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ADAPTIVELY COMPRESSED POLARIZABILITY OPERATOR FOR
ACCELERATING LARGE SCALE AB INITIO PHONON

CALCULATIONS∗
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Abstract. Phonon calculations based on first principle electronic structure theory, such as the
Kohn–Sham density functional theory, have wide applications in physics, chemistry, and material
science. The computational cost of first principle phonon calculations typically scales steeply as
O(N4

e ), where Ne is the number of electrons in the system. In this work, we develop a new method
for reducing the computational complexity of computing the full dynamical matrix, and hence the
phonon spectrum, to O(N3

e ). The key concept for achieving this is to compress the polarizability
operator adaptively with respect to the perturbation of the potential due to the change of the atomic
configuration. Such an adaptively compressed polarizability operator allows accurate computation
of the phonon spectrum. The reduction of complexity only weakly depends on the size of the band
gap, and our method is applicable to insulators as well as semiconductors with small band gaps.
We demonstrate the effectiveness of our method using one-dimensional and two-dimensional model
problems.
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1. Introduction. Kohn–Sham density functional theory (KSDFT) [24, 27] is the
most widely used electronic structure theory for molecules and systems in condensed
phase. In principle, KSDFT provides an exact description of ground state properties
of a many-body quantum system, such as electron density, energy, and atomic forces.
Once the electronic ground state is obtained, many physical and chemical properties of
the system can be described by studying the response of the quantum system under
small perturbation. The theory for describing such response behavior is called the
density functional perturbation theory (DFPT) [4, 19, 3].

One important application of DFPT is the description of lattice vibrations. In
the Born–Oppenheimer approximation, lattice vibrations can be described by the dy-
namical matrix, which is related to the Hessian matrix of the ground state energy
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30 LIN LIN, ZE XU, AND LEXING YING

with respect to the atomic positions. The eigenfunctions of the dynamical matrix
give the phonon modes, and the eigenvalues give the phonon frequencies. A large
variety of physical properties of solids depends on such phonon calculations. A few
examples include infrared spectroscopy, elastic neutron scattering, specific heat, heat
conduction, and electron-phonon interaction related behaviors such as superconduc-
tivity [19, 3]. Furthermore, the computational procedure of phonon calculations are
largely transferable to the calculation of other types of response behavior, such as
response to homogeneous electric fields, piezoelectric properties, magnons, and many-
body perturbation theory for the description of electrons at excited states such as the
GW theory [23, 35].

The term “phonon calculation” usually describes the calculation of vibrational
properties of condensed matter systems. In this paper, we slightly abuse this term to
refer to calculations of vibration properties of general systems, including condensed
matter systems as well as isolated molecule clusters, since such calculations share the
same mathematical structure. Mathematically, the procedure for phonon calculations
can be straightforward. When atoms are at their equilibrium positions, the atomic
forces (i.e., first order derivatives of the energy with respect to the atomic position)
are zero for all atoms. To compute the Hessian matrix, one can move one atom
at a time slightly away from its equilibrium position and compute the corresponding
atomic forces. This amounts to the finite difference (FD) approximation of the Hessian
matrix and is referred to as the “frozen phonon” [49, 5] approach in physics. The FD
approach is simple to implement and can be used to obtain a phonon spectrum quickly
for systems of small sizes. However, FD requires in total d × NA ∼ O(Ne) KSDFT
calculations, where d is the spatial dimension (usually d = 3), and NA is the number of
atoms. The computational complexity of a single KSDFT calculation typically scales
as O(N3

e ), where Ne is the number of electrons in the system. Since NA ∼ O(Ne),
the total cost of the FD approximation is O(N4

e ). This is prohibitively expensive for
systems of large sizes. Furthermore, the accuracy of the FD approximation is limited
by the size of the perturbation, which cannot be too small due to the numerical noise
in the evaluation of the atomic forces in KSDFT calculations (usually the accuracy
of forces is set to be 10−4 ∼ 10−3 Hartree/Bohr). Such numerical noise also makes
it difficult to compute nonlinear response properties, which can require even higher
order derivatives of the energy.

DFPT, on the other hand, can be viewed as the “proper” way for computing
derivative quantities in the context of KSDFT. The central quantity in DFPT is the
polarizability operator, which characterizes the linear response of the electron density
with respect to the perturbation of the external potential. More specifically, phonon
calculations require applying the polarizability operator to d×NA perturbation vec-
tors induced by the change of the atomic configuration. The polarizability operator
can be obtained by solving a Dyson equation iteratively [3], and each iteration step
requires the solutions to O(N2

e ) Sternheimer equations. In general the complexity
of DFPT is still O(N4

e ). So the main advantage of DFPT is that it gives accurate
linear response properties. Furthermore, the same framework can be used to com-
pute nonlinear response properties [20, 18, 3]. The mathematical aspect of DFPT for
reduced Hartree–Fock model systems was recently been analyzed [10]. It is also possi-
ble to reduce the computational complexity of phonon calculations by “linear scaling
methods” [17, 7]. Such methods can be successful in reducing the computational cost
for large-sized systems with substantial band gaps, but this can be challenging for
medium-sized systems with relatively small band gaps.

The main computational bottleneck of DFPT is the solution of the O(N2
e ) Stern-
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ADAPTIVELY COMPRESSED POLARIZABILITY OPERATOR 31

heimer equations [3]. KSDFT can be defined as a nonlinear eigenvalue problem with
O(Ne) eigenfunctions. Each of the O(N2

e ) equations in DFPT represents the response
of an eigenfunction to a different external perturbation. Hence at first sight it is not
possible to reduce the number of equations. However, as Ne becomes large, there will
be asymptotically more equations to solve than the size of the matrix. Hence there is
potential room to obtain a set of “compressed perturbations,” which leads to methods
for solving DFPT with lower complexity.

At this point it might be enticing to compress the O(N2
e ) equations using standard

compression schemes such as singular value decomposition (SVD). However, there is
some immediate difficulty associated with SVD-type compression schemes: The ma-
trix to be compressed is of size O(N2

e ) × O(Ne) and of approximate rank O(Ne).
The associated cost of the SVD type of compression is O(N4

e ), and hence there are
no savings in asymptotic complexity. Furthermore, the O(N2

e ) equations need to be
solved self-consistently according to the Dyson equation. Hence the initially com-
pressed vectors might not be applicable anymore as the iteration proceeds towards
the converged solution. This leads to inaccurate phonon calculations.

In this paper, we develop a new method called the adaptively compressed polariz-
ability operator (ACP) to overcome the above difficulties. ACP reduces the complex-
ity for applying the polarizability operator to O(Ne) vectors as follows. (1) ACP com-
presses the O(N2

e ) right-hand side vectors of the Sternheimer equations into O(Ne)
vectors, using a recently developed interpolative separable density fitting method [32].
Together with a Chebyshev interpolation procedure to disentangle the energy depen-
dence from the right-hand side vectors, ACP reduces the number of equations from
O(N2

e ) to only O(Ne). (2) ACP reformulates the Dyson equation into an equivalent
fixed point problem, where the compression of the Sternheimer equations depends
adaptively on the unknown solutions. Using such adaptive compression procedure,
we demonstrate that the self-consistent solution to the Dyson equation no longer
hinders the accuracy of the compressed polarizability operator. Such an adaptive
compression strategy is similar in spirit to the recently developed adaptively com-
pressed exchange operator (ACE) for accelerating KSDFT calculations with hybrid
exchange-correlation functionals [29]. We demonstrate that the overall computational
complexity for phonon calculations can be reduced to O(N3

e ), and the cost depends
only weakly on the band gap of the system. Hence the method can be applied to both
insulators and semiconductors with small gaps. To the extent of our knowledge, this is
the first result of this type in literature. We demonstrate the numerical performance
of the ACP formulation for accelerating phonon calculations using model systems for
one-dimensional (1D) and two-dimensional (2D) systems, both for periodic lattices
and for systems with defects and random perturbations. Our numerical results con-
firm the low complexity of the ACP formulation for computing the full dynamical
matrix and hence the phonon spectrum.

The rest of the paper is organized as follows. Section 2 introduces the basic
formulation of KSDFT and DFPT. Section 3 describes the ACP formulation. Nu-
merical results are presented in section 4, followed by the conclusion and discussion
in section 5.

2. Preliminary. For completeness we first provide a brief introduction to the
Kohn–Sham density functional theory (KSDFT) and the density functional perturba-
tion theory (DFPT) in the context of phonon calculations. To simplify our discussion,
we neglect the spin degeneracy, temperature dependence, as well as the usage of non-
local pseudopotential. We assume all orbitals {ψi(r)} are real. The spatial dimension
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32 LIN LIN, ZE XU, AND LEXING YING

d = 3 is assumed in the treatment of, for example, Coulomb interaction unless other-
wise specified. We remark that such simplified treatment does not reduce the core
difficulty of the problem.

2.1. Kohn–Sham density functional theory. Consider a system consisting
of NA nuclei and Ne electrons. In the Born–Oppenheimer approximation, for each
set of nuclear positions {RI}NAI=1, the electrons are relaxed to their ground state.

The ground state total energy is denoted by Etot({RI}NAI=1) and can be computed in
KSDFT [24, 27] according to the minimization of the following Kohn–Sham energy
functional:

EKS({ψi}; {RI}) =
1

2

Ne∑
i=1

∫
|∇ψi(r)|2 dr +

∫
Vion(r; {RI})ρ(r) dr

+
1

2

∫∫
vc(r, r

′)ρ(r)ρ(r′) drdr′ + Exc[ρ] + EII({RI}).

(2.1)

Here the minimization is with respect to the Kohn–Sham orbitals {ψi}Nei=1 satisfying
the orthonormality condition∫

ψ∗i (r)ψj(r) dr = δij , i, j = 1, . . . , Ne.

In (2.1), ρ(r) =
∑Ne
i=1 |ψi(r)|2 defines the electron density. In the discussion below we

will omit the range of indices I, i unless otherwise specified. In (2.1), vc(r, r
′) = 1

|r−r′|
defines the kernel for Coulomb interaction in R3. Vion is a local potential charac-
terizing the electron-ion interaction in all-electron calculations and is independent of
the electronic states {ψi}. More specifically, Vion is the summation of local potentials
from each atom I:

Vion(r; {RI}) =
∑
I

VI(r−RI).(2.2)

In a pseudopotential approximation, VI(r−RI) is defined as

(2.3) VI(r−RI) :=

∫
vc(r, r

′)mI(r
′ −RI) dr′,

where mI is a localized function in the real space and is called a pseudocharge [33, 37].
The normalization condition for each pseudocharge is

∫
mI(r) dr = −ZI , and ZI is

the atomic charge for the Ith atom. The total pseudocharge is defined as m(r) =∑
I mI(r−RI). We assume the system is charge neutral, i.e.,∫

m(r) dr = −
∑
I

ZI = −Ne.

Exc is the exchange-correlation energy, and here we assume semilocal functionals such
as local density approximation (LDA) [11, 39] and generalized gradient approximation
(GGA) functionals [6, 28, 38] are used. The last term in (2.1) is the ion-ion Coulomb
interaction energy. For isolated clusters in three dimensions,

(2.4) EII({RI}) =
1

2

∑
I 6=J

ZIZJ
|RI −RJ |

.
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ADAPTIVELY COMPRESSED POLARIZABILITY OPERATOR 33

We also note that for extended systems, modeled as infinite periodic structures, all
the terms with Coulomb kernel require special treatment in order to avoid divergence
due to the long-range 1/r nature of the Coulomb interaction [33].

The Euler–Lagrange equation associated with the Kohn–Sham energy functional
gives rise to the Kohn–Sham equations as

H[ρ]ψi =

(
−1

2
∆ + V[ρ]

)
ψi = εiψi,(2.5) ∫

ψ∗i (r)ψj(r) dr = δij , ρ(r) =

Ne∑
i=1

|ψi(r)|2 .(2.6)

Here the eigenvalues {εi} are ordered nondecreasingly. ψ1, . . . , ψNe are called the
occupied orbitals, while ψNe+1, . . . are called the unoccupied orbitals. ψNe is often
referred to as the highest occupied molecular orbital (HOMO), and ψNe+1 the lowest
unoccupied molecular orbital (LUMO). The difference of the corresponding eigen-
values εg = εNe+1 − εNe defines the HOMO-LUMO gap. Here we are interested in
insulating and semiconducting systems with positive energy gap εg.

For a given electron density ρ, the effective potential V[ρ] is

V[ρ](r) = Vion(r; {RI}) +

∫
vc(r, r

′)ρ(r′) dr′ + Vxc[ρ](r)

=

∫
vc(r, r

′)(ρ(r′) +m(r′)) dr′ + Vxc[ρ](r).

(2.7)

Here Vxc[ρ](r) = δExc

δρ(r) is the exchange-correlation potential, which is the functional

derivative of the exchange-correlation energy with respect to the electron density.
The Kohn–Sham Hamiltonian depends nonlinearly on the electron density ρ, and
the electron density should be solved self-consistently. When the Kohn–Sham energy
functional EKS achieves its minimum, the self-consistency of the electron density is
simultaneously achieved. Then the total energy can be equivalently computed as [33]

Etot =

Ne∑
i=1

εi −
1

2

∫∫
vc(r, r

′)ρ(r)ρ(r′) dr dr′

−
∫
Vxc[ρ](r)ρ(r) dr + Exc[ρ] + EII({RI}).

(2.8)

Here Eband =
∑Ne
i=1 εi is referred to as the band energy. Using the Hellmann–Feynman

theorem [33], the atomic force can be computed as

FI =− ∂Etot({RI})
∂RI

= −
∫
∂Vion
∂RI

(r; {RI})ρ(r) dr− ∂EII({RI})
∂RI

=−
∫

∂VI
∂RI

(r−RI)ρ(r) dr− ∂EII({RI})
∂RI

.

(2.9)

The atomic force allows the performance of structural relaxation of the atomic con-
figuration by minimizing the total energy Etot with respect to the atomic positions
{RI}. When the atoms are at their equilibrium positions, all atomic forces should
be 0.
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34 LIN LIN, ZE XU, AND LEXING YING

2.2. Density functional perturbation theory. In DFPT, we assume that
the self-consistent ground state electron density ρ has been computed. In this paper,
we focus on phonon calculations using DFPT. Assume the system deviates from its
equilibrium position {RI} by some small magnitude; then the changes of the total
energy are dominated by the Hessian matrix with respect to the atomic positions.
The dynamical matrix D consists of d× d blocks in the form

DI,J =
1√

MIMJ

∂2Etot({RI})
∂RI∂RJ

,

where MI is the mass of the Ith nuclei. The dimension of the dynamical matrix is
d × NA. The equilibrium atomic configuration is at least at the local minimum of
the total energy, and all the eigenvalues of D are real and nonnegative. Hence the
eigendecomposition of D is

Duk = ω2
kuk,

where uk is called the kth phonon mode, and ωk is called the kth phonon frequency.
The phonon spectrum is defined as the distribution of the eigenvalues {ωk}, i.e.,

(2.10) %D(ω) =
1

dNA

∑
k

δ(ω − ωk).

Here δ is the Dirac-δ distribution. %D is also referred to as the density of states of
D [33, 30].

In order to compute the Hessian matrix, we obtain from (2.9) that

∂2Etot({RI})
∂RI∂RJ

=

∫
∂VI
∂RI

(r−RI)
δρ(r)

δRJ
dr + δI,J

∫
ρ(r)

∂2VI
∂R2

I

(r−RI) dr +
∂2EII({RI})
∂RI∂RJ

.

(2.11)

In (2.11), the second term can be readily computed with numerical integration,
and the third term involves only ion-ion interaction that is independent of the elec-
tronic states. Hence the first term is the most challenging one due to the response of
the electron density with respect to the perturbation of atomic positions. Applying
the chain rule, we have

(2.12)

∫
∂VI
∂RI

(r−RI)
δρ(r)

δRJ
dr =

∫∫
∂VI
∂RI

(r−RI)
δρ(r)

δVion(r′)

∂VJ
∂RJ

(r′ −RJ) dr dr′.

Here the Fréchet derivative χ(r, r′) = δρ(r)
δVion(r′)

is referred to as the reducible polar-

izability operator [35], which characterizes the self-consistent linear response of the
electron density at r with respect to an external perturbation of Vion at r′. However,
since the Kohn–Sham equations (2.5) are a set of nonlinear equations with respect to
ρ, the self-consistent response is still difficult to compute. Instead, the computation
of χ must be obtained through a simpler quantity,

χ0(r, r′) =
δρ(r)

δV(r′)
,

which is called the irreducible polarizability operator (a.k.a., the independent particle
polarizability operator) [35].
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For simplicity in the discussion below, we will not distinguish the continuous
and discretized representations of various quantities. In the case when a discretized
representation is needed, we assume that the computational domain is uniformly

discretized into a number of grid points {rα}
Ng
α=1. We may refer to quantities such

as U(r) ≡ [u1(r), . . . , uNe(r)] as a matrix of dimension Ng × Ne. In particular, all
indices in the subscript are interpreted as the column indices of the matrix, and row
indices are given in parentheses if necessary. For example, ui refers to the ith column
of U , and ui(rα) refers to the matrix element with row index rα. We denote by Mij a
vector with a stacked column index ij, which refers to the (i+(j−1)N1)th column of
the matrix M . Here the index i ranges from 1 to N1, and j from 1 to N2, respectively.
We also employ the following linear algebra notation. The matrix-vector product Av
should be interpreted as

(Av)(r) =

∫
A(r, r′)v(r′) dr′.

Similarly the matrix-matrix product AB should be interpreted as

(AB)(r, r′) =

∫
A(r, r′′)B(r′′, r′) dr′′.

The Hadamard product of two vectors u� v should be interpreted as

(u� v)(r) = u(r)v(r).

Using the chain rule and the definition of V in (2.7), we have

χ =
δρ

δV

(
I +

δV
δρ

δρ

δVion

)
= χ0(I + vhxcχ),(2.13)

and thus

χ = (I − χ0vhxc)
−1
χ0 := ε−1χ0.(2.14)

Here I is the identity operator, and

vhxc =
δV
δρ

= vc +
δVxc
δρ

:= vc + fxc.

Here fxc is called the exchange-correlation kernel and is a diagonal matrix in the LDA
and GGA formulations of the exchange-correlation functionals. Equation (2.14) also
defines the operator ε = I − χ0vhxc, which is called the dielectric operator. Using
linear algebra notation, (2.12) requires the computation of gTI,aχgJ,b. Here gI,a =
∂VI
∂RI ,a

(r − RI) is the derivative of local pseudopotential VI with respect to atomic

position RI along the ath direction (a = 1, . . . , d). Hence for phonon calculations, we
need to compute χg for d×NA vectors in the set of {gI,a}. In the discussion below, we
may simply use g to reflect any vector from the set {gI,a} unless otherwise specified.

In order to compute u = χg, we apply both sides of (2.13) to g and obtain

(2.15) u = χ0g + χ0vhxcu.

Equation (2.15) is a fixed point problem for u and is often referred to as the Dyson
equation in the physics literature. The simplest way to solve (2.15) is to use a fixed
point iteration

(2.16) uk+1 = χ0g + χ0vhxcu
k,
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where uk is the approximate solution to u at the kth iteration. The fixed point iter-
ation (2.16) corresponds to the Neumann expansion of the matrix inverse in (2.14),
and hence only converges when the spectral radius of χ0vhxc is small enough (usually
smaller than 1). In order to improve the convergence behavior, more advanced nu-
merical schemes such as Anderson mixing [2] can be used, similarly to the situation
in the self-consistent field iteration for KSDFT calculations. We refer readers to [31]
for more details on solving fixed point problems in the context of electronic structure
calculations.

In order to solve the Dyson equation (2.15), we need to apply χ0 to vectors of the
form g or vhxcu. For systems with a finite band gap at the zero temperature, χ0(r, r′)
can be computed using the Adler–Wiser formula [1, 47],

χ0(r, r′) = 2

Ne∑
i=1

∞∑
j=Ne+1

ψi(r)ψj(r)ψi(r
′)ψj(r

′)

εi − εj
,(2.17)

where (εi, ψi), i = 1, 2, . . . , are the eigenpairs in (2.5). Note that χ0 is a Hermitian
operator, and is negative semidefinite since εi < εj . In linear algebra notation, χ0

can be written as

χ0 = 2

Ne∑
i=1

∞∑
j=Ne+1

1

εi − εj
(ψi � ψj)(ψi � ψj)T .

However, the Adler–Wiser formula in its original form (2.17) can be very ex-
pensive, since it requires in principle all the unoccupied orbitals {ψj}∞j=Ne+1. These
unoccupied orbitals are in general not available in KSDFT calculations and are costly
to compute and even to store in memory. However, from the Adler–Wiser formula,
we can compute the multiplication of χ0 with any given vector g, without comput-
ing nonoccupied orbitals, by solving the so-called Sternheimer equation [19]. This
strategy has also been employed by several recent works related to the polarizability
operator [45, 16, 34] in the context of the many-body perturbation theory. Introducing
the projection operator to the unoccupied space

Q = I −
Ne∑
i=1

ψiψ
T
i ,

we can then compute χ0g as

χ0g = 2

Ne∑
i=1

∞∑
j=Ne+1

1

εi − εj
(ψi � ψj)(ψj � ψi)T g

= 2

Ne∑
i=1

ψi �

 ∞∑
j=Ne+1

ψj(εi − εj)−1ψTj (ψi � g)


= 2

Ne∑
i=1

ψi �
[
Q(εi −H)−1Q(ψi � g)

]
.

(2.18)

Here we have used that (εj , ψj) is an eigenpair of the Hamiltonian operator H. In
principle, the last equation of (2.18) requires only one Q operator to be present.
However, we choose the form Q(εi −H)−1Q to emphasize that this operator is sym-
metric. Equation (2.18) provides a practical numerical scheme for evaluating χ0g. Let
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ζi := Q(εi −H)−1Q(ψi � g). The matrix inverse in (2.18) can be avoided by solving
the Sternheimer equation [35]

Q(εi −H)Qζi = Q(ψi � g),

using standard direct or iterative linear solvers. The choice of the solver can depend
on practical matters such as the discretization scheme and the availability of pre-
conditioners. In practice, for planewave discretization, we find that the use of the
minimal residual method (MINRES) [36] gives the best numerical performance. Al-
gorithm 1 summarizes the algorithm for computing χ0g, without explicitly computing
the unoccupied orbitals.

Algorithm 1 Compute χ0g.

Input: Vector g, occupied orbitals {ψi}Nei=1 and eigenvalues {εi}Nei=1.
Output: u = χ0g.
1. Initialize u← 0.
2. For i = 1, . . . , Ne

(a) Solve the Sternheimer equation Q(εi −H)Qζi = Q(ψi � g);
(b) u ← u+ 2ψi � ζi;

end for

The use of Algorithm 1 together with a proper method for solving the Dyson
equation (2.15) gives rise to the basic formulation for phonon calculations in DFPT.
This method will be simply referred to as DFPT for the discussion below. Assuming
Dyson equations always converge in a constant number of iterations that is inde-
pendent of the system size Ne, then the main cost of DFPT is associated with the
application of χ0 to O(Ne) vectors. Each application requires solving Ne equations,
and hence there are O(N2

e ) equations to solve. The computational cost of applying
the projection operator Q to a vector is O(N2

e ), and hence the overall complexity is
O(N4

e ) [3]. Compared to the “frozen phonon” approach discussed in section 1, DFPT
provides an accurate description of the linear response properties of materials.

3. Adaptively compressed polarizability operator. In this section, we de-
velop a new method for reducing the computational complexity of DFPT from O(N4

e )
to O(N3

e ). The reduction of the computational complexity is achieved by means of
reducing the O(N2

e ) equations in DFPT to O(Ne) equations with systematic control
of the accuracy. In particular, our method does not employ the “nearsightedness”
property of electrons for insulating systems with substantial band gaps as in lin-
ear scaling methods [26]. Hence our method can be applied to insulators as well as
semiconductors with small band gaps. In section 2, we have reduced the problem of
computing the dynamic matrix to the computation of χgI,a, where {gI,a} is a set of
fixed vectors given by the derivative of the local pseudopotential with respect to the
atomic positions. Let us stack the indices I, a into a single index j and denote by

G := [g1, . . . , gj , . . . , gd×NA ](3.1)

the matrix collecting all these vectors. More generally, G can be any fixed matrix
with O(Ne) columns as required in different applications of DFPT. Then our method
consists of two main steps: (1) Find a compressed representation of χ0, which allows
the computation of χ0G by solving only O(Ne) linear equations. (2) Update the com-
pressed representation of χ0, which allows the accurate computation of χG without
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38 LIN LIN, ZE XU, AND LEXING YING

significant increase of the computational cost. In particular, step 2 requires the com-
pression strategy of χ0 to be adaptive to the solution of the Dyson equation (2.15).
Hence we refer to our representation of χ0 as the adaptively compressed polarizabil-
ity operator (ACP). Steps 1 and 2 of the ACP formulation are given in sections 3.1
and 3.2, respectively.

3.1. Compression of χ0. Consider first the computation of χ0G as required
in the initial step in (2.15). In general, the singular values of χ0 decay slowly, and a
forcefully applied low rank decomposition of χ0, such as those based on SVD, will lead
to inaccurate results. Nonetheless, it is possible to find a compressed representation
of χ0 when we only need to evaluate χ0G for a fixed matrix G.

According to Algorithm 1, computing χ0G involves solving the following O(N2
e )

Sternheimer equations:

(3.2) Q(εi −H)Qζij = Q(ψi � gj), i = 1, . . . , Ne, j = 1, . . . , d×NA.

As Ne becomes large, asymptotically there can be many more equations to solve than
the dimension of the matrix Ng ∼ O(Ne), and hence it should be possible to compress
the redundant information in the right-hand side vectors. In fact this observation
has been used in various contexts in computational chemistry for compressing the
Hadamard product of occupied and unoccupied orbitals, which is called “density
fitting” or “resolution of identity” techniques to compress O(N2

e ) vectors into O(Ne)
vectors with a relatively small preconstant [46, 40].

It should be noted that density fitting techniques alone do not reduce the number
of equations to solve. The reason is that equations (3.2) have the dependence on the
shift εi on the left-hand side. Hence even if the number of right-hand side vectors is
reduced to O(Ne), multiplied with the Ne shifts, we still have O(N2

e ) equations to
solve! Therefore, in order to reduce the complexity for computing χ0G, we must dis-
entangle the right-hand side vectors and the shifts. Note that all {εi} are eigenvalues
corresponding to occupied orbitals, and are typically contained in a relatively small
interval (in the order of eV), at least in the pseudopotential framework.

More specifically, consider the parameterized equation

(3.3) Q(ε−H)Qζ = ξ,

where ξ is any vector in the range of Q. Since ε ∈ I ≡ [ε1, εNe ], we can systematically
obtain the solution to the parameterized equation by evaluating on a few sampled
points in I. In this work, we choose the Chebyshev nodes {ε̃c}Ncc=1, which are obtained
by a linear map of the Chebyshev nodes in the reference interval [−1, 1] to I, i.e.,

ε̃c =
ε1 + εNe

2
+
ε1 − εNe

2
cos θc, θc =

π(c− 1
2 )

Nc
, c = 1, . . . , Nc.

Typically it is sufficient to choose the number of Chebyshev nodes Nc to be 10 ∼ 40.
Denote by ζ̃c the solution to (3.3) corresponding to ε = ε̃c, c = 1, . . . , Nc; then any
solution ζ with ε ∈ I can be obtained by a Lagrange interpolation procedure as

(3.4) ζ =

Nc∑
c=1

ζ̃c
∏
c′ 6=c

ε− ε̃c′
ε̃c − ε̃c′

.

Asymptotically, the number of Chebyshev points needed to reach a given error
tolerance is O(

√
εg/|I|), where |I| is the width of the interval I. To understand
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ADAPTIVELY COMPRESSED POLARIZABILITY OPERATOR 39

this, let us consider the error of the Chebyshev interpolation for the following scalar
function:

(3.5) f(z) =
|I|

(z − 1) |I|2 − εg
, z ∈ [−1, 1].

Note that

f(−1) =
|I|

−|I| − εg
=

|I|
ε1 − εNe+1

, f(1) =
|I|
−εg

=
|I|

εNe − εNe+1
.

Therefore f(z) reflects the worst-case behavior of the operator Q(ε − H)−1Q. It is
known that (see, e.g., [43]) the L∞ error of Chebyshev interpolation with Nc points
on the interval [−1, 1], denoted by ENc , should satisfy

ENc ≤
2M

(α− 1)αNc
.

Here the function f(z) is analytic in the region bounded by the ellipse with foci
±1 and major and minor semiaxis lengths summing to α > 1, and |f(z)| < M is
bounded in this region. For the specific function f(z) in (3.5) with the presence of
the band gap εg, the major semiaxis could be chosen to be 1 + εg/|I|, which means

that α ≈ 1 +
√

2εg/|I| + εg/|I| ≈ 1 +
√

2εg/|I|. Within this ellipse, we obtain the
bound M = 2|I|/εg. This gives the error bound of Chebyshev interpolation as

(3.6) ENc ≤ C
(
I
εg

)3/2

e−Nc
√

2εg/|I|.

When εg/|I| is sufficiently small, C is a constant that is independent of εg/|I|. There-

fore Nc should scale as
√
|I|/εg log(|I|/εg). Our numerical results in section 4 indicate

that Nc = 10 ∼ 30 often yields sufficiently accurate results. We also remark that if
εg/|I| is very small, one can further reduce the number of interpolation points using
contour integral techniques [14], where Nc = O(log(|I|/εg)) is sufficient. However, we
observe that the preconstant of such a technique tends to be larger than that of the
Chebyshev interpolation. Hence we choose to present the method using Chebyshev
interpolation in this paper.

Using Chebyshev interpolation (3.4), we need to solve (3.2) with εi replaced by
ε̃c. At first sight, the number of equations does not decrease but actually increases
by a factor of Nc compared to the original formulation (3.2). However, Chebyshev
interpolation disentangles the index i that appears both in the shift and on the right-
hand side. Since Nc is a constant that is independent of the system size, if we can
find a compressed representation of the right-hand side vectors using O(Ne) vectors,
we reduce to O(Ne) the overall number of equations we need to solve.

Let us denote by M the collection of right-hand side vectors in (3.2) without the
Q factor. More specifically,

Mij = ψi � gj , or Mij(r) = ψi(r)gj(r).

Here we have used ij as a stacked column index for the matrix M . The dimension of
M is Ng × O(N2

e ). Typically, the computational complexity for the compression for
such a dense matrix M with approximate rank O(Ne) is O(N4

e ), even with the help
of the recently developed randomized algorithms (see [22] for a review). Nonetheless,
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40 LIN LIN, ZE XU, AND LEXING YING

note that for a fixed row index rα, the row vector given by {Mij(rα)}i=Ne,j=d×NAi,j=1

is the Kronecker product between the row vector given by {gj(rα)}d×NAj=1 and that

given by {ψi(rα)}Nei=1. As will be seen below, this structure allows the computational
complexity of the compression of M to be reduced to O(N3

e ).

Fig. 1. Interpolative decomposition of Mij(r).

To this end, we seek the following interpolative decomposition type of compres-
sion [13] for the matrix M , i.e.,

(3.7) Mij(r) ≈
Nµ∑
µ=1

ξµ(r)Mij(rµ) ≡
Nµ∑
µ=1

ξµ(r)ψi(rµ)gj(rµ).

Here {rµ}
Nµ
µ=1 denotes a collection of selected row indices (see Figure 1 for an illustra-

tion). Mathematically, the meaning of the indices {rµ} is clear: (3.7) simply states
that all rows M:(r) can be approximately expressed as the linear combination of the
selected rows {M:(rµ)}. However, we are not aware of any direct physical interpreta-
tion of such selected indices. Since Ng ∼ Ne, as Ne increases, the column dimension of
M (which is O(N2

e )) can be larger than its row dimension (which is Ng), and we can
expect that the vectors {ψi � gj} are approximately linearly dependent. Such an ob-
servation has been observed in the electronic structure community [46, 41, 15, 44, 40],
and the numerical rank of the matrix M after truncation can be only O(Ne) with a
relatively small preconstant. In the context of the interpolative decomposition, our
numerical results also indicate that it is sufficient to choose Nµ ∼ O(Ne), and the
preconstant is small.

One possible way of finding interpolative decomposition is to use a pivoted QR
factorization [12, 21]. However, the cost of the pivoted QR factorization applied to the
matrix M is O(NgN

2
eNµ) ∼ O(N4

e ) and is therefore not desirable. The interpolative
separable density fitting method [32] employs a two-step procedure to reduce this
cost (see Figure 2 for an illustration). The first step is to use a fast preprocessing
procedure, such as a subsampled random Fourier transform (SRFT) [48], to transform

the matrix M into a matrix M̃ of smaller dimension Ng × rNe, with r a relatively
small constant so that rNe is slightly larger than Nµ. The second step is to apply the

pivoted QR decomposition to M̃,

(3.8) M̃T Π̃ = Q̃R̃,

where Π̃ is a permutation matrix and encodes the choice of the row indices {rµ} from

M̃ . The interpolation vectors {ξµ} in (3.7) can also be computed from this pivoted
QR decomposition. It should be noted that the preprocessing procedure does not
affect the quality of the interpolative decomposition, while the cost of the pivoted
QR factorization in (3.8) is now reduced to O(NgN

2
µ) ∼ O(N3

e ). We summarize the
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Fig. 2. The two-step procedure of the interpolative separable density fitting method.

Algorithm 2 Interpolative decomposition for M using an interpolative separable
density fitting method [32].

Input: Matrix M . Threshold tolerance ε.
Output: Selected row indices {rµ} and interpolation vectors {ξµ}.
1. Subsampled random Fourier transform of M :

(a) Compute for ν = 1, . . . , Ne × d×NA the discrete Fourier transform

M̂ν(r) =

Ne×d×NA∑
I=1

e−2πıIν/(Ne×d×NA)ηIMI(r),

where ηI is a random complex number with unit modulus for each I.
(b) Choose a submatrix M̃ of matrix M̂ by randomly choosing rNe columns. In practice,

r = 8 and r = 16 are used in our implementation for 1D and 2D numerical examples,
respectively.

2. Compute the pivoted QR decomposition of the rNe × Ng matrix M̃T : M̃T Π̃ = Q̃R̃,
where the absolute values of the diagonal entries of R̃ are ordered nonincreasingly.

3. Determine the number of selected columns Nµ, such that |R̃Nµ+1,Nµ+1| < ε|R̃1,1| ≤
|R̃Nµ,Nµ |. Form {rµ}, µ = 1, . . . , Nµ, such that the rµ column of M̃T corresponds to the

µth column of M̃T Π̃.
4. Denote by R̃1:Nµ,1:Nµ the submatrix of R̃ consisting of its first Nµ × Nµ entries, and

R̃1:Nµ,: the submatrix consisting of the first Nµ rows of R̃. Compute

ΞT = R̃−1
1:Nµ,1:Nµ

R̃1:Nµ,:Π̃
−1.

Then the µth column of the Ng ×Nµ matrix Ξ gives the interpolation vector ξµ.

procedure for compressing M in Algorithm 2 and refer readers to [32] for more details
of the algorithm.

We remark that in Algorithm 2, step 1(a), it is possible to avoid the explicit
construction of the matrix M . Instead of performing SRFT on the entire matrix M ,
we could apply SRFT only to the matrix G and select r columns as a matrix G̃. Then
for a fixed row index rα, the Kronecker product between the rows of subsampled
matrix G̃, {g̃i(rα)}ri=1, and {ψi(rα)}Nei=1 gives one row for M̃ . In practice we find
that this heuristic procedure also works well for compressing the matrix M in phonon
calculations.

Once the compressed representation (3.7) is obtained, we solve the following set
of modified Sternheimer equations:

(3.9) Q(ε̃c −H)Qζ̃cµ = Qξµ, c = 1, . . . , Nc, µ = 1, . . . , Nµ.

Here cµ is the stacked column index for ζ̃. The number of equations is hence reduced
to NcNµ ∼ O(Ne). Using (3.4), we construct the quantity W =

[
W1, . . . ,WNµ

]
. Each
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column of W is defined by

(3.10) Wµ = 2

Ne∑
i=1

ψi �

 Nc∑
c=1

ζ̃cµ
∏
c′ 6=c

εi − ε̃c′
ε̃c − ε̃c′

ψi(rµ).

Combining (3.10) with (2.18), we directly obtain χ0gj as

(3.11) χ0gj ≈
Nµ∑
µ=1

Wµgj(rµ).

It should be noted that in (3.11), we have avoided the explicit reconstruction of the
solution vectors ζij as in equations (3.2), of which the computational cost is again
O(N4

e ).
Formally, (3.11) can further be simplified by defining a matrix Π with Nµ columns,

which consists of selected columns of a permutation matrix, i.e., Π = Π̃:,1:Nµ as the
first Nµ columns of the permutation matrix obtained from pivoted QR decomposition.
More specifically, Πµ = erµ and erµ is a unit vector with only one nonzero entry at
rµ such that eTrµgj = gj(rµ). Then

(3.12) χ0gj ≈WΠT gj := χ̃0gj .

Note that the compressed polarizability operator χ̃0 = WΠT is formally independent
of the right-hand side vector {gj}, and the rank of χ̃0 is only Nµ, while the singular
values of χ0 have a much slower decay rate. This is because χ̃0 only agrees with χ0

when applied to vectors gj . In other words, the difference between χ̃0 and χ0 is not
controlled in the space orthogonal to that spanned by G. Algorithm 3 summarizes
the algorithm for computing the compressed polarizability operator χ̃0.

Algorithm 3 Computing compressed polarizability operator χ̃0.

Input: Vectors {gj}. Hamiltonian matrix H.
Eigenpairs corresponding to occupied orbitals {ψi, εi}

Output: χ̃0 = WΠT .
1. Use Algorithm 2 to obtain {rµ}, Π, and hence the compressed representation of M .
2. Solve compressed equations (3.9).
3. Compute W using (3.10).

The computational complexity of Algorithm 3 can be analyzed as follows. For
simplicity we neglect all possible logarithmic factors in the complexity analysis, The
cost for constructing the compressed representation of M is O(N3

e ). Equations (3.9)
require solving NcNµ ∼ O(Ne) equations. Assuming the computational cost for
applying H to a vector is O(Ng), and assuming that the number of iterations using
an iterative solver to solve equations (3.9) is bounded by a constant, then the cost for
solving all equations is dominated by the computation of {Qξµ}, which is O(N3

e ). In
order to construct W , for each µ and i, we can first compute the term in parentheses on
the right-hand side of (3.10). Then the computational complexity for constructing W
is again O(N3

e ). Therefore, the overall asymptotic computational cost for constructing
the compressed polarizability operator χ̃0 is O(N3

e ). In practice, we find that the
computational cost is dominated by solving the O(Ne) linear equations in step 2 of
Algorithm 3.
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3.2. Compression of χ. According to (2.15), χ0G is the leading order ap-
proximation to U = χG, and this approximation can be inaccurate if χ0vhxc is not
small. From the perspective of section 3.1, the self-consistent solution to the Dyson
equation (2.15) introduces two additional difficulties: (1) we need to find compressed
representation χ̃0 that agrees with χ0 when applied to both G and vhxcU ; (2) U is
not known a priori. Hence if we apply Algorithm 3 directly, we may need to increase
the rank of χ̃0 to 2Nµ or higher to maintain the accuracy. Below we introduce the
ACP method that simultaneously addresses these two difficulties.

We assume that vhxc is invertible, and v−1hxcg for a vector g can be computed
easily. This is the case in the absence of the exchange-correlation kernel fxc, and
v−1hxcg = v−1c g can simply be obtained by applying the Laplacian operator to g. This
approximation is referred to as the “random phase approximation” in the physics
literature [35]. In the presence of fxc in the LDA and GGA formulations, fxc is a
diagonal matrix, and v−1hxcg = v−1c g can be solved using iterative methods.

We introduce the change of variables

(3.13) U = Ũ −B, B = v−1hxcG,

and the Dyson equation (2.15) becomes

(3.14) Ũ = χ0vhxcŨ +B.

The advantage of using (3.14) over (2.15) is that formally we only need to find χ̃0

that is accurate when applied to vhxcŨ . In an iterative algorithm, for a given matrix
Ũ , we can use Algorithm 3 to construct χ̃0[Ũ ] by replacing G with vhxcŨ , with Ũ in

brackets to highlight the Ũ -dependence of the compression scheme, i.e.,

(3.15) Ũ = χ̃0[Ũ ]vhxcŨ +B.

We note that when self-consistency is reached for (3.15), with the self-consistent solu-

tion denoted by Ũ∗, χ̃0[Ũ∗]vhxcŨ
∗ remains a good approximation to χ0vhxcŨ

∗, even

if Ũ∗ deviates away from the initial guess. In each step, the approximate rank of
χ̃0[Ũ ] remains Nµ. Hence χ̃0[Ũ ] is adaptive to the solution Ũ and hence is called
the adaptively compressed polarizability operator (ACP). This concept of adaptively
constructing a low rank matrix is similar in spirit to the recently developed adaptively
compressed exchange operator (ACE) for the efficient solution of Hartree–Fock-like
calculations [29].

Equation (3.15) can be solved using the fixed point iteration or more advanced
methods for solving fixed point problems, similarly to that in (2.15) in DFPT. How-
ever, thanks to the low rank structure of χ̃0 in (3.12), we can significantly accelerate

the convergence. Let us denote the value of Ũ at the kth iteration as Ũk, which gives
rise to the ACP χ̃0[Ũk] = W k(Πk)T . Equation (3.14) indicates that if the magnitude

of χ0vhxc is small, then Ũ0 = B is a good initial guess to start the iteration. Then we
can reformulate (3.15) and obtain the following iteration scheme:
(3.16)

Ũk+1 =
(
I −W k(Πk)T vhxc

)−1
B = B +W k

(
I − (Πk)T vhxcW

k
)−1

(Πk)T vhxcB.

The second equality in (3.16) uses the Sherman–Morrison–Woodbury identity for
computing the inverse. The cost of the inversion is O(N3

e ) due to the low rank

structure of χ̃0[Ũk]. Numerical results indicate that the iteration scheme (3.16) can
converge much more rapidly compared to the fixed point iteration for (2.15). In fact
often two to four iterations are enough to obtain results that are sufficiently accurate.
Algorithm 4 describes the algorithm for using ACP to compute χG.
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Algorithm 4 Computing χG with adaptively compressed polarizability operator.

Input:
Vectors {gj}. Stopping criterion δ.
Eigenpairs corresponding to occupied orbitals {ψi, εi}
Output: U ≈ χG
1. Compute Ũ0 = B = v−1

hxcG. k ← 0.
2. Do

(a) Use Algorithm 3 by replacing G with vhxcŨ
k to obtain W k and Πk, and obtain

χ̃k0 = W k(Πk)T .

(b) Update Ũk+1 according to (3.16).

(c) k ← k + 1

until ‖Ũk − Ũk−1‖ < δ or maximum number of iterations is reached.

3. Compute U ← Ũk −B.

4. Numerical examples. In this section, we demonstrate the performance of
ACP, proposed in the previous section, and compare it with the density functional
perturbation theory (DFPT) and with the finite difference approach (FD) through
three examples. The first example consists of a 1D reduced Hartree–Fock model
problem that can be tuned to resemble an insulating or a semiconducting system. The
second example is a 2D model problem with a periodic triangular lattice structure.
The third example is a 2D triangular lattice with defects and random perturbations
of the atomic positions. Since our computational domain involve a large number of
atoms, our treatment of using a system of finite size with periodic boundary conditions
is equivalent to the Gamma point sampling strategy of the Brillouin zone for an
infinite-sized system [33]. All results are performed on a single computational core of
a 1.4 GHz processor with 256 GB memory using MATLAB.

4.1. 1D reduced Hartree–Fock model. The 1D reduced Hartree–Fock model
was introduced by Solovej [42] and has been used for analyzing defects in solids;
see, e.g., [8, 9]. The simplified 1D model neglects the contribution of the exchange-
correlation term. As discussed in previous sections, the presence of exchange-correla-
tion functionals at the LDA/GGA level does not lead to essential difficulties in phonon
calculations.

The Hamiltonian in our 1D reduced Hartree–Fock model is given by

(4.1) H[ρ] = −1

2

d2

dx2
+

∫
K(x, y) (ρ(y) +m(y)) dy.

Here m(x) =
∑
I mI(x−RI) is the summation of pseudocharges. Each function

mI(x) takes the form of a 1D Gaussian,

mI(x) = − ZI√
2πσ2

I

exp

(
− x2

2σ2
I

)
,(4.2)

where ZI is an integer representing the charge of the Ith nucleus. In our numerical
simulation, we choose all σI to be the same.

Instead of using a bare Coulomb interaction which diverges in one dimension
when x is large, we use a Yukawa kernel as the regularized Coulomb kernel,

(4.3) K(x, y) =
2πe−κ|x−y|

κε0
,
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which satisfies the equation

− d2

dx2
K(x, y) + κ2K(x, y) =

4π

ε0
δ(x− y).(4.4)

As κ→ 0, the Yukawa kernel approaches the bare Coulomb interaction given by the
Poisson equation. The parameter ε0 is used so that the magnitude of the electron
static contribution is comparable to that of the kinetic energy. The ion-ion repulsion
energy EII is also computed using the Yukawa interaction K in the model systems.

The parameters used in the model are chosen as follows. Atomic units are used
throughout the discussion unless otherwise mentioned. For all systems tested in this
subsection, the distance between each atom and its nearest neighbor is set to 2.4 a.u.
The Yukawa parameter κ = 0.1. The nuclear charge ZI is set to 1 for all atoms, and
σI is set to be 0.3. The Hamiltonian operator is represented in a plane wave basis set.

By adjusting the parameter ε0 = 1.0 or 10, the reduced Hartree–Fock model can
be tuned to resemble an insulator or a semiconductor, respectively. We apply ACP
to both cases. We use Anderson mixing for self-consistent field (SCF) iterations,
and the linearized eigenvalue problems are solved by using the locally optimal block
preconditioned conjugate gradient (LOBPCG) solver [25].

For systems of size NA = 60, the converged electron density ρ associated with the
two 1D test cases as well as the 70 smallest eigenvalues associated with the Hamil-
tonian defined by the converged ρ are shown in Figure 3. For the insulator case, the
electron density fluctuates between 0.1935 and 0.6927. There is a finite HOMO-LUMO
gap, εg = ε61− ε60 = 0.6763. The electron density associated with the semiconductor
case is relatively uniform in the entire domain, with the fluctuation between 0.3576
and 0.4788. The corresponding band gap is 0.1012. Figure 3 is obtained by a system
with 60 atoms, and we find that systems with different sizes show similar patterns in
the band structure for both insulating and semiconducting systems, respectively.

All numerical results of the ACP method below are benchmarked with results
obtained from DFPT. In order to demonstrate the effectiveness of the ACP formula-
tion for compressing U = χG, we directly measure the relative L2 error, defined as
‖U − UACP‖2/‖U‖2, where UACP is obtained from Algorithm 4. We also report the
error of the phonon spectrum by computing the L∞ error of the phonon frequencies
{ωk}. Due to the presence of acoustic phonon modes for which ωk is close to 0, we
report the absolute error instead of the relative error for the phonon frequencies. In
DFPT, we use MINRES [36] to solve the Sternheimer equations iteratively. The ini-
tial guess vectors for the solutions are obtained from previous iterations in the Dyson
equation to reduce the number of matrix-vector multiplications. The same strategy
for choosing the initial guess is implemented for the ACP formulation as well. An-
derson mixing is used to accelerate the convergence of Dyson equations in DFPT. In
ACP we find that the fixed point iteration (3.16) is sufficient for fast convergence.

In Tables 1 and 2, we calibrate the accuracy of our algorithm with different num-
bers of Chebyshev points Nc and different numbers of columns Nµ, for both insulating
and semiconducting systems, respectively. We choose Nµ = lNe, where l = 3, 4, . . . , 8.
Tables 1 and 2 show that for both insulating and semiconducting systems, with fixed
Chebyshev interpolation points Nc, the numerical accuracy increases monotonically
with respect to Nµ, until limited by the accuracy of the Chebyshev interpolation pro-
cedure. Note that when the accuracy is limited by the Chebyshev interpolation, the
error can saturate, as shown in each column in both Tables 1 and 2. Similarly the in-
crease of Chebyshev interpolation reduces the error until being limited by the choice of
Nµ. When both Nµ and Nc are large enough, the error of χ0G can be less than 10−6.

D
ow

nl
oa

de
d 

01
/0

9/
17

 to
 1

98
.1

28
.2

06
.1

34
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

46 LIN LIN, ZE XU, AND LEXING YING
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(b) Insulator.
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Fig. 3. The electron density ρ(x) of the 60-atom (a) insulating and (c) semiconducting sys-
tems in the left panel. The corresponding occupied (blue circles) and unoccupied eigenvalues (red
diamonds) are shown in the right panel in (b), (d), respectively. (Color available online.)

Table 1
The relative L2 error |χ̃0G− χ0G|/|χ0G| for the insulating system with εg/|I| = 1.1911.

Nc

Nµ 3Ne 4Ne 5Ne 6Ne 7Ne 8Ne

5 6.90E-03 8.91E-04 7.56E-05 9.17E-06 8.49E-06 8.45E-06
10 6.83E-03 7.83E-04 7.31E-05 2.32E-06 4.65E-07 3.40E-07
15 7.84E-03 8.66E-04 4.92E-05 2.59E-06 3.22E-07 1.11E-07
20 7.53E-03 8.20E-04 5.61E-05 2.68E-06 2.93E-07 2.89E-07
25 8.77E-03 8.80E-04 5.48E-05 2.41E-06 3.95E-07 1.23E-07
30 1.08E-02 8.04E-04 5.71E-05 2.95E-06 3.36E-07 2.76E-07

In order to show how Nc scales with respect to the size of εg/|I|, we adjust the
parameter ε0 = 1.8i−1, i = 1, . . . , 6, to get systems with different band gaps. The
result is reported in Figure 4. By selecting Nµ = 6Ne, the number of Chebyshev
nodes which is required to get relative L2 error |χ̃0G− χ0G|/|χ0G| ∼ 10−5 scales as√
εg/|I|, which matches the analysis in section 3.1.
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Table 2
The relative L2 error |χ̃0G− χ0G|/|χ0G| for the semiconducting system with εg/|I| = 0.1253.

Nc

Nµ 3Ne 4Ne 5Ne 6Ne 7Ne 8Ne

5 2.87E-02 1.02E-02 1.01E-02 1.01E-02 1.01E-02 1.01E-02
10 3.96E-02 4.99E-04 1.82E-04 1.71E-04 1.71E-04 1.71E-04
15 1.75E-02 6.30E-04 6.07E-05 9.33E-06 5.59E-06 4.78E-06
20 4.84E-02 4.47E-04 7.04E-05 8.45E-06 3.24E-06 4.05E-07
25 3.04E-02 5.08E-04 6.95E-05 6.71E-06 2.55E-06 4.57E-07
30 2.29E-02 5.50E-04 5.95E-05 9.66E-06 2.56E-06 3.69E-07

10-1 100
εg/|I|

5

10

15

20

25
30
35

N
c

Nc

Nc ∝
√
εg/|I|

Fig. 4. Scale of Nc with respect to the size of εg/|I|, compared to the theoretical square root
scaling. System size NA = 60. Nµ = 6Ne. The relative L2 error |χ̃0G− χ0G|/|χ0G| ∼ 10−5.

In Table 3, we chooseNµ based on the entries of R̃, as is shown in Algorithm 2, and
compare the results to those obtained from the FD approach. In the FD approach,
we set the convergence tolerance for LOBPCG to be 10−6, and the SCF tolerance
to be 10−8. δ = 0.01 denotes the deviation of atom positions to their equilibrium
ones. We remark that the varying of δ from 0.01 to 0.0001 does not change too much
in the phonon spectrum. The same parameters for SCF and LOBPCG are used to
converge the ground state calculation in the ACP formulation. The absolute error of
the phonon spectrum is smaller than 10−3. The ACP formulation can lead to a very
accurate phonon spectrum by solving a relatively small number of equations.

In order to demonstrate the effectiveness of the adaptive compression strategy,
the relative L2 error for the approximation of U = χG with respect to the iteration
in Algorithm 4 is given in Figure 5. For ε = 10−5, the error is around 10−5 after four
iterations. For ε = 10−3, the error is reduced to 0.0008. In this case, if we stop after
the first iteration in Algorithm 4, the relative error of χG is 0.0339. Numerical results
show significant improvement after two to four iterations. This indicates that the
self-consistent solution of the Dyson equation is crucial for the accurate computation
of phonon spectrum.

We perform phonon calculations for systems of size from 30 to 150 for both
insulating and semiconducting systems. In terms of accuracy, Figure 6 shows that as
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Table 3
L∞ error of the phonon spectrum. System is insulating with size NA = 60. Chebyshev nodes

Nc = 20. Nµ is determined such that |R̃Nµ+1,Nµ+1| < ε|R̃1,1| ≤ |R̃Nµ,Nµ | in Algorithm 2.

Method and parameter L∞-norm error

FD δ = 0.01 5.6779e-04

ACP Nµ = 241 for ε = 10−3 3.6436e-04

ACP Nµ = 359 for ε = 10−5 2.7380e-06

1 2 3 4 5 6
iteration step k

10-5

10-4

10-3

10-2

∥U
−

U
k
∥ 2
/∥

U
∥ 2

ϵ = 10-5, N
µ
 ≈ 6Ne

ϵ = 10-3, N
µ
 ≈ 4Ne

Fig. 5. Convergence of adaptive compression.

Nµ increases linearly with respect to the system size, the accuracy of phonon spectrum
(L∞ error) remains roughly the same, which is empirically around the ε = 10−3 used
to determine Nµ in Algorithm 2. For the computation of the phonon frequency, we
find that Nc = 20 and Nµ = 4Ne is sufficient to achieve error around 10−3, and
the phonon spectrum is already indistinguishable from that obtained from DFPT.
Figure 7 reports the phonon spectrum %D for systems of size NA = 150. We remark
that Figure 7 plots the density of states % by replacing the Dirac-δ distribution in
(2.10) with regularized delta function

δσ(x) =
1√

2πσ2
e−

x2

2σ2 .

Here the smear parameter σ is chosen as 0.01.
To demonstrate the efficiency of the ACP algorithm, Figure 8 compares the com-

putational time of ACP, DFPT, and FD, respectively. We observe that the com-
putational cost of DFPT matches that of FD due to the choice of initial guess of
Sternheimer equations and the Anderson mixing strategy for solving the Dyson equa-
tion. Compared to DFPT, the ACP formulation benefits both from the fact that it
solves fewer Sternheimer equations and from the fact that the Sherman–Morrison–
Woodbury procedure (3.16) is more efficient than Anderson mixing for solving the
Dyson equation. In fact for all systems, Algorithm 4 converges within four iterations,
while the Anderson mixing in DFPT may require 20 iterations or more for systems
of all sizes. Hence for both insulating and semiconducting systems, the ACP formu-
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(a) Insulator.
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Fig. 6. L∞ error of the phonon frequencies {ωk} obtained from ACP and FD. For ACP
formulation Nc = 20. Nµ ≈ 4Ne.
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Fig. 7. Phonon spectrum for the 1D systems computed using ACP, DFPT, and FD for both
(a) insulating and (b) semiconducting systems.

lation becomes more advantageous than DFPT and FD for systems merely beyond
40 atoms. For the largest system with 150 atoms, ACP is 6.28 and 6.87 times faster
than DFPT for insulating and semiconducting systems, respectively.

Table 4 measures the slope of the computational cost with respect to system sizes
from NA = 90 to NA = 150. In theory, the asymptotic computational cost of FD
and DFPT should be O(N4

e ), and the cost of ACP should be O(N3
e ). Numerically we

observe that for the 1D examples up to NA = 150, the computational scaling is still
in the preasymptotic regime.

4.2. 2D lattice model. In the previous section, we have validated the accuracy
of ACP compared to both FD and DFPT. We also find that the efficiency of FD and
DFPT can be comparable. Hence for the 2D model, we only compare the efficiency
and accuracy of ACP with respect to DFPT. Our first example is a periodic triangular
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Fig. 8. Computational time of 1D examples. Comparison among DFPT, ACP, and FD for
(a) insulating and (b) semiconducting systems, respectively.

Table 4
Computational scaling measured from NA = 90 to NA = 150.

Method Insulator Semiconductor
FD 3.4403 3.3047

DFPT 2.8997 2.9459
ACP 2.5040 2.1065
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index(i)
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(b)

Fig. 9. The electron density ρ of the 98-atom insulating system (a), and the occupied and
unoccupied eigenvalues (b).

lattice relaxed to the equilibrium position. The distance between each atom and its
nearest neighbor is set to be 1.2 a.u., and ε0 = 0.05. The nuclear charge ZI is set to
1 for all atoms, and σI is set to be 0.24.

For a system of size NA = 98, the converged electron density ρ as well as the 108
smallest eigenvalues associated with the Hamiltonian at the converged ρ are shown
in Figure 9. There is a finite HOMO-LUMO gap, εg = ε99 − ε98 = 1.2637, which
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Fig. 10. Computational time. Comparison of ACP to ACP for the 2D periodic lattice model.

Table 5
Computational scaling measured from NA = 32 to NA = 98.

Method Slope
DFPT 3.9295
ACP 3.0249

suggests that the system is an insulator. Figure 10 shows the computational time of
ACP and DFPT as the system size grows from 2×22 to 2×72. We choose ε = 10−3 in
Algorithm 2, and we find that this amounts to around Nµ = 14Ne columns selected in
the ACP procedure. We choose Nc = 30, and hence the ACP formulation solves 420Ne
equations, compared to the 2NANe = 2N2

e equations needed for DFPT. We iterate
Algorithm 4 for two iterations. We find that when the system size increases beyond
NA = 18, the ACP formulation becomes more advantageous compared to DFPT. For
the largest system NA = 98, ACP is 4.61 times faster than DFPT. Table 5 measures
the computational scaling from NA = 32 to NA = 98, which matches closely with
the O(N3

e ) and O(N4
e ) theoretical scaling of ACP and DFPT, respectively. Figure 11

reports the phonon spectrum %D for the system of size NA = 98. Here the smear
parameter σ = 0.08.

4.3. 2D model with random vacancies. Our final example is a 2D triangular
lattice with defects. We start from a periodic system with NA = 72 atoms, randomly
remove three atoms, and then perform structural relaxation for 15 steps. We terminate
the structural relaxation before the system reaches its equilibrium position to obtain
a disordered structure.

The converged electron density ρ and the smallest 79 eigenvalues are shown in
Figure 12. For this system, there is a finite gap εg = ε70 − ε69 = 1.3500. Figure 13
shows the phonon spectrum computed from ACP and DFPT, plotted with the smear
parameter σ = 0.08. The computational time for DFPT is 53883 sec, that for ACP is
8741 sec, and the speedup factor for ACP is 6.16. We observe that for the disordered
structure, DFPT requires more iterations to converge, while the number of iterations
for ACP to converge can remain 2. More specifically, compared to the periodic struc-
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Fig. 11. Phonon spectrum for the 2D periodic lattice. System size NA = 98, ε = 10−3,
Nµ ≈ 14Ne.
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Fig. 12. The electron density ρ of the 2D system with defects (a), and the occupied and
unoccupied eigenvalues (b).

ture with NA = 72, the computational time for DFPT is 35501 sec, while that for
ACP is 8854 sec.

5. Conclusion. We have introduced the adaptively compressed polarizability
operator (ACP) formulation. To the best of our knowledge, the ACP formulation is
the first to reduce the computational complexity of phonon calculations from O(N4

e )
to O(N3

e ). This is achieved by reducing the O(N2
e ) equations in density functional

perturbation theory (DFPT) to O(Ne) equations with systematic control of accuracy.
Moreover, the accuracy of the ACP formulation depends weakly on the size of the
gap, and hence can be applied to both insulator and semiconductor systems. Our
numerical results for model problems indicate that the computational advantage of
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Fig. 13. Phonon spectrum for the 2D system with defects. System size NA = 69, ε = 10−3,
Nµ ≈ 14Ne.

the ACP formulation can be clearly observed compared to DFPT and finite difference,
even for systems of relatively small sizes. While for simplicity our model problems
do not include several components of KSDFT calculations for real materials, such as
the nonlocal pseudopotentials and the exchange-correlation kernels, they do capture
the essential difficulty in phonon calculations, and we expect that the asymptotic
behavior of the ACP method for model problems is transferable to real materials
simulation. We have also tuned the parameters of our model problem (such as the
lattice constants and the band gaps) to mimic those of real materials. In a future work,
we will present the ACP formulation in the presence of the nonlocal pseudopotential,
and its application for computing the phonon spectrum for real materials.

The availability of fast phonon calculations provides a possible way to accelerate
structural relaxation optimization of large scale molecules and solids. In this work we
have restricted ourselves to zero temperature calculations. We plan to extend the ACP
formulation to treat systems at finite temperature and hence metallic systems. We
have used phonon calculation as an example to demonstrate the effectiveness of the
compressed polarizability operator. The same strategy can be applied to applications
of DFPT other than phonon calculations. In the future, we also plan to extend the
ACP formulation to treat frequency-dependent polarizability operators that arise from
many-body perturbation theories.

Acknowledgment. L. L. thanks Martin Head-Gordon for useful discussions.
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