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HOW’S YOUR I THE PROJECT EXISTS
QUANTUM COMPUTER IN A SIMULTANEOUS CAN I THAT'S

PROTOTYPE COMING STATE OF BEING BOTH OBSERVE A TRICKY
ALONG? TOTALLY SUCCESSFUL IT? QUESTION.

AND NOT EVEN

GREAT! STARTED.

e Quantum supremacy: quantum computers can perform certain (can be
arbitrarily contrived) tasks much more efficiently than classical
computers. Google, USTC, Xanadu

e /s controlling large-scale quantum systems merely really, really hard, or
IS it ridiculously hard? — John Preskill (2012)

e Quantum computer does anything useful? Quantum advantage.



Quantum advantage: Shor’s algorithm

® n=p-qg(p,qare prime numbers)

e Classical algorithm with best asymptotic
complexity:
General Number Field Sie\,'ze
3

O (exp [C(Iog n)%(log log n) D

e (Shor, SIAM J. Comput. 1997)
Quantum algorithm achieves polynomial
complexity O ((log n)?(log log n)(log log log n))

e Superpolynomial (but strictly, not exponential)
quantum speedup.



Quantum advantage: Quantum dynamics

- Feynman’s original vision
- |Y(t)) = e tHE|Y(0)) (Hamiltonian simulation)
- Often simple initial state (such as product state) [y(0))

- Observe (Y (¢)|0[y(t))

- Challenging for classical simulation beyond 1D



Scientific computing: mathematics

- Linear systems of equations Ax = b

- Linear differential equations (Ordinary / Partial / Stochastic)
d:u = Au

- Linear eigenvalue problem Au = Au

- (Nonlinear equations)

Most of these are non-unitary processes

Ingenious ideas to “shoehorn” into unitary processes



Scientific computing: applications

- High dimensional problems (R%,d > 3)

A\

Quantum many body system: condensed matter physics, quantum
chemistry, materials science, quantum field theory.. (Schrodinger
equation, Lindblad equation, Dirac equation..)

Control theory, game theory (Hamilton-Jacobi equation)
Probability theory, sampling (Fokker-Planck equation)
Optimization theory

- Low dimensional problems (R%,d < 3)

vV V VYV V

Molecular dynamics (Newton’s equation)
Fluid dynamics (Navier-Stokes equation)
Electromagnetism (Maxwell equation, Helmholtz equation)

Approximate models for high dimensional problems (Kohn-Sham
density functional theory, Mean-field games..)



Quantum advantage in scientific computation

Quantumly easy, classically hard

- Low quantum input cost
- Low quantum output cost
- Low quantum running cost

- High classical cost



Quantum advantage hierarchy (as of now)

Unitary quantum
processes
Existing evidence of
significant

quantum advantage

[l
Non-unitary quantum processes

v
Classical processes

Potential range of
scientific applications



Quantum advantage hierarchy (as of now)

Level | Input  Output Running | Classical Examples
Cost Cost Cost Cost

L v v v Provably Shor’s algorithm for prime number fac-
expensive torization

I v v v Empirically | Hamiltonian simulation
expensive

111 ? ? v Empirically | Ground state energy estimation, ther-
expensive mal state preparation, Green’s func-

tion, open quantum system dynamics
IV 7 ? 7 ? Classical partial differential equations,

stochastic differential equations, opti-
mization problems, sampling problems




End-to-end complexities
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Towards quantum advantage for simulating non-unitary
guantum processes

- Non-Hermitian quantum dynamics

o.u(t) = —Au(t) = — (iH + %I{JFK) u(t)

- Lindblad dynamics (think p(t) = E |[u(t))}u(t)])
1
0pp(t) = —i[H, p] = S (K"K, p} + KpK™*

- Empirically challenging for classical computation.
- Rich potential for algorithms

- Interplay between open and closed quantum systems (open
boundary condition, thermal states, ground states)



How to solve non-Hermitian dynamics

with optimal state preparation cost?

(Reduce input cost)



Linear differential equations

du(t) <
= —ADu(D). A e CNxN

u(0) = Uy 10" = |ug) -

e |nitial state preparation cost: number of queries to U,.
° o =maxt[|A(f)|[, g = maxt [|uol| /[[u()].
* Previous best algorithm™: O (gatlog (1)).

e Lower bound: O(q)

'Berry-Costa, arXiv:2212.03544 (2022)



Linear combination of Hamiltonian simulation (LCHS)

Express non-unitary dynamics (Level II)
as Hamiltonian simulation problems (Level I1)

Theorem (LCHS)
Suppose A(t) = L(t) + iH(t) and L(t) = 0, then

1) = | g U0 o) o

Here Ui (t) are unitaries that solve the Schrodinger equation

dU(1)
at

= —i(kL(t) + H(t))Uk(t), U(0) = I.

Reaches lower bound in state preparation cost: O(Qq)

[An, Liu, Lin, Phys. Rev. Lett. 131, 150603, 2023] (QIP24)
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How to prepare ground state

starting from zero initial overlap?



Challenge in quantum phase estimation

pi = {plY)I?
Approximate
filtering
Po Po
i ¥ . Ao A A

They are essentially filtering methods.
Do not work if po = | (#]1ho) |? is small (# repetition p; ')



Good initial overlap for strongly correlated systems?
nature communications

Evaluating the evidence for exponential quantum
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Lindblad idea for ground state preparation

1
p(t) = —i[H, p] = S {K"K, p} + KpK™

pi = [PlY:)I?

@(’“\ CPTP
mﬂm‘

i)

Po

A‘ﬂ '&1 ."{1 .;l() /11 412 f;l.l

From filtering to shoveling.
If works (poly(n) mixing time), succeeds w.p. 1, independent of pg
(and initial guess in general)!

(Ding, Chen, Lin, arXiv:2308.15676)



Jump operator: linear combination of

Heisenberg evolution
fw)=0 Yw>0, flw)= / f(s)e'“Sds.
R

Notice
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Single ancilla simulation of discrete-time dynamics

A, (V7) Ay, (VT) An, 1 (V1) A, (V7)

) e~ et
Discard
10) — v
W(Vr)
V) = =
Repeat

One ancilla qubit, simple gates

Theorem

For simulation time T = Nt and precision ¢, the total Hamiltonian
simulation time is

TH total = © (T1+O(1)€_0(1)) :




TFIM-6 model:

—— Lindblad (exact)
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Start from pg = 0!



Outlook

- Likely to achieve quantum advantage in
Level | (cryptography) and Level Il (unitary quantum).

- Alot more quantum algorithms may be discovered at
Level Il (non-unitary quantum) and Level |V (classical).

- Co-design perspective:
Interplay between algorithmic design, circuit synthesis,
error correction, error mitigation

- Find better ways to communicate with the public on
what have been achieved and what are achievable!
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