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Solve nature with nature

Figure. A superposition of
Feynmans

... If you want to make a simulation of nature (Qquantum many-body
problem), you'd better make it quantum mechanical, and by golly
it's a wonderful problem, because it doesn’t look so easy.

— Richard P. Feynman (1981) 1st Conference on Physics and Com-
putation, MIT



Representing polynomials using unitary matrices

Motivation:

e Quantum computers are fundamentally about manipulating
unitary matrices.

e Polynomial function f(A), e.g., A=, e~ is generally non-unitary.

¢ Efficient quantum algorithms for f(A):
Quantum signal processing (QSP)!, quantum singular value
transformation (QSVT)?, quantum eigenvalue transformation of
unitary matrices (QETU)3.

' (Low, Chuang, PRL 2017)
2(Gilye’n, Su, Low, Wiebe, STOC, 2019) (Martyn et al, PRX Quantum 2021)
3(Dong-Lin-Tong, PRX Quantum 2022)



Grand Unification of Quantum Algorithms
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Quantum algorithms offer significant speed-ups over their classical counterparts for a variety of prob-
lems. The strongest arguments for this advantage are borne by algorithms for quantum search, quantum
phase estimation, and Hamiltonian simulation, which appear as subroutines for large families of composite
quantum algorithms. A number of these quantum algorithms have recently been tied together by a novel
technique known as the quantum singular value transformation (QSVT), which enables one to perform
a polynomial transformation of the singular values of a linear operator embedded in a unitary matrix.
In the seminal GSLW’19 paper on the QSVT [Gilyén et al., ACM STOC 2019], many algorithms are
encompassed, including amplitude amplification, methods for the quantum linear systems problem, and
quantum simulation. Here, we provide a pedagogical tutorial through these developments, first illustrating
how quantum signal processing may be generalized to the quantum eigenvalue transform, from which the
QSVT naturally emerges. Paralleling GSLW’19, we then employ the QSVT to construct intuitive quantum
algorithms for search, phase estimation, and Hamiltonian simulation, and also showcase algorithms for the
eigenvalue threshold problem and matrix inversion. This overview illustrates how the QSVT is a single
framework comprising the three major quantum algorithms, suggesting a grand unification of quantum
algorithms.

DOI: 10.1103/PRXQuantum.2.040203



Game rule

e Single qubit Pauli matrices

0 1
X= (1 o) 2
e For x = cosf € [—1, 1], rotation matrix

Il
N\
O —
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~

* Use products with phase factors & := (¢, - - - , ¢g) € RI*!

U(x, ®) := e W(x)e“W(x)--- e W (x)e'%4 € SU(2).

Adjust ¢ to fit a polynomial f(x) using the real part of the upper left
entry
Re[U(x,®)]11 = f(x), xe€[-1,1]

A problem with rich mathematical structures.



MATLAB Demonstration

Try it: https://qsppack.gitbook.io/qsppack|


https://qsppack.gitbook.io/qsppack

Example 1: Chebyshev polynomial of the first kind

U(x, ®) := &2 W(x)e"Z W(x) - - - e%-12 W(x)e'$eZ.
e f(x) = Ty(x) = cos(d arccos(x)), X = cos 6.
e Choose ® = (¢o, - ,¢q) = (0,..., 0).

e Then U(x,®) = W9(x) = €% =
Re[U(x, ®)]1.1 = cos(df) = cos(d arccos(x))



Example 2: All zero vector

Ulx,®) := g'PZ W(x)ei¢1ZW(X) ... ei¢d71ZW(X)ei¢dZ.
e f(x)=0.
° b= (7T/4>07"' ’077'(/4)-

L [U(X, ¢)]1’1 = icos(d&) = Re[U(X, ¢)]1,1 =0.



Example 3. 3rd order Chebyshev polynomial

* f(x) =0.2T1(x) + 0.4T3(x)
e ¢ =(0.5768,—-0.1132,-0.1132,0.5768).

e Some random Chebyshev polynomial. Symmetric phase factor.



Example 4. A smooth function

* f(x) = Scos(100x).
e Cheyshev polynomial approximation.

e Symmetric phase factor. Decay behavior.



Phase factors used to be hard to compute..

Toward the first quantum simulation with
quantum speedup
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Section H.3:

...However, this computation is difficult in practice, so we can only
carry it out for very small instances. Specifically, we found the time
required to calculate the angles to be prohibitive for values of M
greater than about 32...1t is a natural open problem to give a more
practical method for computing the angles.

d = 32 was thought to be hard..



Tremendous progress..

Direct methods (factorization of polynomials):
e (Gilyen et al 1806.01838; Haah 1806.10236): compute the roots of a
high-degree polynomial to high precision. High precision arithmetic.
¢ (Chao et al, 2003.02831): “Capitalization”.
® (Ying, 2202.02671): Prony’s method.
Iterative methods: (symmetric phase factors)
¢ (Dong, Meng, Whaley, Lin, 2002.11649): Optimization based
algorithm. Convergence proof (Wang, Dong, Lin, 2110.04993)

e (Dong, Lin, Ni, Wang, 2209.10162): fixed point iteration for solving
nonlinear system. Improved convergence result.

¢ (Dong, Lin, Ni, Wang, in preparation): Newton’s method. Most robust
algorithm so far.

d > 10000. The problem is practically solved after 5 years!
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Goal of QSP (real case)

QSP4 : R — Ry4[x]. Map phase factor to polynomial.

* *

U(X, (D) — ei¢oZW(X)ei¢>1Z W(X) o ei¢d,1Z W(X)ei(z)dZ _ (f(X) + i* *) ‘

Question Range of the mapping, representability of ?

Theorem (Gilyen-Su-Low-Wiebe STOC 2019)
If f € Ry[x] satisfies

1. parity isd mod 2,

2. |Iflle = maxxe—1,11 [F(X)| <1,

then there exists phase factors € R9*1.




Uniqueness?
¢ degree of freedom: DOF(®) = d + 1, DOF(f) = [(d + 1)/2]

® one (natural) way towards uniqueness: symmetric QSP

4 Reduced phase factors

Given any set of symmetric phase factors

v = (¢d7 ¢d—17 ¢d—27 I . 7¢d—27 ¢d—1a wd)l € Rd+1

Its set of reduced phase factors is defined as its right half

(%1&&71, ¢J, ce 7¢d)) dis even,

® = (g0, P1,---,Pg 1) == {(1#,1,1/)&1"" ,4), disodd.




Symmetric QSP

QSP4 : R — R4[x]. Map phase factor to polynomial.

U(x,®) = ei¢on(X)ei¢1z W(x)- - gitaZ W(x)ei‘f’oz _ (f(x) iy :) ‘

*

Theorem (Wang-Dong-Lin, Quantum 2022)
If f € Ry[x] satisfies
1. parityisd mod 2,
2. |[flloo = maxye—1,17 [F(X)] <1,
then there exists symmetric phase factors ® ¢ RI+1.




Optimization based formulation

e Parity: only d := [%} degrees of freedom to determine f(x).

e Sampling on Chebyshev nodes xx = cos (2’251 ) k=1,..d.

® 0008 SSeOSRRIID

0 0.5 1

e Minimization problem

]
®* = argmin  F(®), F(®) ==Y [Re[U(x;, ®)]11 — f(x;)|?
¢’€[77T,7T)d+1, d i=1
symmetric.

)

¢ Global minimum F(¢*) = 0.

(Dong, Meng, Whaley, Lin, 2002.11649 PRA 2021),https://github.com/gsppack/gsppack



Optimization landscape
2 independent symmetric phase factors ¢g, ¢1.
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Even target function Odd target function
1 1 2
f(x)=x>— = f(x) = —=x3 - —x
() 2 W=7

Only global minima (so far).



Local minima exists (and there are many)

1.5

o0 449 S Los

0.5 local minimum 0.0218
i 0.6

>~ 0.0

-0.5
~-1.0 0.2
—-1.5" -1 0 1 0.0

Random F(®'°¢ + xuy + yup). F(9'°°) = 0.0218

There are combinatorially many global minima at large d.
Can we characterize them?



Uniqueness of symmetric phase factor

Theorem (Wang-Dong-Lin, Quantum 2022)
For any P € C[x] and Q € R|x] satisfying
1. deg(P) =d and deg(Q) =d — 1.
2. P has parity (d mod 2) and Q has parity (d — 1 mod 2).
3. (Normalization condition) Vx € [-1,1] : |[P(x)]? + (1 — x?)|Q(x)|? = 1.
4. Ifd is odd, then the leading coefficient of Q is positive.

there exists a unique set of symmetric phase factors
q) = (¢07¢1 s Tt 7¢17¢0) &S Dd SUCh that

B P(x) IQ(x)V1 — x2
Uix®) = (io(x)m P*(x) >

Without specifying Im P and Q, the phase factors are still not unique.




Characterization of all global minimizers

Corollary (Wang-Dong-Lin, Quantum 2022)

There is a bijection between global minimizers and all admissible
(P(x), Q(x)) pairs with Re[P](x) = f(x).

® P(x) = f(x) + iPim(x). Complementary polynomials
Pim(x), Q(x) € R[x].

* Normalization condition
1 — £(x)? = Pin(x)2 + (1 — x3)Q(x)2.

e Pin down all roots of RHS via Laurent polynomial C[z,z~'] = finite
# of global minimizers.

e Generalize results in [Gilyen et al 2019; Haah 2019] to find all global
minimizers.



Magical initial guess

Fixed initial guess ¢y = (7/4,0,...,0,7/4).
e Used in gsppack for all examples.

Robust for all target functions seen so far.
e Corresponds to P(x) = iT4(x), Q(x) = Ug_1(x).

¢ One special solution for f(x) = 0.

Why does it work?

(Dong, Meng, Whaley, Lin, 2002.11649 PRA 2021)



Symmetric phase factors are important to the
landscape

(a) (b)
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The Hessian at the minima is singular if the symmetric condition is
not imposed.



Example: Hamiltonian simulation

CPU time(s)

e Simulate a Hamiltonian means (mathematically)..

H — e—iTH

= X — cos(TX) —isin(7X)

* Optimal polynomial approximates simulation d ~ §7
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Why does optimization algorithm work?

Theorem (Local strong convexity)
If|f]. < Cd—, H&S - &>°H2 < C'd~, (C, C' are universal), then:

% < M (Hess(CT))) = (Hess(&v))) < 243 (1)

Corollary (Convergence from ¢°)

If||f|| ., < Cd~', starting from ®°, at the ¢-th iteration of the (projected)
gradient method

s

< ef'yf HE)O - a;*
o=

5

Here ~, C are universal constants.

Dependence O(d~") is undesirable.

(Wang-Dong-Lin, Quantum 2022)
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QSP representation for smooth functions

<~ polynomial sequence approximates continuous function

f(z) = E;io ¢jThj(x), f is even,
E;O:O cjTrjv1(z), fisodd,

truncated polynomial sequence

d-1
FD=3"ciThjorait1(@) = f in | [oo.
7=0

Questions about consequences of this convergence

? (1) if each f(d) has a symmetric ) ¢ ]Rd~

s e d
(2) then can we find a phase-factor sequence converges to some limit B(d) 290 Fro



81
Question of infinite QSP

d—oo
cld) ¢ Roo————=¢* ¢ ¢!
F E?

q)(d) c ROOM)CD* e €1

? (1) extension to F : £1 — £1(iQSP is well defined)?
(2) inevitability of F' (iQSP is solvable)?

Theorem (Dong, Lin, Ni, Wang, 2209.10162)

Universal constant r, ~ 0.902, F has an inverse map

F. B(0,r;) C (' — (', where B(a,r) :={ve(':|v-al, <r}.




Fixed-point iteration for solving iQSP

Solve nonlinear equation
F(®)=c

via a very simple algorithm, i.e., fixed point iteration:

oo ()5

Theorem (Dong, Lin, Ni, Wang, 2209.10162)
3 universal constants C1, Co, v, so that when ||c||; < Cy, fixed point
iteration converges to * = F (c).

jo0-

< Cor'. 3)

4

No explicitly dependence on d!



Fixed-point iteration for solving iQSP

e f(x) =sin(7x) or
f(x) = cos(7x).

ox

£ e Fixed ¢, degree of
& o | approximating polynomial
g 5 QN 3 o d=0(7).
—+—QN 21f odd
FPI L foe
4 —¢—FPI Z/ odd L 0
10 e e e Complexity is O(d=log(1/¢))

T theoretically and numerically.



Decay behavior of the phase sequence

105 4 A AR
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Decay properties of reduced phase factors

Theorem (Dong, Lin, Ni, Wang, 2209.10162)

3 universal constants C, Cy, C. Given target function f with
lclly < C, then for any n,

Cr Y lekl <D Ikl < Co ) lekl - (4)

k>n k>n k>n




Sharper tests of decay properties

10 ‘ ‘ 10°
— 3
........ ¢
k74
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S 10° §
= £
g
g g
10—20
10-10,
: : ‘ -30
10° 10t 10° 107, 10 20 30 20
index index
o f(x)=0.8]|x. e f(x) = 0.5sin(1000x).

o || ~ k™4, ok ~ k4. e Superalgebraic decay.



Conclusion

QSP: Polynomial representation using parts of a unitary matrix.

e [terative methods can survive in the presence of complex energy
landscape from a problem-independent initial guess

e Surprising relation between (a branch of) phase factors,
Chebyshev coefficients, and regularity of target functions.

¢ Open question: Why iterative method works for f(x) = ¢ cos(7x)
when (1) 7 is large (2) ¢ ~ 1 ? (violates both /., and ¢; bound).

* Not discussed: fully-coherent limit || f|| ., = 1 and Newton’s
method.
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