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Abstract For a sparse non-singular matrix A, generally A−1 is a dense matrix. However, for a class of matrices,

A−1 can be a matrix with off-diagonal decay properties, i.e., |A−1
ij | decays fast to 0 with respect to the increase

of a properly defined distance between i and j. Here we consider the off-diagonal decay properties of discretized

Green’s functions for Schrödinger type operators. We provide decay estimates for discretized Green’s functions

obtained from the finite difference discretization, and from a variant of the pseudo-spectral discretization. The

asymptotic decay rate in our estimate is independent of the domain size and of the discretization parameter.

We verify the decay estimate with numerical results for one-dimensional Schrödinger type operators.
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1 Introduction

Consider the following Schrödinger type partial differential equation,

λG(x, y)− (−Δ+ V (x))G(x, y) = δ(x− y), x, y ∈ Ω ⊂ Rd. (1.1)

Here Ω = [0, L)d is a cubic domain with periodic boundary conditions, V (x) is a real, smooth potential

function, δ(x) is the Dirac δ-distribution, and λ ∈ C is in the resolvent set of the Hamiltonian operator

H := −Δ + V (x). Then G is called the Green’s function of λ − H . It can be shown that G decays

exponentially to zero along the off-diagonal direction. Roughly speaking, if the domain size L is large

enough, for each fixed y ∈ Ω, the magnitude of G(x, y) decays exponentially as d(x, y) increases, where

d(x, y) is the distance between x, y ∈ Ω interpreted in the periodic sense. Furthermore, such decay rate

is independent of the domain size L. In fact, the following theorem has been established in the previous

work by E and Lu [11] for Hamiltonian operators defined on Rd (and hence contains the current periodic

case as a special situation).
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Theorem (See [11]). Assume λ lies in the resolvent set of H. Then there exist constants γ, C > 0

such that

sup
y∈Rd

‖eγ((·−y)2+1)1/2(λ−H)−1e−γ((·−y)2+1)1/2‖L(L2) � C,

where the exponential functions are viewed as multiplication operators.

The decay property is a powerful tool for designing efficient numerical methods, such as the sparse ap-

proximate inverse preconditioner (AINV) [3,5], incomplete LU and Cholesky type factorization [19], and

localized spectrum slicing [17]. It also has profound implication in science and engineering applications.

In quantum physics literature, the exponential decay property of Green’s functions and related physical

quantities is referred to as the “near-sightedness principle” [15, 18] of electronic matters. A variety of

“linear scaling” methods for solving Kohn-Sham density functional theory [16] for gapped systems have

been proposed in the past two decades, such as the divide-and-conquer method [7, 22], and remains an

active research field (see, e.g., the review articles [2, 6, 13]).

In order to develop efficient numerical methods taking advantage of the decay property of Green’s

functions, we require the Schrödinger operator to be discretized using a certain numerical scheme. It turns

out that not all numerical discretization schemes lead to discretized Green’s function with exponentially

decaying off-diagonal elements. This paper is concerned with demonstrating that discretized Green’s

functions obtained from proper numerical schemes also have decay properties, either exponentially or

super-algebraically. We obtain decay estimates of which the decay rate is asymptotically independent of

the discretization parameter (e.g., the grid size in finite difference discretization), and of the domain size.

To the best of our knowledge, such results were not known in previous literature.

1.1 Previous work

The exponential decay properties of Green’s functions in the continuous setup and the related exponential

decay of eigenfunctions of elliptic operators have been widely studied (see [1, 8, 11, 12, 20]).

In the discretized setup, the exponential decay of discretized Green’s functions was first studied in [9,10]

for the matrix inverse A−1, where A is assumed to be a banded, positive definite matrix. In order to

generalize from banded matrices to general sparse matrices, decay properties should be defined using

geodesic distances of the graph induced by A. These techniques have been used in [2, 4] and references

therein, for demonstrating the decay properties of Fermi-Dirac operators in electronic structure theory.

This type of decay estimate relies on the following facts: (1) a complex analytic function such as z−1

where z belongs to a simply connected complex domain away from 0, can be efficiently expanded using

polynomials of controllably low degrees, and (2) when the matrix size is sufficiently large, a finite term

polynomial of a sparse matrix remains a sparse matrix. This argument can be further generalized to non-

sparse matrices with exponentially decaying off-diagonal elements, and is not restricted to Schrödinger

type operators in (1.1). It can be shown that the exponent for the exponential decay estimate is bounded

by a constant while increasing the domain size L. However, the decay rate is not uniform with respect

to the refinement of the discretization parameter.

Simply speaking, the reason why the general argument above cannot produce optimal decay estimates

with increasingly refined discretization is as follows. Due to the presence of the Laplacian operator −Δ,

H is an unbounded operator. The spectral radius of the discretized H increases as the discretization

refines. For example, for finite difference discretization with uniform grid spacing Δx, the spectral

radius of the discretized H increases as O(Δx−2). As a result, the order of polynomials needed to

accurately approximate the complex analytic function such as z−1 increases as O(Δx−2), and the decay

rate deteriorates. In the limit when the Δx → 0, it can be shown that the exponential decay rate in

the “physical” space approaches 0. However, as Δx → 0 the discretized Green’s function should well

approximate the continuous Green’s function up to consistency error, and hence should share the decay

property of the continuous Green’s functions. The discrepancy between the decay properties of the

discrete and continuous versions of the Green’s functions is due to the fact that such decay estimates for

discretized Green’s function provides only a lower bound of the exponential decay rate, and such lower
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bound is not optimal. Therefore, this type of estimate is mostly suitable for discretized H with relatively

small spectral radius, i.e., discretization with low to medium accuracy. It is desirable to have a better

estimate which correctly captures the decay behavior for all accuracy level.

1.2 Our contribution

In this paper, we provide decay estimates of discretized Green’s functions for Schödinger type opera-

tors. The decay rate of our estimates is asymptotically independent of both the domain size and the

discretization parameter. We demonstrate the decay estimate for two types of discretization: finite dif-

ference discretization and a variant of the pseudo-spectral discretization. Our result is explicitly stated

for one-dimensional Schrödinger type operators. However, generalization to Schrödinger type operators

in higher dimensions is straightforward with necessary notational changes.

For the finite difference discretization, our argument is analogous to the decay estimate of continuous

Green’s functions [11]. Compared with the general argument in [2, 9] based on matrix sparsity, our

method specifically exploits the structure of the discretized Laplacian operator. More specifically, we use

the discretized Green’s function, which is a matrix of bounded spectral radius, to control other operators

with diverging spectral radius. Such operators include the discretized first and second order differential

operators. We find that the discretized Green’s function decays exponentially along the off-diagonal

direction (see Theorem 2.2).

For the pseudo-spectral discretization, the off-diagonal elements of the discretized H only decay poly-

nomially. We verify numerically that the corresponding discretized Green’s function does not decay

exponentially along the off-diagonal direction. However, if we systematically mollify the high end of the

spectrum of the discretized Laplacian operator, the resulting discretized H will decay super-algebraically

along the off-diagonal direction. We refer to this scheme as the mollified pseudo-spectral method (mPS).

We demonstrate that the off-diagonal elements of the discretized Green’s function corresponding to the

mPS discretization decay super-algebraically. For any given polynomial order, the decay rate does not

depend on the domain length or the discretization parameter (see Theorems 3.6 and 3.8). The proof of

this result relies on the discrete version of the relation between the regularity of the Fourier space and

the decay in the real space.

1.3 Notation

The following notation is used throughout the paper. With some abuse of notation, unless otherwise

clarified, the symbol H denotes both the continuous operator −Δ + V (x), and its discretized matrix,

for both the finite difference discretization and for the pseudo-spectral type discretization. Similarly G

denotes both the continuous Green’s function for the operator λ−H and its discretized matrix. ı stands

for the imaginary unit. The complex conjugate of a complex number f is denoted by f∗. The identity

matrix is denoted by I. When the identity matrix is multiplied by a scalar λ, the matrix λI is also

denoted by λ for simplicity, unless otherwise clarified.

For simplicity of the notation, we will restrict ourselves to the cases that the computational domain is

an interval Ω = [0, L) in one spatial dimension. The extension to higher spatial dimensional rectangular

computational domain is straightforward. The computational domain is discretized by N equispaced grid

points: X = {xi | xi = iΔx, i = 0, 1, . . . , N − 1}, where Δx = L/N is the grid size.

Throughout this paper, since we are only interested in the asymptotic decay behavior, we will assume

that L � 1 and also without loss of generality Δx � 1.

For a lattice function f : X → R, we define its L2(X ) norm as

‖f‖2L2(X ) = Δx
∑
x∈X

|f(x)|2 , (1.2)

so that as Δx → 0, it converges to the continuous L2 norm on [0, L). Similarly the L∞(X ) norm is

defined as

‖f‖L∞(X ) = max
x∈X

|f(x)| . (1.3)
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For simplicity of the notation, we will use ‖f‖2 and ‖f‖∞ interchangeably with ‖f‖L2(X ) and ‖f‖L∞(X ),

respectively.

We will focus on periodic boundary condition, so that a function f(x) defined on the finite lattice X
can be extended to a periodic function on the infinite lattice ΔxZ such that f(x+ L) = f(x), x ∈ X .

We will use C for generic absolute constants whose value may change from line to line. Specific

constants are denoted as Cm, where the subscript m indicates the dependence of the constant on the

parameter m.

1.4 Organization of the paper

This paper is organized as follows. We estimate the decay rate for the finite difference discretization in

Section 2, and the decay rate for the mollified pseudo-differential discretization in Section 3. Numerical

results demonstrating the decay rate is provided in Section 4, and we conclude in Section 5.

2 Finite difference discretization

In this paper, we focus on the second order finite difference discretization, and it is possible to generalize

the analysis to higher order finite difference discretization schemes. We define the forward and backward

difference operators for x ∈ X , respectively as

(D+f)(x) =
1

Δx
(f(x+Δx)− f(x)), (2.1)

(D−f)(x) =
1

Δx
(f(x) − f(x−Δx)). (2.2)

The Hamiltonian operator in the second order finite difference discretization is

H = D+D− + V. (2.3)

Here the potential function V (x) is discretized into a lattice function V : X → R with bounded L∞(X )

norm. With some abuse of notation, unless otherwise clarified, we use Δ = D+D− to denote the

discretized Laplacian operator as well.

Since periodic boundary condition is used, the natural distance between two grid points x, y ∈ X is

the periodic distance

d̃L(x, y) = min{|x− y − Lk| , k ∈ Z}.
As in the continuous case, we need to mollify the distance to remove singularities as

dL(x, y) := dmax − ([dmax − (d̃L(x, y)
2 + 1)1/2]2 + 1)1/2, (2.4)

where dmax = max (d̃L(x, y)
2+1)1/2 = (L2/4+1)1/2. Note that the slightly complicated looking formula

is due to the necessity of mollification when d̃L is either 0 or L/2. Figure 1 gives an example of the

distance function dL(x, 0) with L = 40.

The following lemma collects the properties of dL that will be used for proving Theorem 2.2.

Lemma 2.1. For fixed y ∈ X , the function dL(·, y) is twice continuous differentiable and the derivatives

are bounded uniformly in L and Δx.

Proof. We include the elementary proof here for completeness. We fix y = 0 without loss of generality,

and have
dL(x, 0) = dmax − ([dmax − (min(|x| , |x− L|)2 + 1)1/2]2 + 1)1/2

=

{
dmax − ([dmax − (x2 + 1)1/2]2 + 1)1/2, x ∈ [0, L/2),

dmax − ([dmax − ((L − x)2 + 1)1/2]2 + 1)1/2, x ∈ [L/2, L).
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Figure 1 An illustration of the smoothed distance function dL(x, 0) with L = 40

We calculate the derivative of dL(x, 0) in each interval as follows:

∂dL(x, 0)

∂x
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x(dmax − (x2 + 1)1/2)

(x2 + 1)1/2([dmax − (x2 + 1)1/2]2 + 1)1/2
, x ∈ [0, L/2),

−(L− x)(dmax − ((L − x)2 + 1)1/2)

((L − x)2 + 1)1/2([dmax − ((L − x)2 + 1)1/2]2 + 1)1/2
, x ∈ [L/2, L).

In particular, it is continuous at x = L/2 and x = 0 (viewed as a periodic function on [0, L)). The

expression also verifies that ∣∣∣∣∂dL(x, 0)∂x

∣∣∣∣ � 1.

To calculate the second order derivative, denote φ(t) = t/(t2 + 1)1/2 and we write

∂dL(x, 0)

∂x
=

{
φ(x)φ(dmax − (x2 + 1)1/2), x ∈ [0, L/2),

−φ(L− x)φ(dmax − ((L − x)2 + 1)1/2), x ∈ [L/2, L).

Hence,

∂2dL(x, 0)

∂x2
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ′(x)φ(dmax − (x2 + 1)1/2)

− φ2(x)φ′(dmax − (x2 + 1)1/2), x ∈ [0, L/2),

φ′(L− x)φ(dmax − ((L − x)2 + 1)1/2)

− φ2(L− x)φ′(dmax − ((L − x)2 + 1)1/2), x ∈ [L/2, L).

Since φ′(t) = (t2 +1)−3/2, it is clear that the second order derivative is uniformly bounded. To check the

continuity, it suffices to check x = L/2 and x = 0. We have

lim
x→0+

∂2dL(x, 0)

∂x2
= φ′(0)φ(dmax − 1) = lim

x→L−
∂2dL(x, 0)

∂x2
,

lim
x→L/2−

∂2dL(x, 0)

∂x2
= −φ2(L/2)φ(0) = lim

x→L/2+

∂2dL(x, 0)

∂x2
,

where the second line uses that dmax = (L2/4 + 1)1/2 = limx→L/2(x
2 + 1)1/2.

In order to prove Theorem 2.2, we need the discrete version of the Leibniz rule in the finite difference

discretization. For any x ∈ X ,

D−(fg)(x) =
1

Δx
((fg)(x) − (fg)(x−Δx))

=
1

Δx
(f(x) − f(x−Δx))g(x) +

1

Δx
f(x−Δx)(g(x) − g(x−Δx))

= ((D−f)g)(x) + f(x−Δx)(D−g)(x). (2.5)
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Theorem 2.2. Assume that (λ −H)−1 is bounded in the matrix 2-norm. Then there exist constants

γ0 > 0 and C such that for any Δx � 1, L � 1, and γ � γ0,

sup
y∈X

‖exp(γdL(·, y))(λ −H)−1 exp(−γdL(·, y))‖L(L2(X )) � C,

where exp(−γdL(·, y)) is understood as a multiplication operator:

(exp(−γdL(·, y))f)(x) = exp(−γdL(x, y))f(x), x ∈ X .

The definition for exp(γdL(·, y)) is similar.

Proof. Notice first that

exp(γdL(·, y))(λ −H)−1 exp(−γdL(·, y)) = [exp(γdL(·, y))(λ −H) exp(−γdL(·, y))]−1.

Using the definition of H , we get

exp(γdL(·, y))(λ−H) exp(−γdL(·, y)) = exp(γdL(·, y))(λ − V ) exp(−γdL(·, y))
+ exp(γdL(·, y))Δ exp(−γdL(·, y))

= (λ− V ) + exp(γdL(·, y))Δ exp(−γdL(·, y)).

Explicit calculation using (2.5) for D− and analogously for D+, we obtain

exp(γdL(·, y))Δ exp(−γdL(·, y)) = exp(γdL(·, y))D+D− exp(−γdL(·, y))
= Δ+ exp(γdL(·, y))[D− exp(−γdL(·, y))]D−

+ exp(γdL(·, y))[D+ exp(−γdL(·, y))]D+

+ exp(γdL(·, y))[Δ exp(−γdL(·, y))].
To control the lower order terms on the right-hand side, we estimate

|[D+ exp(−γdL(·, y))](x)| =
∣∣∣∣ 1

Δx
[e−γdL(x+Δx,y) − e−γdL(x,y)]

∣∣∣∣
� max

t∈[0,Δx]

∣∣∣∣ ∂∂te−γdL(x+t,y)

∣∣∣∣
� Cmax(γe−γdL(x,y), γe−γdL(x+Δx,y))

� CγeγΔxe−γdL(x,y),

where the first inequality follows from the mean value theorem, and the second inequality uses that

|∂xdL(x, y)| is uniformly bounded from Lemma 2.1. The same bound also holds for D− exp(−γdL(·, y)).
For the second order difference

|[D+D− exp(−γdL(·, y))](x)| =
∣∣∣∣ 1

Δx2
[e−γdL(x+Δx,y) − 2e−γdL(x,y) + e−γdL(x−Δx,y)]

∣∣∣∣
=

1

Δx2

∣∣∣∣∫ Δx

0

∫ Δx

0

∂t∂s e
−γdL(x+(t−s),y)dsdt

∣∣∣∣
� max

(t,s)∈[0,Δx]2
|∂t∂s e−γdL(x+(t−s),y)|

� C(γ2 + 2γ)eγΔxe−γdL(x,y),

where we have used Lemma 2.1 in the last inequality.

We thus have in summary for γ sufficiently small (recall that Δx � 1)

‖f−‖L∞(X ) := ‖exp(γdL(·, y))[D− exp(−γdL(·, y))]‖L∞(X ) � Cγ,

‖f+‖L∞(X ) := ‖exp(γdL(·, y))[D+ exp(−γdL(·, y))]‖L∞(X ) � Cγ,
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‖g‖L∞(X ) := ‖exp(γdL(·, y))[Δ exp(−γdL(·, y))]‖L∞(X ) � Cγ,

where we have introduced the short hand notation f± and g.

Recall the identity

exp(γdL(·, y))(λ −H) exp(−γdL(·, y))
= (λ− V ) + Δ + (f−D− + f+D+) + g

= (λ−H) + (f−D− + f+D+) + g

= (λ−H)[I + (f−D− + f+D+)(λ−H)−1 + g(λ−H)−1]. (2.6)

Note that

‖D−(λ−H)−1‖L(L2(X )) � ‖D−(1−Δ)−1‖L(L2(X ))‖(1−Δ)(λ −H)−1‖L(L2(X ))

� C‖(1 + λ− V − λ+H)(λ−H)−1‖L(L2(X ))

� C(1 + (|1 + λ|+ ‖V ‖L∞(X )))‖(λ −H)−1‖L(L2(X )), (2.7)

and the same bound for D+(λ−H)−1. Here we have used the fact that ‖D−(1−Δ)−1‖L(L2(X )) is bounded

uniformly with respect to Δx � 1, which can be directly verified by Fourier representation. Thus by

making γ sufficiently small, the bounds on f± and g guarantee the invertibility of the last term on the

right-hand side of (2.6) and the inverse is also bounded. The theorem is hence proved.

As a corollary to Theorem 2.2, we may infer the pointwise decay property of the Green’s function. Let

us consider without loss of generality a single column g of the discretized Green’s function, which solves

the equation

(λ−H)g =
1

Δx
e1 (2.8)

with e1 = (1, 0, 0, . . . , 0)T. Here the prefactor 1/Δx on the right-hand side of (2.8) reflects the normaliza-

tion of the discrete Dirac δ-distribution. Thus g = 1
Δx(λ −H)−1e1. We estimate the exponential decay

rate of g (in L2 sense) according to

‖eγdL(0,·)g‖2 =
∥∥∥∥eγdL(0,·)(λ−H)−1 e1

Δx

∥∥∥∥
2

=

∥∥∥∥eγdL(0,·)(λ−H)−1(1−Δ)(1 −Δ)−1 e1
Δx

∥∥∥∥
2

� ‖eγdL(0,·)(λ−H)−1(1−Δ)e−γdL(0,·)‖L(L2(X ))

∥∥∥∥eγdL(0,·)(1−Δ)−1 e1
Δx

∥∥∥∥
2

. (2.9)

The right-hand side of (2.9) is bounded because of the following two facts. First, similar to (2.7),

‖eγdL(0,·)(λ−H)−1(1−Δ)e−γdL(0,·)‖L(L2(X ))

= ‖eγdL(0,·)(λ −H)−1(−(λ−H) + (λ + 1)− V )e−γdL(0,·)‖L(L2(X )) (2.10)

� 1 + (|1 + λ|+ ‖V ‖L∞(X ))‖eγdL(0,·)(λ−H)−1e−γdL(0,·)‖L(L2(X )). (2.11)

Second, ‖eγdL(0,·)(1 − Δ)−1 e1
Δx‖2 is bounded for sufficiently small γ, which can be verified by a direct

calculation using the explicit discrete Green’s function for (1 − Δ)−1 of Yukawa type. Moreover, away

from x1 (where the center of e1 is located), local L∞ bounds can be obtained from the L2 estimate

combined with elliptic regularity estimates for the finite difference equation (see [21]). In summary, this

establishes the exponential moment bound for g uniform in L and the discretization mesh size. Thus,

the Green’s function decays exponentially along the off-diagonal direction.

3 Pseudo-spectral method and mollified pseudo-spectral method

In this section we consider the pseudo-spectral type discretization. When the potential function V is

smooth, pseudo-spectral discretization is widely used in scientific and engineering computations. This
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is because pseudo-spectral type discretization gives rise to much more accurate solution than low order

finite difference type discretization with the same number of degrees of freedom.

In pseudo-spectral type discretization, corresponding to the discrete lattice X we define the Fourier

grid K = {nΔk | n = −N
2 + 1, . . . , N

2 }. Here Δk = 2π
L , the edge of the Fourier grid is defined to be

kc :=
N

2
Δk =

πN

L
=

π

Δx
. (3.1)

Note that kc � π due to the assumption Δx � 1.

For a lattice function f : X → R, its discrete Fourier transform is defined as

f̂k = Δx
∑
x∈X

e−ıkxf(x), k ∈ K.

The corresponding inverse discrete Fourier transform is

f(x) =
1

L

∑
k∈K

eıkxf̂k, x ∈ X .

Here the normalization factor is chosen so that when the grid spacing Δx → 0, the discrete Fourier

transform and inverse Fourier transform converges to the continuous Fourier transform and inverse Fourier

transform, respectively.

Similar to (1.2) and (1.3), in Fourier space, the discrete L2(K) norm and L∞(K) norm for {f̂k} is given

as

‖f̂‖2L2(K) = Δk
∑
k∈K

|f̂k|2, ‖f̂‖L∞(K) = max
k∈K

|f̂k|, (3.2)

respectively. Again for simplicity of the notation, we will use ‖f̂‖2 and ‖f̂‖∞ interchangeably with

‖f̂‖L2(K) and ‖f̂‖L∞(K), respectively, unless otherwise clarified.

Under this choice of normalization, the discrete Parseval’s identity reads

‖f̂‖22 = Δk
∑
k∈K

|f̂k|2 = Δk(Δx)2
∑
k∈K

∑
x,x′∈X

e−ık(x−x′)f(x)f∗(x′)

= ΔkN(Δx)2
∑
x∈X

|f(x)|2 = 2π‖f‖22.
(3.3)

We define the Fourier restriction operator RN : L2(Ω) → L2(X ) as

(RNg(·))(x) = g(x), x ∈ X .

Similarly the Fourier interpolation operator IN : L2(X ) → L2(Ω) is defined as

[INf ](x) =
1

L

∑
k∈K

f̂ke
ıkx, x ∈ Ω.

Using the Fourier restriction and interpolation operator, the Laplacian operator in the pseudo-spectral

discretization becomes RNΔIN . For simplicity we consider the case in the absence of the external

potential, i.e., V (x) = 0, and λ = −1. In this case, the pseudo-spectral discretization is equivalent to the

spectral discretization, and (1.1) becomes

(1−RNΔIN )G = − 1

Δx
I. (3.4)

Again the prefactor 1/Δx on the right-hand side of (3.4) reflects the normalization of the discrete Dirac

δ-distribution. Since RNΔIN is translational invariant, without loss of generality we only consider the

first column of G, denoted by g. Then

(1−RNΔIN )g = − 1

Δx
e1, (3.5)
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where e1 = (1, 0, . . . , 0)T. Direct computation shows that

ĝk = − 1

1 + k2
, k ∈ K.

Below we would like to utilize the discrete version of the relation between the regularity of the Fourier

space and the decay in the real space. This allows us to obtain the decay properties of g by estimating

the norm of ĝ and its discrete derivatives. Let us first note an elementary calculus lemma.

Lemma 3.1. Let |x| ∈ [0, L2 ]. Then

|eıΔkx − 1|
Δk

� 2 |x|
π

.

Proof. Note that |Δkx|
2 � π

2 , and sin y � 2
πy for 0 � y � π

2 . We have

|eıΔkx − 1|
Δk

=
2| sin(Δkx

2 )|
Δk

� 2|x|
π

.

We define the difference operator D acting on a vector f̂ in the Fourier domain as

(Df̂)k =
f̂k − f̂k−Δk

Δk
, k ∈ K. (3.6)

(3.6) is interpreted in the periodic sense, i.e., for k−N
2 +1, k−N

2 +1−Δk ≡ kN
2
. Proposition 3.2 characterizes

the decay property of g in terms of the first order difference of ĝ.

Proposition 3.2. Define

d(x, 0) =

{
x, x ∈ [0, L/2),

L− x, x ∈ [L/2, L).

Then for any g ∈ L2(X ),

‖d(·, 0)g‖2 �
√
π

2
√
2
‖Dĝ‖2 .

Proof. For any x ∈ X , since 0 � d(x, 0) � L
2 , using Lemma 3.1,

|d(x, 0)g(x)| � π

2

|(eıΔkx − 1)g(x)|
Δk

.

Since

g(x) =
1

L

∑
k∈K

eıkxĝk,

we have

(eıΔkx − 1)g(x) =
1

L

∑
k∈K

eı(k+Δk)xĝk − 1

L

∑
k∈K

eıkxĝk.

Rearranging the terms and using the definition of (3.6), we have

eıΔkx − 1

Δk
g(x) = − 1

L

∑
k∈K

eıkx(Dĝ)k.

Summing up over all x ∈ X , we obtain

Δx
∑
x∈X

∣∣∣∣eıΔkx − 1

Δk
g(x)

∣∣∣∣2 =
1

L

∑
k

|(Dĝ)k|2 ,

and therefore

‖d(·, 0)g‖2 �
√
π

2
√
2
‖Dĝ‖2 .
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Applying Proposition 3.2 repeatedly for m times, we have

Corollary 3.3. For any g ∈ L2(X ) and positive integer m,

‖d(·, 0)mg‖2 �
(
π

2

)m
1√
2π

‖D(m)ĝ‖2.

Proof. The proof follows from the identity that for any x ∈ X
(eıΔkx − 1)m

Δk
g(x) =

(−1)m

L

∑
k∈K

eıkx(D(m)ĝ)k,

and a similar calculation as in Proposition 3.2.

Corollary 3.3 suggests that in order to obtain high order polynomial decay rate, we need to control

the high order derivatives of ĝ. However, the difficulty associated with the pseudo-spectral method is

that the discrete Laplacian in the Fourier space is k2 and is not smooth at the edge of the Fourier grid

k = ±kc. Numerical results in Section 4 indicate that the off-diagonal elements of the discretized Green’s

function from pseudo-spectral discretization indeed decay slowly in the asymptotic sense.

Below we demonstrate that it is possible to mollify the pseudo-spectral scheme which smears the

discontinuity near the edge of the Fourier grid ±kc, and the resulting discretized Green’s function decays

faster than d(x, 0)−M along the off-diagonal direction, where M ∼ O(N). As a result, as the system

size L and hence N increases, the decay along the off-diagonal direction is super-algebraic, i.e., faster

than any polynomial of d(x, 0).

For pseudo-spectral discretization, the following discrete version of the Leibniz rule plays an important

role.

Lemma 3.4. For any f̂ , ĝ ∈ L2(K), and k ∈ K, we have

(D[f̂ ĝ])k = (Df̂)kĝk−Δk + f̂k(Dĝ)k, and (D[f̂ ĝ])k = (Df̂ )kĝk + f̂k−Δk(Dĝ)k.

Proof. The proof is elementary,

(D[f̂ ĝ])k =
1

Δk
(f̂kĝk − f̂k−Δkĝk−Δk)

=
1

Δk
((f̂k − f̂k−Δk)ĝk−Δk + f̂k(ĝk − ĝk−Δk))

= (Df̂)kĝk−Δk + f̂k(Dĝ)k.

The second equality follows by switching the role of f and g.

Let us introduce a smooth cut-off function θ̂(k) ∈ C∞(R) which satisfies

θ̂(k) =

⎧⎪⎨⎪⎩
1, |k| � 1

2
kc,

0, |k| � 3

4
kc,

(3.7)

and 0 � θ̂(k) � 1. For example, we can choose θ̂ to be a characteristic function θ̂0(k) := 1|k|� 5
8kc

convolved with a “bump” function ϕ̂(k), i.e.,

θ̂(k) =

∫
ϕ̂(k − k′)θ̂0(k′)dk′, (3.8)

and

ϕ̂(k) =

⎧⎪⎨⎪⎩Z exp

(
− σ2k2c

σ2k2c − k2

)
, |k| < σkc,

0, otherwise.

(3.9)
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Figure 2 ̂θ(k) compared with the function ̂θ0(k) before smearing

Here Z is a normalization constant chosen so that
∫
ϕ̂(k)dk = 1, and we choose σ = 1

8 . An example of

the mollification function θ̂(k) is given in Figure 2.

To remove the singularity of the symbol k2 near the edge of the Fourier grid K, we introduce a mollified

kernel of Laplacian operator in the Fourier domain as

ĥ(k) = θ̂(k)(k2 − k2c ) + k2c , k ∈ R. (3.10)

It is easy to verify that θ̂ ∈ C∞(R), and then ĥ(k) ∈ C∞(R). However, since the bump function ϕ̂ is only

C∞(R) but not real analytic at k = ±σkc, its Fourier transform is known to decay super-algebraically

and sub-exponentially [14]. Hence, exponential decay of the off-diagonal direction of the Green’s function

cannot be expected. Below we prove that for such choice of the mollified pseudo-spectral scheme, the off-

diagonal direction of the Green’s function decays super-algebraically. To this end we follow Corollary 3.3

and need to bound the high order difference operators applied to ĝ. Our current proof does not give

sub-exponential bound, which is an interesting future direction.

We assume that for each integer m � 0, there exists constants Cθ,m independent of kc so that (recall

that kc � π and hence σkc is bounded from below by π/8)∥∥∥∥dmθ̂

dkm

∥∥∥∥
∞

� Cθ,m,

and hence

‖D(m)θ̂‖∞ � Cθ,m. (3.11)

We further have the following lemma for controlling the derivative of ĥk ≡ ĥ(k).

Lemma 3.5. Assume 1 � m � M = N
16 , Δx � 1 and L � 1. Then there exist constants Ch,m

independent of kc, L such that ∥∥∥∥D(m)ĥ

1 + ĥ

∥∥∥∥
∞

� Ch,m.

Proof. Use Lemma 3.4,

(Dĥ)k = (Dθ̂)k(k
2 − k2c ) + θ̂k−Δk(D[k2])k = (Dθ̂)k(k

2 − k2c ) + θ̂k−Δk(2k −Δk), k ∈ K,

where the last equality used that k2 is interpreted in the periodic sense. Thus,

(Dĥ)k

1 + ĥk

=
k2 − k2c

1 + ĥk

(Dθ̂)k +
2k −Δk

1 + ĥk

θ̂k−Δk. (3.12)

To bound the right-hand side, we use∣∣∣∣2k −Δk

1 + ĥk

∣∣∣∣ = ∣∣∣∣ 2k −Δk

1 + θ̂(k)(k2 − k2c ) + k2c

∣∣∣∣ � ∣∣∣∣2k −Δk

1 + k2

∣∣∣∣ � 1 + Δk � 10. (3.13)
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Here L � 1 and hence Δk � 2π. For the first term of the right-hand side of (3.12), note that

(Dθ̂)k = 0, if |k| � 1

2
kc −Δk. (3.14)

Moreover, for |k| � 1
4kc, we have∣∣∣∣k2 − k2c

1 + ĥk

∣∣∣∣ = ∣∣∣∣ k2 − k2c

1 + θ̂(k)(k2 − k2c ) + k2c

∣∣∣∣ � 2k2c
1 + k2

� 32, (3.15)

where the last inequality uses the lower bound of k as assumed. Therefore, we arrive at∥∥∥∥ Dĥ

1 + ĥ

∥∥∥∥
∞

� (32‖Dθ̂‖∞ + 10‖θ̂‖∞) =: Ch,1, (3.16)

where we have used (3.11) in the last inequality.

Controlling higher derivatives of ĥ is similar. Applying D and Lemma 3.4 for m times to both sides

of (3.10), we obtain

(D(m)ĥ)k = (D(m)θ̂)k(k
2 − k2c ) +

(
m

1

)
(D(m−1)θ̂)k−Δk(2k −Δk)

+

(
m

2

)
2(D(m−2)θ̂)k−2Δk, k ∈ K. (3.17)

The reason why D2[k2]k can be replaced by 2 is because (D(m−2)θ̂)k−2Δk vanishes at the boundary

of K. Similarly the right-hand side of the equation (3.17) stops at the term (D(m−2)θ̂) is because when

3 � m � M , letting

Km =

{(
−N

2
+m

)
Δk, . . . ,

(
N

2
−m+ 1

)
Δk

}
,

we have

(D(m)[k2])k = 0, k ∈ Km.

On the other hand, since

θ̂k = 0, k ∈ K\KN
8
,

for all 3 � m � M we have

(D(m)θ̂)k = 0, k ∈ K\KN
8 −m.

Since 2m � N
8 , all terms of the following form vanish,

(D(m−n)θ̂)k−nΔk(D(n)[k2])k = 0, k ∈ K, 3 � n � m.

Hence,

(D(m)ĥ)k

1 + ĥk

=
k2 − k2c

1 + ĥk

(D(m)θ̂)k +
2k −Δk

1 + ĥk

(
m

1

)
(D(m−1)θ̂)k−Δk

+
2

1 + ĥk

(
m

2

)
(D(m−2)θ̂)k−2Δk, k ∈ K. (3.18)

Using (3.13), (3.15), and the fact that (D(m)θ̂)k = 0 for m � N
16 and |k| � 1

4kc, we arrive at∥∥∥∥D(m)ĥ

1 + ĥ

∥∥∥∥
∞

� (32‖D(m)θ̂‖∞ + 2m‖D(m−1)θ̂‖∞ +m(m− 1)‖D(m−2)θ̂‖∞) =: Ch,m.

The proof is complete.
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For the mollified pseudo-spectral discretization, we replace k2 by ĥk for all k ∈ K. We study below the

decay properties of g with Fourier transform denoted by ĝ. From (3.5), ĝ satisfies

(1 + ĥk)ĝk = −1, k ∈ K. (3.19)

Applying D to both sides of (3.19) and using Lemma 3.4, we have

(Dĥ)kĝk−Δk + (1 + ĥk)(Dĝ)k = 0, k ∈ K. (3.20)

Theorem 3.6. Let g ∈ L2(X ) be the inverse Fourier transform of ĝ defined in (3.19). Assume

N � 32, Δx � 1 and L � 1. Then there exist constants Cg,m independent of L and kc such that for all

0 � m � M = N
16 ,

‖d(·, 0)mg‖2 � Cg,m.

Proof. First,

‖ĝ‖22 = Δk
∑
k∈K

1

(1 + ĥk)2
� Δk

∑
k∈K

1

(1 + k2)2

�
∫ ∞

−∞

1

(1 + k2)2
dk +Δk <

∫ ∞

−∞

1

(1 + k2)2
dk + 2π =: C2

g,0.

Here we used that ĥk � k2 for k ∈ K, and Δk = 2π/L � 2π. From (3.20), we have

|(Dĝ)k| =
∣∣∣∣(Dĥ)kĝk−Δk

1 + ĥk

∣∣∣∣.
Thus,

‖Dĝ‖2 �
∥∥∥∥ Dĥ

1 + ĥ

∥∥∥∥
∞

‖ĝ‖2 � Ch,1 ‖ĝ‖2 =: Cg,2,

where the last inequality uses Lemma 3.5.

Applying D and Lemma 3.4 for m times to both sides of (3.19), we have

m−1∑
n=0

(
m

n

)
(D(m−n)ĥ)k(D(n)ĝ)k−nΔk + (1 + ĥk)(D(m)ĝ)k = 0, k ∈ K.

Hence,

‖D(m)ĝ‖2 �
m−1∑
n=0

(
m

n

)∥∥∥∥D(m−n)ĥ

1 + ĥ

∥∥∥∥
∞
‖D(n)ĝ‖2

�
m−1∑
n=0

(
m

n

)
Ch,m−nCg,n =: Cg,m. (3.21)

The proof is complete.

The case with general value of λ in the resolvent set of H , and general potential function V (x) is very

similar. We denote by V : X → R the value of the potential function V (x) evaluated on the lattice X .

The Fourier transform of V is denoted by V̂ . Define the matrix in the Fourier space

Ĥkl = ĥkδkl +
1

L
V̂k−l, k, l ∈ K. (3.22)

Here δkl is the Kronecker-δ symbol. Then the mollified pseudo-spectral discretization of (1.1), represented

in the Fourier space becomes

λĝk −
∑
l∈K

Ĥklĝl = 1, k ∈ K. (3.23)

When repeatedly applying D to both sides of (3.23), Lemma 3.7 indicates that all the differences can be

applied to ĝ.



14 Lin L et al. Sci China Math

Lemma 3.7. The following holds,[
D
(∑

l∈K
V̂·−lĝl

)]
k

=
∑
l∈K

V̂k−l(Dĝ)l, k ∈ K.

Proof. We have [
D
(∑

l∈K
V̂·−lĝl

)]
k

=
1

Δk

{∑
l∈K

V̂k−lĝl −
∑
l∈K

V̂k−Δk−lĝl

}
=

1

Δk

{∑
l∈K

V̂k−lĝl −
∑
l∈K

V̂k−lĝl−Δk

}
=
∑
l∈K

V̂k−l(Dĝ)l.

The proof is complete.

Now we prove the decay properties of discretized Green’s functions for the mollified pseudo-spectral

discretization in Theorem 3.8.

Theorem 3.8. Let g ∈ L2(X ) be the inverse Fourier transform of ĝ defined in (3.23). Assume N � 32,

Δx � 1, L � 1, and V ∈ L∞(X ). Assume the discretized Green’s function Ĝ = (λ − Ĥ)−1 has bounded

matrix 2-norm ‖G‖L(L2(K)). Then there exists constants CV,g,m independent of L, kc such that for all

0 � m � M = N
16 ,

‖d(·, 0)mg‖2 � CV,g,m.

Proof. The proof is similar to the proof of Theorem 3.6, and we will only focus on the new argument

for treating general λ and V .

Note that for k ∈ K,

1

L

∑
l∈K

V̂k−lĝl =
(Δx)2

L

∑
l∈K

∑
x,x′∈X

e−ı(k−l)xV (x)e−ılx′
g(x′)

=
(Δx)2N

L

∑
x∈X

e−ıkxV (x)g(x) = (̂V g)k.

Thus, using the Parseval’s identity (3.3), we get∥∥∥∥ 1

L

∑
l∈K

V̂·−lĝl

∥∥∥∥
2

=
√
2π ‖V g‖2 �

√
2π ‖V ‖∞ ‖g‖2 . (3.24)

Let us introduce the notation

(M̂V )kl :=
1

L
V̂k−l,

and simply denote by ĥ the diagonal matrix with diagonal entries being ĥk, k ∈ K. Then the above

estimate shows that the matrix 2-norm ‖M̂V ‖L(L2(K)) is bounded by
√
2π ‖V ‖∞. Notice that

‖Ĝ(1 + ĥ)‖L(L2(K)) = ‖Ĝ(1 + λ− M̂V − λ+ Ĥ)‖L(L2(K))

� 1 + ‖Ĝ‖L(L2(K))(|1 + λ|+
√
2π‖V ‖∞) =: C

̂G, (3.25)

where the last inequality follows from (3.24). Hence, ‖Ĝ(1 + ĥ)‖L(L2(K) is bounded by the constant C
̂G.

From (3.23) and using Theorem 3.6, we have

‖ĝ‖2 � ‖Ĝ(1 + ĥ)‖L(L2(K))‖(1 + ĥ)−1‖2 � C
̂GCg,0 =: CV,g,0.

For m = 1, applying D to both sides of (3.23), and

(Dĥ)kĝk−Δk +
∑
l∈K

[
(λ− ĥk)δkl − 1

L
V̂k−l

]
(Dĝ)l = 0.



Lin L et al. Sci China Math 15

Hence,

(Dĝ)l =
∑
k∈K

(Ĝ)lk(1 + ĥk)
(Dĥ)k

1 + ĥk

ĝk−Δk.

Thus,

‖Dĝ‖2 � ‖G0(1 + ĥ)‖L(L2(K))

∥∥∥∥ Dĥ

1 + ĥ

∥∥∥∥
∞

‖ĝ‖2 � C
̂GCh,1CV,g,0 =: CV,g,1.

For larger m, applying D to both sides of (3.23) for m times, and using Lemma 3.7, we have

m−1∑
n=0

(
m

n

)
(D(m−n)ĥ)k(D(n)ĝ)k−nΔk +

∑
l∈K

(
(λ− ĥk)δkl − 1

L
V̂k−l

)
(D(m)ĝ)l = 0, k ∈ K.

Hence,

(D(m)ĝ)l = −
m−1∑
n=0

(
m

n

)∑
k∈K

Ĝlk(1 + ĥk)
(D(m−n)ĥ)k

1 + ĥk

(D(n)ĝ)k−nΔk. (3.26)

As ‖Ĝ(1 + ĥ)‖L(L2(K)) is bounded, we arrive at the same inequality as in (3.21). Therefore, the theorem

follows from a same induction method as in the proof of Theorem 3.6.

4 Numerical examples

In this section, we demonstrate with numerical experiments the exponential decay estimate rate for the

Green’s function associated with the finite difference (FD) method, and the super-algebraic decay rate

for the Green’s function associate with the mollified pseudo-spectral (mPS) method.

The mPS scheme is constructed as follows. We mollify the pseudo-spectral scheme using the mollifi-

cation function θ̂(k) in (3.8) with σ = 1
8 . One can verify that the scaling with respect to kc is consistent

with the definition of θ̂(k) in (3.7). Figure 2 depicts θ̂(k) and θ̂0(k) for L = 40,Δx = 0.02.

First we consider the case when the Hamiltonian contains only the Laplacian operator, i.e., λ+Δ with

λ = −10. The domain size L = 40 and grid size Δx = 0.02. We denote by G(x, 0) the first column of the

Green’s function (x ∈ X ). Figure 3 shows G(x, 0) for the FD discretization decays exponentially. The

discretized Green’s function obtained from the pseudo-spectral method (PS) only decays exponentially

up to 10−7, and then the decay rate significantly decreases. This transition is related to the consistency

error of the PS scheme, and the transition can occur at higher accuracy level by refining Δx. As discussed

in Section 3, the difficulty for establishing the decay properties of the discretized Green’s function for

the PS method is that the kernel k2 is not smooth in the Fourier space. Hence the norms of high order

differences of k2 cannot be uniformly bounded. In contrast, mPS modifies the Laplacian operator so that

the diagonal of the associated kernel is periodic and smooth. Figure 3 shows that the Green’s function

of mPS indeed decays super-algebraically.

Next, we consider the operator λ + Δ − V (x), where V (x) takes the form of a Gaussian function

which is not band limited, i.e., V (x) = 10e−0.2x2

, and λ = −10. The shape of the potential is shown in

Figure 4(a), and the decay rate for FD, mPS and PS are given in Figure 4(b). Similar to the Laplacian

case, the addition of the potential function does not modify the behavior of the decay rate. The off-

diagonal elements of Green’s function decay exponentially for FD, and super-algebraically for mPS. For

PS, the exponential decay only holds up to the consistency error near 10−7.

Below we systematically measure the dependence of the decay rate with respect to L and Δx. Al-

though the off-diagonal entries of the discretized Green’s function obtained from the mPS discretization

only decay super-algebraically, we expect that the super-algebraic tail is independent of the domain

size L with fixed Δx. We also expect that the decay behavior will become closer to exponential decay

when L is fixed and Δx is decreasing. In order to verify this, consider λ+Δ−V (x) with λ = −10, and we
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Figure 3 Decay properties of the one column of the discretized Green’s function for the operator λ+Δ with λ = −10.

Here finite difference (FD), pseudo-spectral (PS) and mollified pseudo-spectral (mPS) methods are used. Due to periodic

boundary condition only G(x, 0) for half of the interval [0, L/2] is shown. Here L = 40,Δx = 0.02
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Figure 4 (a) Potential function V (x). (b) Decay properties of the one column of the discretized Green’s function for

the operator λ+Δ−V (x) with λ = −10. Here finite difference (FD), pseudo-spectral (PS) and mollified pseudo-spectral

(mPS) methods are used. Due to periodic boundary condition only G(x, 0) for half of the interval [0, L/2] is shown.

Here L = 40, N = 800
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Figure 5 For λ+Δ−V (x) with λ = −10, measure the exponential decay rate γ for (a) systems with fixed Δx = 0.005

and increasing L. (b) systems with fixed L = 40 and increasing kc (and hence decreasing Δx)

measure the exponential decay rate using G(x, 0) evaluated at two points x1 = 1.0 and x2 = 7.0, for the

mPS method and FD method, respectively. We monitor a quantity γ as γ = − logG(x2,0)−logG(x1,0)
x2−x1

. γ

characters the exponential decay rate of G(x, 0), and a small value of γ indicates sub-exponential decay.

Figure 5(a) demonstrates the decay rate for increasingly domain size L from 40 to 400, with fixed grid
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size Δx = 0.02. Similarly Figure 5(b) demonstrates the decay rate for fixed domain length L = 40, but

with decreasing grid size Δx from 0.05 to 0.005. Correspondingly the truncation in the Fourier domain kc
increases from 62.8 to 628.3. We observe that the decay rate of the finite difference scheme is very stable

and depends very weakly on both L and kc. For mPS scheme, when Δx is fixed, the decay rate is lower

compared with the decay rate of the finite difference method. This agrees with the super-algebraic tail

behavior observed in Figures 3 and 4. When L is fixed and Δx is decreasing and correspondingly kc is

increasing, the decay rate improves as kc increases, agreeing with our expectation.

5 Conclusion

In this paper, we demonstrate that properly discretized Green’s functions for Schrödinger type oper-

ators satisfy off-diagonal decay properties. More specifically, for the finite difference discretization,

the off-diagonal elements of the discretized Green’s function decay exponentially. For the mollified

pseudo-spectral discretization, the off-diagonal elements of the discretized Green’s function decay super-

algebraically. In particular, we obtain decay estimates of which the asymptotic decay rate is independent

of the domain size L and of the discretization parameter such as the grid spacing. Our analysis is verified

by numerical experiments for one-dimensional Schrödinger type operators. Generalization of our estimate

to Schrödinger type operators in higher dimensions is straightforward. Our numerical results also indi-

cate that for the widely used pseudo-spectral discretization, due to the non-smoothness of the Laplacian

operator at the boundary of the Fourier grid, the asymptotic decay rate of discretized Green’s function is

only polynomial with respect to the degrees of freedom. It has been demonstrated that decay estimates

of Green’s functions can provide a useful truncation error criterion for designing numerical schemes [2],

and our decay estimates can be useful in correcting such error bound especially for operators with large

spectral radius. We have assumed uniform grid spacing for both finite difference and pseudo-spectral

discretization. This is most suited for smooth and bounded potential V . The case with unbounded po-

tential V with isolated singularity points (e.g., in the context of all-electron calculations) will be studied

in the future.
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