, e.g., [26, p. 47],

(B.13) L′
k+1(λ) = (2k + 1)Lk(λ) + L′

k−1(λ).

Integrating over [−1, 1] yields the relation

(B.14) ψk+1 = (2k + 1)γk + ψk−1.

Note that the initial values of ψk are ψ0 = 0, ψ1 = γ0. Ultimately, we obtain the
following recurrence relations:

(B.15)

{
γk+1 = 2k+1

k+1

[
σ2(ψk − ζk) + tγk

]− k
k+1γk−1,

ψk+1 = (2k + 1)γk + ψk−1.

It can be noted that the above formulas work for k = 0 by setting γ−1 = ψ−1 = 0.
The recurrence starts with k = 0, using the initial values γ0 given by (B.1), ψ1 = γ0,
and ψ0 = 0.

An important remark here is that one has to be careful about the application of
the recurrence (B.15). A perceptive reader may notice that such a recurrence runs
the risk of being unstable. In fact, we observe the following behavior. For large values
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of σ the Gaussian function can be very smooth and as a result a very small degree of
polynomials may be needed, i.e., the value of γk drops to small values quite rapidly
as k increases. If we ask for a high degree polynomial and continue the recurrence
(B.15) beyond the point where the expansion has converged (indicated by small values
of γk) we will essentially iterate with noise. As it turns out, this noise is amplified
by the recurrence. This is because the coefficient ψk − ζk becomes just noise, which
causes the recurrence to diverge. An easy remedy is to just stop iterating (B.15) as
soon as two consecutive γk’s are small. This takes care of two issues at the same
time. First, it determines a sort of optimal degree to be used. Second, it avoids the
unstable behavior observed by continuing the recurrence. Specifically, a test such as
the following is performed:

(B.16) |γk−1|+ |γk| ≤ k · tol,

where tol is a small tolerance which can be set to 10−6, for example.
With this we can now easily develop the DGL expansion algorithm, in which we

will refer to formula (3.24). However, now pM is the M -degree polynomial

(B.17) pM (t) =
1

(2πσ2)1/2

M∑
k=0

(
k +

1

2

)
γkLk(t)

obtained by truncating the sum (3.25) to M + 1 terms.

Appendix C. Cumulative Density of States from the Lanczos Method. An al-
ternative way to refine the Lanczos-based DOS approximation from an M -step Lanc-
zos run is to first construct an approximate cumulative spectral density or cumulative
density of states (CDOS), defined as

ψ(t) =

∫ t

−∞
φ(s)ds.

Without applying regularization, the approximate CDOS can be computed from the
Lanczos procedure as

(C.1) ψ̃(t) =

M∑
k=0

η2kδ(t− θk),

where η2k =
∑k

i=1 τ
2
i and θk and τk are eigenvalues and the first components of the

eigenvectors of the tridiagonal matrix TM defined in (3.34). This approximation
is plotted as a staircase function in Figure C.1 for the modified two-dimensional
Laplacian. Note that both ψ(t) and ψ̃(t) are monotonically nondecreasing functions.

Furthermore, it can been shown [23, 11] that ψ(t) − ψ̃(t) has precisely 2M − 1 sign
changes within the spectrum of A. A sign change occurs when ψ(t) crosses either

a vertical or a horizontal step of ψ̃(t). These properties allow us to construct an

“interpolated” CDOS that matches ψ(t) and ψ̃(t) at the points where ψ(t) crosses

ψ̃(t).
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Fig. C.1 The approximate cumulative spectral density associated with the modified two-dimensional
Laplacian constructed directly from a 20-step Lanczos run (left) and its spline-interpolated
and smooth version (right).
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