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Abstract

Singularity Theory for Extended Cobordism Categories and an Application to Graph
Theory

by

Kyle Austin Miller

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Ian Agol, Chair

In low-dimensional topology one often decomposes a space into pieces that can be individ-
ually understood then put back together, yielding a combinatorial description, and such
descriptions can be used for diagrammatic reasoning, computations of algebraic invariants,
constructions of new objects, and so on. A powerful tool for this is singularity theory, where
a classification of the types of singularities that generically might be present (for example,
Morse critical points) leads to systematic approaches to decompositions, and in the ideal
case the classification reduces to analyzing singularities of polynomial functions. We de-
velop singularity theory relevant to “n-categorical” decompositions of smooth manifolds, in
which pieces each have a recursive decomposition of their boundaries. In particular, we
study smooth functions from manifolds to flag-foliated Rn, which serves as a model for the
composition laws of an n-category. We use a refinement of the jet transversality techniques
for the Thom–Boardman singularity types to define dense sets of functions that are suitably
generic with respect to the foliations. We show how to compute codimensions of the sub-
manifolds that correspond to a singularity type. For a few situations, for instance surfaces
with embedded curves, we carry out a classification of the germs that appear in this dense
set up to structure-preserving diffeomorphism. To this end, we prove stability results that
aid in proving equivalence of germs and in finding polynomial representatives.

We explain how to use this classification of singularities to give a presentation of the sym-
metric monoidal 2-category of curves with embedded curves. As an application, we give a
way to compute the Krushkal polynomial, which is a combinatorial invariant of graphs in
surfaces, using an extended TQFT on the symmetric monoidal 2-category of surfaces that
are decomposed into black and white regions.
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Introduction

There are a number of important tools in the study of manifolds that depend in some way
on the study of singularities. To name some basic examples:

• Morse theory uses Morse functions, and a careful analysis of critical points leads to the
existence of handle decompositions of manifolds. Furthermore, Cerf theory, which is a
special kind of path of Morse functions, gives moves that let one go between any two
handle decompositions.

• Knot diagrams depend on the existence of projections with transverse double points,
and these double point singularities, the crossings, have long been used to describe
the combinatorial structure of a knot. Every isotopy of knots can be perturbed and
decomposed into a small set of moves, the Reidemeister moves, and these arise as
different kinds of singularities: the moments where the knot temporarily fails to have
a knot diagram in general position.

• General position arguments in 3-manifold topology require the existence of a collection
of objects (such as curves or surfaces) being transverse to something else. Transverse
points of intersection are a kind of singularity.

In this thesis, we are interested in developing theory to work with generic functions M → Rn

with Rn foliated with the flag foliation. This way we can decompose the manifold, then
decompose the boundary of that manifold, and so on, which yields data that is amenable to
being used for generators or relations for n-categories.

One of the concrete goals of this thesis is to work out in full detail a presentation for a
2D cobordism category with defects for the purpose of showing that one can extend classical
graph invariants to extended TQFTs (functors from this cobordism 2-category to other 2-
categories). Some of these, for closed surfaces, coincide with pre-existing invariants such as
the Krushkal polynomial.

While in these low dimensions we could use ad hoc methods to derive a presentation, as
done in [Abr96] and [Koc04] for the 2D cobordism category, instead we will follow the lead
of Schommer-Pries in [SP09] and use jet transversality techniques from classical singularity
theory to develop higher Morse theory, using suitably generic smooth functions f : M →
[0, 1]n to decompose a compact smooth m-dimensional manifold M in an “n-categorical” way.
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Before explaining how this is meant to work, it is instructive reviewing how Morse theory
gives “1-categorical” decompositions of manifolds, and in particular how it gives a set of
generators for the m-dimensional cobordism category Cobm, which has as objects closed
(m−1)-manifolds and has as morphisms diffeomorphism classes ofm-dimensional cobordisms
between them (where diffeomorphisms are relative to the boundaries). Given a cobordism
M , there is a smooth map f : M → [0, 1] transverse to {0, 1} such that f−1(0) and f−1(1)
are respectively the source and target boundaries of M (and all such maps are homotopic).
If t ∈ [0, 1] is a regular value, we may represent M as the composition of the cobordisms
M ′ = f−1([0, t]) and M ′′ = f−1([t, 1]), and by restricting f to these and reparameterizing
codomains we get smooth maps M ′ → [0, 1] and M ′′ → [0, 1] that, in some sense, decompose
f . Recall that f is a Morse function if (1) its critical points are nondegenerate and (2) the
restriction of f to the critical points is injective — Morse functions are dense in C∞(M, [0, 1]),
so we may assume f is Morse. By decomposing M using regular values of f , it is possible
to give M as a composition of cobordisms that each have at most one critical point of f .
Reducing to the case of such a cobordism M :

• If M has no critical points, then it is induced by a diffeomorphism φ : f−1(0)→ f−1(1)
in the sense that it is diffeomorphic to f−1(1) × [0, 1] with φ defining the inclusion
f−1(0)→ f−1(1)× {0} (such M are the isomorphisms in Cobm).

• If M has a single critical point p, then p there is a coordinate chart (x1, . . . , xm) such
that f is locally of the form f(x1, . . . , xm) = f(p)− x21− · · · − x2k + x2k+1 + · · ·+ x2m for
some 0 ≤ k ≤ m. Analysis of this leads to a description of M as being diffeomorphic
to f−1(0) × [0, 1] with a single k-handle Dk × Dm−k ∼= Dm attached to f−1(0) × {1}
along its (∂Dk)×Dm−k boundary (and smoothing corners).

Thus, morphisms of Cobm are generated by diffeomorphisms and handle attachments, where
the data of a handle attachment is an (m − 1)-manifold along with an embedded (∂Dk) ×
Dm−k.

The second part to understanding the 1-categorical decomposition is finding a complete
set of relations for these generating morphisms. An answer to this is Cerf theory [Cer70],
which studies paths of smooth real-valued functions. We will revisit this from the point of
view of jet transversality, but for now a Cerf function f : M × [0, 1] → [0, 1] is a smooth
map such that

1. the values of t ∈ [0, 1] for which ft is not a Morse function are isolated and in (0, 1);

2. if (p, u) ∈ M × [0, 1] is such that p is a degenerate critical point of fu, then there is a
coordinate chart (x1, . . . , xn) at p and a coordinate chart (t) at u such that f is locally
of the form

f(x1, . . . , xn, t) = f(p, u)− x21 − · · · − x2k + x2k+1 + · · ·+ x2m−1 + xm(±t+ x2m);
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π−→F−→
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Figure 0.1: Graphics for Cerf function for M = S1. Left: the space S1 × [0, 1] with the
horizontal axis depicting the value of the Cerf function. Middle: the Cerf graphic, with two
cusps, two index-0 curves, and two index-1 curves. Right: The projection onto the time axis
including images of cusps.

3. if for u ∈ [0, 1] there are distinct critical points p, p′ ∈ M of fu with the same image,
then df(p,u)|T(p,u)S ̸= df(p′,u)|T(p,u)S, where S is the 1-dimensional submanifold

S = {(x, t) ∈M × [0, 1] | x is a nondegenerate critical point of ft}.

Cerf functions are dense in C∞(M × [0, 1], [0, 1]), so every pair of Morse functions for M is
connected by a path of Cerf functions.

A key tool in the analysis of Cerf functions is the Cerf graphic Γ ⊂ [0, 1] × [0, 1], which
is the image of all of the singularities through the map F : M × [0, 1] → [0, 1] × [0, 1]
defined by F (x, t) = (f(x, t), t). (See Figure 0.1 for an illustration.) Let S2 ⊆ M × [0, 1] be
the 0-dimensional submanifold consisting of the points from the second property of a Cerf
function (the cusps) and the self-intersection points from the third property. Furthermore,
let S1 ⊆M× [0, 1] be the 1-dimensional submanifold consisting of the nondegenerate critical
points of all those ft that are Morse functions, and let S0 ⊆M × [0, 1] be the codimension-0
submanifold consisting of everything not in S1 and S2. Letting π : [0, 1] × [0, 1] → [0, 1] be
the projection π(y, t) = t, this decomposition has the property that both F |Si

and (π ◦ F )Si

have constant-rank differentials for each i, and F |Si
maps onto a codimension-i immersed

submanifold.
These rank properties and local models for the S0, S1, and S2 strata are sufficient to

decompose the Cerf function “2-categorically” to obtain relations. The first direction of
decomposition is the Cerf function as a path, where we use π(F (S2)) as the singular values
for the function π ◦ F , and similar to before by choosing t outside this set we can give the
Cerf function as a composition of the sub-paths on [0, t] and [t, 1], thus giving a relation
between two Morse functions as a pair of relations through a third. This lets us reduce to
three cases for S2:
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f−→ π−→

Figure 0.2: A generic function f : S2 → [0, 1]2 whose 0-dimensional singularities consist of
two minima, a saddle, a maximum, and two cusps and whose 1-dimensional singularities
consist of six folds connecting them. Level sets of regular values of π ◦ f horizontally have
isolated minima and maxima along these folds.

• S2 is empty. Then the Cerf function ends up being induced by isotopies of M and
of the codomain [0, 1], and one can argue that this carries a decomposition for f0
to a compatible decomposition for f1 along with diffeomorphisms of each constituent
cobordism.

• S2 is a single cusp point. One may analyze the normal form from the second property
and determine that it is either a birth or a death of a canceling pair of a (k−1)-handle
and k-handle, where 1 ≤ k ≤ n.

• S2 is a pair of nondegenerate critical points with the same image. This corresponds to
a pair of handles that can be attached in either order, and at the critical moment one
may regard the handles as having disjoint attachment submanifolds.

Without the categorical language, this is the basis for Heegaard diagrams, Kirby calculus,
thin position arguments of Gabai and Scharlemann–Thompson, and so on. For specifically
categories, this analysis was carried out by [MS] to characterize the cobordism category for
surfaces with boundary (for so-called “open-closed 2D TQFTs”).

Taking this “2-categorical” decomposition of Cerf functions seriously, Schommer-Pries
generalizes the notion of a Cerf function to 2-dimensional Morse functions f : Σ → [0, 1] ×
[0, 1], whose definition involves a stratification of Σ such that (1) f and π ◦ f are constant
rank when restricted to each stratum and (2) each stratum has an associated local model
for its points. (See Figure 0.2 for an illustration.) For Cerf functions, π ◦ F was trivially
a Morse function for M × [0, 1], but for 2-dimensional Morse functions there are additional
singularities corresponding to π ◦ f being a Morse function.

Decomposing 2-dimensional Morse functions in a similar way to Cerf functions yields the
“2-categorical” decomposition of Σ. The π ◦ f decomposition yields a vertical composition
of 2-morphisms that, away from the codimension-2 singularities, the f decomposition of
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level sets yields a horizontal composition of 1-morphisms that, away from the codimension-1
singularities, yields the 0-morphisms (i.e., the objects, disjoint unions of points) of the 2-
category; each generating k-morphism is diffeomorphic to a k-disk. For relations, there is
a Cerf-like theory of paths between 2-dimensional Morse functions, whose graphics now lay
within the cube [0, 1]3. These are decomposed “3-categorically” in the same sort of manner.

There is one issue glossed over here, which comes from a desire to have the presentation
reflect the symmetric monoidal structure from disjoint unions — this additional structure
is essential to the 2-category’s finite presentation. The function f gives Σ as a “singular”
covering space over [0, 1]2, with the cardinality of a fiber changing in a controlled way when
crossing points of Γ. This covering space can have non-trivial monodromy, so it is not possible
to identify each fiber with a finite set in a locally constant way. To solve this, Schommer-
Pries introduces chambering graphs and foams, which respectively partition the 2D and 3D
graphics into codimension-0 chambers inside of which such a fiber identification is possible.
Along codimension-1 walls of these chambers there is a bijection to describe how sheets are
glued, and around codimension-2 cells there is a cocycle condition for these bijections. To
carry out this program, there is also a collection of moves for chambering graphs and foams
that are proved to be complete.

An alternative to the useful but ad hoc chambering graphs and foams is to appeal to
the fact that a monoidal 2-category is equivalently a 3-category with one object. This
suggests considering 3-dimensional Morse functions f : Σ → [0, 1]3 to decompose Σ. The
0-morphisms from the decomposition correspond to empty sets, which are the fibers outside
the image of f , and in this region the covering space trivially has trivial monodromy. A
benefit to this approach is that the pasting diagram for Σ may be regarded as being inside
[0, 1]3 itself, like with the “manifold diagrams” of Dorn [Dor18] or the “surface diagrams”
of McIntyre and Trimble [Tri10]. Using Roseman’s work [Ros98], Carter–Rieger–Saito gave
a 1-categorical description of knotted surfaces in R4 [CRS97], which Baez and Langford
extended into a 2-category [BL98]. In principle, one should be able to extract a description
of the 2-dimensional cobordism 2-category by looking at shadows of knots, however it would
be beneficial having a self-contained calculation using higher Morse theory. We will pursue
this idea for 1-categorical descriptions of graphs, using maps f : Γ→ [0, 1]2, but for surfaces
we will defer the computation for future work since it strains the scope of this thesis.

Having given all this motivation, we will now explain the basic notion we will use for
generic functions f : M → [0, 1]n. In general, we develop a version of the Thom–Boardman
classification of singularities for smooth maps between foliated manifolds, and in this case we
give [0, 1]n the standard flag foliation, whose k-dimensional leaves are the cosets of [0, 1]k ⊆
[0, 1]n for all 0 ≤ k ≤ n, or in other words the level sets of the projections πk : [0, 1]n →
[0, 1]n/[0, 1]k. It is possible to recursively construct the following stratification of M for a
dense subset of such f . We start with a single stratum, M itself, and then repeatedly apply
the following to replace strata with finer stratifications:

1. Given a stratum S, for each p ∈ S we consider the rank of d(πk ◦ f |S)p for each
0 ≤ k < n, which measures how transverse f |S is to each leaf of the foliation. Each
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possible sequence of ranks gives an associated submanifold of S, and together these
stratify S. (This ensures that each πk ◦ f |S is a submersion onto its image.)

2. Given a stratum S, a point p ∈ S might locally be in the closure of other strata whose
union is locally a submanifold. We can carry out the previous rank decomposition to
further stratify S.

3. More delicately, given a stratum S, a point p ∈ S, and a stratum S ′ whose closure
contains p, we can consider the images of S and S ′ locally as submanifolds of [0, 1]n.
There is a subspace of Tf(p)[0, 1]n that may be regarded as the tangent space of the
closure of S ′, and we stratify S based on the dimension of the intersection of this
subspace with Tf(p)f(S).

4. If the images of one or more strata intersect, we may further stratify them by how
many points from these strata map to the same point. (To avoid this getting out of
hand, this is not applied to strata for which the restriction of f is a submersion.)

In summary: the strategy is to make everything in sight be as generic as possible with respect
to each other.

This process eventually stabilizes, and furthermore it is possible to compute the codi-
mensions of each stratum obtained this way, which is useful for determining which of the
strata might be nonempty. This is important because it leaves only a finite list of strata to
characterize.

Locally the images of the strata stratify [0, 1]n, giving a graphic that is “progressive”
in a similar sense to Dorn and McIntyre–Trimble, which is the property that allows us to
produce an n-categorical decomposition of M . Strata with codimension-k images in [0, 1]n

give k-morphisms for the category.
To handle a graph G embedded in a surface Σ with this framework, for example, we can

initialize the stratification with three strata: the vertices of G, the interiors of the edges of
G, and the complement Σ \ G. For relations, we can take the product of these strata with
[0, 1] in Σ × [0, 1]. We will carry this out for surfaces with embedded 1-manifolds. We will
also consider foliations of the domain; for example in our analogue of Cerf theory we give
M × [0, 1] the codimension-1 product foliation.

It should be said this stratification is insufficient to classify singularities completely, in
the sense that strata obtain in a particular way often consist of one of multiple types of
singularities. Despite this, for small n we are still able to derive and enumerate normal
forms for each stratum using only the way in which it was constructed. This is likely
due to the fact that, forgetting the foliation, only Morin singularities appear when n ≤ 3.
These are relatively easy to analyze, and they are characterized by being those strata where
we recursively only consider whether d(f |S)p drops rank by 1. When n = 4, elliptic and
hyperbolic umbilics can also appear, which would be necessary to analyze if we were to carry
out a higher-Morse-theoretic 4-categorical decomposition of 4-manifolds
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Overview
Chapter 1 goes over the necessary singularity theory for the analysis in Chapter 2. We
review standard jet bundle material, but in we include general information about pro-objects
and pro-open sets before introducing smooth manifold germs and maps between them in
Section 1.1.3, which we use as a device to avoid needing to choose collar neighborhoods when
gluing. We provide a parameterized version of the Hadamard Lemma in Lemma 1.1.69, and
in the next section we give versions of the Malgrange Preparation Theorem, a deep theorem
that lets us solve differential equations via algebra, and we give a parameterized version in
Corollary 1.1.76. A key theorem is the Thom Transversality Theorem in Section 1.2, which
lets us assume jet extensions are transverse to any countable collection jet submanifolds.
Section 1.3 explains the types of foliations we will come across, and there is a description of
them in terms of pseudogroups.

Section 1.4 discusses stability and proves some algebraic characterizations of stability
of a germ with a foliated codomain. We use these later to prove singularity types are
equivalent to one that is polynomially defined. After that is a description of the Thom–
Boardman singularity types, with an interlude in Section 1.5.1 to calculate normal bundles
to submanifolds of Hom(V,W ) given by multiple rank conditions on multiple subspaces.

Then we enter Chapter 2, where we work out all the singularity types in a number of
situations. We replicate from scratch the definition and existence of Morse and Cerf functions
in Section 2.1 and then work out all the singularity types for curves in the plane in Section 2.3.
Starting from Section 2.4 we rederive the singularity types for Rn → Rn with n = 1, 2, 3.
This in some sense reproduces the work in [SP09], but we do it in a way that is much stricter,
which is to only use the diffeomorphism groups for the domain and codomain. Finally for
the chapter, starting from Section 2.7 we classify singularities for surfaces with embedded
curves, and what we derive are just singularities running through embedded curve, rather
than reproducing the whole calculation from the previous section.

Chapter 3 gives the presentations of the extended cobordism categories using the gener-
ators and relations we developed in the previous chapter. In Section 3.4 we show how to do
gradient flows like in Morse theory, where the answer is to use some Riemannian metric for
which the gradient is subordinate to all the singularities.

Chapter 4 is about some applications of the presentation. We define an extended TQFT
with 1-dimensional defects such that the two regions on either side are colored opposite
colors. We use this in Section 4.2 (and in particular Section 4.2.6 to give a the Krushkal
polynomial, which is an invariant of graphs in surfaces, as a simple state sum over a TQFT. In
Section 4.1.1 we give a characterization of a Frobenius algebra as a direct sum of a “radicular”
element and an element in the Jacobson radical.

The presentations for surfaces with embbedded curves are given in Figures 3.2 to 3.4,
and the black-white cobordism category presentation in Figure 4.2.
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Chapter 1

Singularity theory for decompositions

1.1 Jet bundles
This section is a review of jets and jet bundles — experts of which should free to skip
ahead. In essence, the k-jet at x ∈ M of a smooth map f : M → N is the kth-order Taylor
polynomial of f at x. This is defined in such a way that the k-jets assemble into a fiber
bundle Jk(M,N) over both M and N , and f defines a section jkf : M → Jk(M,N) called
the k-jet extension of f . For the special case of 1-jets, the jet bundle J1(M,N) can be
identified with Hom(TM, TN) and j1f with df . The k-jet of f at x depends on no more
than the germ of f at x (see Section 1.1.4).

We will follow a combination of [GG73], [Hir76], [KMS93], and [AGZV12].

Definition 1.1.1. Let M and N be smooth manifolds and p ∈ M . Suppose f and g are
smooth maps M → N . We say f and g have kth order contact at p if for every smooth
φ : N → R and γ : R → M with γ(0) = p, then φ ◦ f ◦ γ and φ ◦ g ◦ γ have the same kth
order Taylor polynomial centered at 0. The kth order contact class of f at p is the k-jet of
f at p, and it is denoted by jkfp.

Jkp (M,N) denotes the set of k-jets at p ∈ M of smooth maps M → N . The disjoint
union of these for all p ∈M is the set Jk(M,N), known as the k-jet bundle.

The source map α : Jkp (M,N) → M is defined by α(jkfp) = p, and the target map
β : Jkp (M,N) → N is defined by β(jkfp) = f(p). We denote the set of k-jets with source p
and target q by Jkp (M,N)q.

For a smooth map f : M → N , we write jkf : M → Jk(M,N) for the k-jet extension,
which is defined by p 7→ jkfp. ♢

Lemma 1.1.2. Let L, M , and N be smooth manifolds with p ∈ L and q ∈ M , and let
f, f ′ : L→M and g, g′ :M → N be smooth maps with q = f(p) = f ′(p). If jkfp = jkf ′

p and
jkgq = jkg′q, then jk(g ◦ f)p = jk(g′ ◦ f ′)p. Thus, we are justified in defining the composition
◦ : Jkq (M,N)× Jkp (L,M)q → Jkp (L,N) by jkgq ◦ jkfp = jk(g ◦ f)p.
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Proof. For all smooth φ : N → R and γ : R→ L with γ(0) = p,

(φ ◦ g) ◦ f ◦ γ = (φ ◦ g) ◦ f ′ ◦ γ

hence jk(g ◦ f)p = jk(g ◦ f ′)p. Similarly, jk(g ◦ f ′)p = jk(g′ ◦ f ′)p.

The fibers of jet bundles are functorial on the category of pointed smooth manifolds, and
in some cases the jet bundles themselves are functorial:

Definition 1.1.3. Let L, M , and N be smooth manifolds and f : L→ M and g : M → N
smooth maps. We define the following induced maps:

• g∗ : J
k(L,M)→ Jk(L,N) by g∗(jkhq) = jk(g ◦ h)q for q ∈M ,

• f ∗ : Jkf(p)(M,N)→ Jkp (L,N) by f ∗(jkhf(p)) = jk(h ◦ f)p for p ∈ L, and

• if f is a diffeomorphism, f ∗ : Jk(M,N)→ Jk(L,N) by f ∗(jkhq) = jk(h ◦ g)f−1(q). ♢

For sake of fixing notation, we recall the definition of the kth order Taylor polynomial in
multiple variables:

Definition 1.1.4. Let U ⊆ Rm be open and f : U → R be smooth. The kth order Taylor
polynomial of f at p ∈ U is

T kfp =
∑
|I|≤k

∂If(0)(x− p)I

I!

where I ∈ Nm is a multiindex, and

|I| = I1 + · · ·+ Im

I! = I1! · · · Im!

∂If =
∂|I|f

∂I1x1 . . . ∂Imxm
(x− p)I = (x1 − p1)I1 · · · (xm − pm)Im .

For smooth f : U → Rn, then the kth order Taylor polynomial of f at p ∈ Rm is

T kfp = (T k(f1)p, . . . , T
k(fn)p),

where fi is the ith component of f . ♢

Lemma 1.1.5. Let M and N be smooth manifolds and p ∈M , and suppose f, f ′ :M → N
are smooth maps with f(p) = f ′(p). Using the notation for local homeomorphisms (see
Definition 1.3.1), let φ : M →◦ Rm be a chart at p with φ(p) = 0 and let ψ : N →◦ Rn be a
chart at f(p). Then jkfp = jkf ′

p if and only if T k(ψ ◦ f ◦ φ−1)0 = T k(ψ ◦ f ′ ◦ φ−1)0.
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Proof. By Lemma 1.1.2, since φ and ψ are locally invertible, jkfp = jkf ′
p if and only if

jk(ψ ◦ f ◦ φ−1)0 = jk(ψ ◦ f ′ ◦ φ−1)0. Hence we may reduce to the case of smooth maps
f, f ′ : Rm → Rn sending 0 to 0. That is, we want to show jkf0 = jkf ′

0 if and only if
T kf0 = T kf ′

0.
First suppose T kf0 = T kf ′

0. Whenever ω : Rn → R and γ : R → Rm are smooth with
γ(0) = 0, then ω ◦f ◦γ and ω ◦f ′ ◦γ have the same kth order Taylor series at 0 by the chain
rule. Hence, jkf0 = jkf ′

0.
Conversely, suppose jkf0 = jkf ′

0. Let πi : Rn → R be the standard projection for
1 ≤ i ≤ n, and for arbitrary constants c1, . . . , cm consider maps γ(t) = (c1t, . . . , cmt). Since
πi ◦ f ◦ γ and πi ◦ f ′ ◦ γ have the same kth order Taylor series, we have∑

|I|≤k

∂Ifi(0)c
I

I!
=
∑
|I|≤k

∂If
′
i(0)c

I

I!

where cI = cI11 · · · cImm for each multiindex I. This is an equality between symmetric polyno-
mials in c1, . . . , cn, hence we can deduce ∂Ifi(0) = ∂If

′
i(0) for all |I| ≤ k and i.

We have so far only defined Jk(M,N) as a set, but it has the structure of a fiber bundle
over both M and N with respective projections α and β. We will first describe Jk(M,N)
when both M and N are open subsets of Euclidean spaces. Let P k

m denote the vector space
of polynomials in m variables of degree at most k. We give P k

m a smooth structure by using
the basis of monomials to identify it with a Euclidean space of dimension (k+m)!

k!m!
. Given open

subsets U ⊆ Rm and V ⊆ Rn we define the function

T kU,V : Jk(U, V )→ U × (P k
m)

n

σ 7→ (α(σ), T kσα(σ)).

The Taylor polynomial T kσα(σ) makes sense since the choice of smooth representative for
σ does not matter due to Lemma 1.1.5. By the same lemma, we see T kU,V is injective. We
define smooth maps α′ : U × (P k

m)
n → U and β′ : U × (P k

m)
n → V by α′(x, p) = x and

β′(x, p) = p(x), and we see these and the other functions form a commutative diagram:

Jk(U, V ) U × (P k
m)

n

U × V

Tk
U,V

α×β α′×β′

We use this to define a smooth structure on Jk(U, V ). In fact, T kU,V maps homeomorphically
onto the smooth submanifold (β′)−1(V ) = {(x, p) | p(x) ∈ V }. The following lemma implies
that Jk(M,N) is a smooth fiber bundle over M × N , where given charts φ : M →◦ Rm

and ψ : N →◦ Rn, then Jk(imφ, imψ) is used as a local trivialization of Jk(M,N) over
domφ× domψ.
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Lemma 1.1.6 ([GG73, Lemma II.2.6]). With the above notation, suppose U ′ ⊆ Rm and
V ′ ⊆ Rn are open, g : U → U ′ is a diffeomorphism, and h : V → V ′ is a smooth map. Then

T kU ′,V ′ ◦ (g−1)∗ ◦ h∗ ◦ (T kU,V )−1 : (β′)−1(V )→ U ′ × (P k
m)

n

is smooth.

Proof. This map is defined by (x, p) 7→ (g(x), T k(h◦p◦g−1)g(x)), where x ∈ U and p ∈ (P k
m)

n is
such that p(x) ∈ V . The first component is smooth since g is smooth. The second component
is smooth since by the chain rule the coefficients of the kth Taylor polynomial are smooth
functions of p and g(x).

Theorem 1.1.7 ([GG73, Theorem II.2.7], [KMS93, 12.4]). If M and N are smooth mani-
folds, then

• Jk(M,N) is a smooth manifold of dimension m+ n (k+m)!
k!m!

.

• α : Jk(M,N)→ M , β : Jk(M,N)→ N , and α× β : Jk(M,N)→ M ×N are smooth
submersions, each giving Jk(M,N) the structure of a fiber bundle.

• If h : N → N ′ is a smooth map, then h∗ : J
k(M,N)→ Jk(M,N ′) is smooth.

• If h : M ′ → M is a diffeomorphism, then h∗ : Jk(M,N)→ Jk(M ′, N) is a diffeomor-
phism.

• If f : M → N is smooth, then the k-jet extension jkf : M → Jk(M,N) is a smooth
section of α.

Remark 1.1.8. One can identify J1
0 (R,M) with TM thought of as velocity vectors, since for

σ ∈ J1
0 (R,M) and φ :M → R, the value of ∂

∂t
|t=0(φ◦σ) does not depend on the representative

for σ. This gives J1
0 (R,M) the structure of a vector bundle. There is also a vector bundle

structure for J1(M,R)0 from the fact that R is a vector space, and J1(M,R)0 can be identified
with T ∗M since the map J1

p (M,R)0 ⊗ J1
0 (R,M)p → R given by τ ⊗ σ 7→ ∂

∂t
|t=0(τ ◦ σ) is a

nondegenerate pairing.
For σ ∈ J1

p (M,N)q, the induced map σ∗ : J1
0 (R,M)p → J1

0 (R, N)q is linear, and in fact
we can view J1(M,N) as a vector bundle over M × N , giving an isomorphism of vector
bundles

J1(M,N) ∼= Hom(TM, TN),

where Hom(TM, TN)(p,q) = Hom(TpM,TqN). From this point of view, j1f can be identified
with df :M → Hom(TM, f ∗TN), which may be regarded as a section over the graph of f .

However, Jk(M,N) is not a vector bundle for general k. It at least has a canonical
section (over M × N) of jets of constant functions. See Section 1.1.4 for the well-known
characterization of Jkp (M,N)q as ring homomorphisms. ■
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Lemma 1.1.9. Let M and N be smooth manifolds and k, ℓ ∈ N. The map

Jk+ℓ(M,N)→ Jk(M,J ℓ(M,N))

jk+ℓfp 7→ jk(jℓf)p

is well-defined and smooth. In particular, we get a smooth map of bundles over M :

J ℓ+1(M,N)→ Hom(TM, TJ ℓ(M,N))

jℓ+1fp 7→ d(jℓf)p.

Proof. See, for example, the proof of [GG73, II.3.4]. The idea is that if f ∈ C∞(M,N),
then jℓf : M → J ℓ(M,N) is smooth by Theorem 1.1.7. Hence, this defines an element of
Jk(M,J ℓ(M,N)). The k-jet of jℓ depends smoothly on only the partial derivatives of f up
to order k+ℓ, so this map C∞(M,N)→ Jk(M,J ℓ(M,N)) factors through Jk+ℓ(M,N). The
second statement follows from Remark 1.1.8.

Remark 1.1.10. The sequence of jet bundles assemble into an inverse system

J0(M,N)← J1(M,N)← J2(M,N)← · · ·

by maps jk+1fp 7→ jkfp, which is, in coordinates, Taylor polynomial truncation. We will
only be using this inverse system to lift submanifolds of jet bundles to a common higher jet
bundle, but the inverse limit of this system, the infinite jet bundle J(M,N), can be thought
of as a bundle of infinite Taylor series. By a classic theorem of Borel, every element of
J(M,N) is in fact the infinite Taylor series of a smooth map M → N . ■

1.1.1 Generalities about pro-objects

We will be using various notions of germs, and to make these precise this section collects
background on the theory of pro-objects of a category. Pro-objects are, informally, formal
cofiltered limits of objects. In the Bourbaki formulation of topology [Bou98], pro-objects
appear extensively in the form of filters on a topological space, where they may be regarded
as “generalized sets.”

An example of how pro-objects are “generalized spaces” is in Stone duality. The category
FinSet of finite sets may be regarded as the category of finite discrete topological spaces.
Using the idea from algebraic geometry that the opposite category of a category of spaces
is its category of algebras, then it’s significant that FinSetop is equivalent to the category
FinBool of finite boolean algebras. General boolean algebras are filtered colimits of finite
boolean algebras (which is to say Bool is equivalent to Ind(FinBool)), and so the category
Boolop of spaces is equivalent to Pro(FinSet), the category of profinite sets. Profinite sets
have concrete descriptions as inverse limits of finite sets in Set.

Without exploring any sort of formal duality, an example we will consider is the category
Man of smooth manifolds and the functor C∞ : Manop → R-Alg that takes a smooth manifold
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to its ring of functions. The category R-Alg already has all filtered colimits, and so we can
extend C∞ to be a functor Pro(Man)op → R-Alg, whose domain consists of “generalized
smooth manifolds.” The infinite jet bundle from Remark 1.1.10 is one such example of an
object in Pro(Man). For decomposition purposes, we are interested in “generalized smooth
submanifolds” that arise from formal intersections of open submanifolds. These have what
Schommer-Pries in [SP09] calls a halation structure, which gives a tidy way to compose
cobordisms without needing to choose arbitrary collar neighborhoods of the boundary.

For the following, we collect results from [Isa02], Lurie’s account in [Lur18, Section 6.1],
and properties of limits in the reference [Kel05, Section 3.4].

We start by working through facts about copresheaves for categories that admit finite
limits to try, and the definition of the category of pro-objects will appear in Definition 1.1.24
along with basic properties starting in Theorem 1.1.25.

Definition 1.1.11. Suppose C is a category. It is cofiltered if every finite diagram in C has a
cone, and it is finitely complete it admits all finite limits (evidentally, every finitely complete
category is cofiltered). Dually, C is filtered if every finite diagram in C has a cocone.

A cofiltered limit in C is a limit limi∈I F (i) for F : I → C a functor with I a cofiltered
category. Dually, a filtered colimit in C is a colimit colimi∈I F (i) for F : I → C a functor
with I a filtered category. ♢

Similarly to how finitely complete categories are characterized by having a terminal ob-
ject and admitting binary products and equalizers, recall that a cofiltered category C is
characterized by three properties:

1. There exists an object of C.

2. For all objects x, y ∈ C there exists an object z ∈ C and morphisms z → x and z → y.

3. For all objects x, y ∈ C and morphisms f, g : x → y there is an object z ∈ C and
morphism e : z → x such that e ◦ f = e ◦ g.

From these three properties one may deduce that every finite diagram in C has a cone.

Example 1.1.12. Suppose P is a poset thought of as a category, where for x, y ∈ P with
x ≤ y we have a morphism x → y. A subset F ⊆ P is an order filter if the following
conditions hold:

1. F is nonempty.

2. F is downward directed (for every x, y ∈ F , there is some z ∈ F such that z ≤ x and
z ≤ y).

3. F is upward closed (for every x ∈ F and y ∈ P , if x ≤ y then y ∈ F ).
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Since morphism sets in P are subsingletons, then the first two conditions of an order filter
imply that P is a cofiltered category. The third condition is unnecessary for this.

The poset Open(X) of open subsets of a topological space X is finitely complete (and
thus a cofiltered category) since it is a meet-semilattice with respect to intersections. ♢

Definition 1.1.13. Suppose C and D are finitely complete categories. We use [C,D] or
Fun(C,D) to denote the category of functors from C to D. A functor F : C → Set is left
exact if for every finite diagram G : I → C then there is an isomorphism

F (lim
i∈I

G(i)) ≈ lim
i∈I

F (G(i)).

We write Funlex(C,D) ⊆ Fun(C,D) for the full subcategory of left exact functors. ♢

For a small category C, we have the hom bifunctor C(−,−) : Cop × C → Set, and from
this we get the contravariant Yoneda embedding functor Y : Cop → Fun(C, Set) defined by
Y (c) = C(c,−) on objects. Elements of Fun(C, Set) are known as copresheaves , and functors
of the form C(c,−) are known as representable copresheaves . The Yoneda lemma is that,
for all c ∈ C and F ∈ Fun(C, Set), we have a bijection Nat(C(c,−), F ) ≈ F (c) defined by
η 7→ ηc(idc) that is natural in both c and F .

Lemma 1.1.14. Suppose C is a finitely complete small category. For all c ∈ C we have that
C(c,−) ∈ Funlex(C, Set).

Proof. This is a simple matter of expanding definitions. Suppose F : I → C is a finite
diagram. Then since Set is complete and the hom functor is continuous,

C(c,−)(lim
i∈I

F (i)) ≈ C(c, lim
i∈I

F (i)) ≈ lim
i∈I
C(c, F (i)) ≈ lim

i∈I
C(c,−)(F (i)).

We review the well-known fact that every copresheaf is a colimit of representable co-
presheaves, which will be stated in Lemma 1.1.15. Given a functor F : C → Set, its category
of elements el(F ) has as objects pairs (c, x) for c ∈ C and x ∈ F (c) and has as morphism
sets

el(F )((c, x), (d, y)) := {f ∈ C(c, d) | F (f)(x) = y}.
The category of elements has a projection functor el(F )→ C defined by (c, x) 7→ c on objects.

It is a fact that for G ∈ Fun(C, Set) that there is a bijection

Nat(F,G) ≈ lim
(c,x)∈el(F )

G(c)

defined by η 7→ ((c, x) ∈ el(F ) 7→ ηc(x)), and it is natural in F andG. See for example [Kel05,
Eq. 3.30].

Lemma 1.1.15. Suppose C is a small category. For all F ∈ Fun(C, Set) we have

F ≈ colim
(c,x)∈el(F )op

C(c,−),

which is to say that F is a colimit of representable copresheaves.
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Proof. Let G ∈ Fun(C, Set) be arbitrary. The following bijections are natural in G:

Nat( colim
(c,x)∈el(F )op

C(c,−), G) ≈ lim
(c,x)∈el(F )

Nat(C(c,−), G)

≈ lim
(c,x)∈el(F )

G(c)

≈ Nat(F,G).

Hence Nat(colim(c,x)∈el(F )op C(c,−),−) ≈ Nat(F,−), and thus by the Yoneda lemma we have
that colim(c,x)∈el(F )op C(c,−) ≈ F .

Warning 1.1.16. Colimits in the category Funlex(C, Set) need not coincide with colimits
in Fun(C, Set). For example, if C is finitely complete then the colimit of the empty diagram
in Funlex(C, Set) is the functor c 7→ C(⊤,−) where ⊤ ∈ C is the terminal object, but as a
colimit in Fun(C, Set) this is instead c 7→ ∅. We see in Lemma 1.1.19 that filtered colimits
can be safely calculated as colimits in Fun(C, Set). ♢

Lemma 1.1.17. Suppose C is a finitely complete small category and F ∈ Funlex(C, Set).
Then el(F ) is a cofiltered small category.

Proof. Let D : I → el(F ) be a finite diagram. For i ∈ I, write (ci, xi) = D(i) for the
components. We have that limi∈I ci exists and that there is a bijection f : limi∈I F (ci) →
F (limi∈I ci). It is easy to check that (limi∈ci ci, f(i ∈ I 7→ xi)) is a cone for D.

Lemma 1.1.18. Suppose C is a finitely complete small category. For all F ∈ Funlex(C, Set)
we have that F is a small filtered colimit of representable copresheaves.

Proof. By Lemma 1.1.15, we have that F is a colimit of representable copresheaves over
the category el(F )op. It suffices to show that el(F ) is a cofiltered category, which we did in
Lemma 1.1.17.

Lemma 1.1.19. Suppose C is a finitely complete small category. Let D : I → Funlex(C, Set)
be a diagram with I a small filtered category. Then colim

Fun(C,Set)
i∈I D(i) is left exact. Hence,

Funlex(C, Set) admits all small filtered colimits.

Proof. The limit F = colim
Fun(C,Set)
i∈I D(i) exists since Fun(C, Set) is cocomplete, where for

c ∈ C we have F (c) = colimi∈I D(i)(c). Let E : J → C be a finite diagram. Then

F (limC
j∈J E(j)) = colimSet

i∈I D(i)(limC
j∈J E(j))

≈ colimSet
i∈I lim

Set
j∈J D(i)(E(j))

≈ limSet
j∈J colim

Set
i∈I D(i)(E(j))

= limSet
j∈J F (E(j))

since in Set finite limits commute with filtered colimits (see [ML98, IX.2.1]). Therefore F is
left exact.
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Lemma 1.1.20. Suppose C is a finitely complete small category. Let D : I → Funlex(C, Set)
be a small diagram. Then lim

Fun(C,Set)
i∈I D(i) is left exact. Hence, Funlex(C, Set) admits all

small limits.

Proof. This is similar to Lemma 1.1.19 but we replace “colim” with “lim” and instead make
use of the fact that small limits commute.

Lemma 1.1.21. Suppose C is a finitely complete small category. Let D : I×J → Funlex(C, Set)
be such that I is finite and J is a small filtered category. Then

limi∈I colimj∈J D(i, j) ≈ colimj∈J lim
i∈I

D(i, j).

Proof. Both of these (co)limits exist by Lemma 1.1.19 and Lemma 1.1.20. We have that for
all c ∈ C that

limi∈I colimj∈J D(i, j)(c) ≈ colimj∈I lim
i∈J

D(i, j)(c),

and this is natural in c, hence these bijections define a natural isomorphism between the
functors.

Lemma 1.1.22. Suppose C is a finitely complete small category. Let D : I → C be a finite
diagram. Then

colim
Funlex(C,Set)
i∈Iop C(D(i),−) ≈ C(lim

i∈I
D(i),−).

Proof. Since Fun(C, Set) is cocomplete, we know F = colim
Fun(C,Set)
i∈Iop C(D(i),−) exists, and

what remains is to show that F is left exact. Let E : J → C be a finite diagram. Then,

F (lim
j∈J

E(j)) = colim
i∈Iop

C(D(i), lim
j∈J

E(j))

≈ colim
i∈Iop

lim
j∈J
C(D(i), E(j))

≈ lim
j∈J

colim
i∈Iop

C(D(i), E(j))

= lim
j∈J

F (E(j)),

where the colimit and limit commute since I is cofiltered and J is finite.

Lemma 1.1.23. Suppose C is a finitely complete small category. Let D : I → C be a small
diagram such that colimi∈I D(i) exists. Then

lim
Funlex(C,Set)
i∈Iop C(D(i),−) ≈ C(colimi∈I D(i),−).

Proof. This is continuity of the hom functor.

We now give a definition of the category of pro-objects in Definition 1.1.24, which will
be followed up with the equivalent version from [Isa02] in Theorem 1.1.29.



CHAPTER 1. SINGULARITY THEORY FOR DECOMPOSITIONS 17

Definition 1.1.24. Suppose C is a finitely complete small category. Then

Pro(C) := Funlex(C, Set)op

is the category of pro-objects in C. Using the Yoneda embedding C ↪→ Pro(C) we regard C
as a subcategory of Pro(C) and identify c ∈ C with the pro-object C(c,−). ♢

Theorem 1.1.25. Suppose C is a finitely complete small category.

1. The embedding C ↪→ Pro(C) preserves finite limits and all small colimits.

2. Pro(C) admits all colimits (i.e., it is cocomplete).

3. Pro(C) is admits all small cofiltered limits.

4. Every object C in Pro(C) is a small cofiltered limit of objects in C, in the sense that
C ≈ lim

Pro(C)
i∈I F (i) for some small cofiltered diagram F : I → C.

5. For C ∈ Pro(C) and d ∈ C, Pro(C)(C, d) ≈ C(d), and this is natural in both C and d.

6. For D : I × J → Pro(C) a diagram such that I is finite and J is a small cofiltered
category,

colim
i∈I

lim
j∈J

D(i, j) ≈ lim
j∈J

colim
i∈I

D(i, j).

Proof. (1) is the dual of Lemmas 1.1.22 and 1.1.23, (2) is the dual of Lemma 1.1.20, (3) is
the dual of Lemma 1.1.19, (4) is the dual of Lemma 1.1.18, (5) is the Yoneda lemma, and
(6) is the dual of Lemma 1.1.21.

Remark 1.1.26. The category Pro(C) is finitely complete, too, which is Corollary 1.1.41. ■

Lemma 1.1.27. Suppose C is a finitely complete small category. Let D : I → C and
E : J → C be small cofiltered diagrams. Then, identifying D with lim

Pro(C)
i∈I D(i) and E with

lim
Pro(C)
j∈J E(j), we have that

Pro(C)(D,E) ≈ lim
j∈J

colim
i∈I
C(D(i), E(j)).

Proof. This follows from exactness of the hom functor and the Yoneda lemma:

Pro(C)(D,E) = Pro(C)(limPro(C)
i∈I D(i), lim

Pro(C)
j∈J E(j))

≈ limSet
j∈J Pro(C)(lim

Pro(C)
i∈I D(i), E(j))

= limSet
j∈J Nat(C(E(j),−), colim

Fun(C,Set)
i∈Iop C(D(i),−))

≈ limSet
j∈J colim

Set
i∈I C(D(i), E(j)).
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Remark 1.1.28. There’s a relatively straightforward formulation of morphism composition
from the point of view of the representation in Lemma 1.1.27. SupposeD : I → C, E : J → C,
and F : K → C are small cofiltered diagrams regarded as pro-objects. Let

f ∈ lim
j∈J

colim
i∈I
C(D(i), E(j)) and g ∈ lim

k∈K
colim
j∈J
C(E(j), F (k))

be morphisms. We construct

g ◦ f ∈ lim
k∈K

colim
i∈I
C(D(i), F (k))

using the following observation. The morphism f has the data that for all j ∈ J there is an
i ∈ I and an element fj ∈ C(D(i), E(j)), and for g, for all k ∈ K there is a j ∈ J and an
element gk ∈ C(E(i), F (j)).

Hence, the data for g◦f is that for all k ∈ K, we take the j ∈ J and the gk ∈ C(E(j), F (k))
from g and then take the i ∈ I and the fj ∈ C(D(i), E(j)) from f , and then for this i ∈ I we
set (g◦f)k := gk◦fj ∈ C(D(i), F (k)). This is reminiscent of the continuity of the composition
of continuous functions. ■

We give the following alternative definition of the category of pro-objects, which appears
in [Isa02].

Theorem 1.1.29 (Category of pro-objects, second version). Suppose C is a small category.
The category of pro-objects in C, which we temporarily denote Pro′(C), is the category whose
objects are small cofiltered diagrams I → C and whose morphisms sets for pro-objects X :
I → C and Y : J → C are given by

Pro′(C)(X, Y ) := lim
j∈J

colim
i∈I
C(Xi, Yj).

Composition is defined as in Remark 1.1.28. There is an embedding C → Pro′(C) by sending
c ∈ C to the diagram C : ∗ → C with C(∗) = c.

If C is finitely complete, the functor F : Pro′(C) → Pro(C) defined by (C : I → C) 7→
lim

Pro(C)
i∈I Ci is an equivalence.

Proof sketch. The inverse is that every pro-object is a cofiltered limit.

Recall that for a functorX : I → J , a description of the comma category (X ↓ j) for j ∈ J
is that the set of objects is

∏
i∈I J(X(i), j) and the set of morphisms from (i, f ∈ J(X(i), j))

to (i′, f ′ ∈ J(X(i′), j)) is the set of all g ∈ I(i, i′) such that the following diagram commutes:

X(i) X(i′)

j

f

D(g)

f ′

Recall also that a category I is connected if there is exactly one equivalence class for the
equivalence relation generated by asserting that i, j ∈ I are related if there exists a k ∈ I
and morphisms k → i and k → j.
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Definition 1.1.30. A functor X : I → J is final if for all j ∈ J the category (X ↓ j) is
nonempty and connected. ♢

The significance is the following theorem:

Theorem 1.1.31 ([ML98, Theorem IX.3.1]). If X : I → J is a final functor and F : J →
C is a functor such that colim(F ◦ X) exists, then colimF exists and the canonical map
colim(F ◦X)→ colimF is an isomorphism.

Corollary 1.1.32. Suppose C is a finitely complete small category, F : J → C is a small
cofiltered diagram, and X : I → J is a final functor between small cofiltered categories. Then

lim
Pro(C)
j∈J F (j) ≈ lim

Pro(C)
i∈I F (X(i)).

There is a useful tool for recognizing final functors between cofiltered categories:

Lemma 1.1.33 ([SP09, Lemma 3.26]). Let X : I → J be a functor between small cofiltered
categories. Then X is final if and only if for every j ∈ J the category (X ↓ j) is cofiltered.

Moreover, if X is full then X is final if and only if for every j ∈ J there exists an i ∈ I
and a morphism X(i)→ j.

Remark 1.1.34. Suppose P is a poset category, F ⊆ P is an order filter, and F ′ ⊆ P is a
cofiltered subcategory such that F ′ ⊆ F . If the inclusion functor F ′ ↪→ F is final, then the
upward closure of F ′ is F . The upward closed axiom of order filters can be thought of as a
normalization so that every inclusion that induces a final functor is an equality. ■

Theorem 1.1.35. Suppose C is a finitely complete small category, D is a small category
admitting cofiltered limits, and f : C → D is a functor. Then there is a functor F : Pro(C)→
D that preserves cofiltered limits such that the composition C ↪→ Pro(C) → D is naturally
isomorphic to f . This extension is essentially unique.

If Fun′(Pro(C),D) is the full subcategory of functors that preserve small cofiltered limits,
the functor Fun′(Pro(C),D)→ Fun(C,D) induced by precomposition with C ↪→ Pro(C) is an
equivalence.

Proof. Define F by

F (C) = limD
(c,x)∈el(C) f(c).

We see that for C ∈ Pro(C) and d ∈ D that

D(d, F (C)) ≈ limSet
(c,x)∈el(C)D(d, f(c)) ≈ Nat(C, (c 7→ D(d, f(c))),

and this is natural in C and d. Hence, if limPro(C)
i∈I Ci is a cofiltered limit,

D(d, F (limPro(C)
i∈I Ci)) ≈ Nat(lim

Pro(C)
i∈I Ci, (c 7→ D(d, f(c))))

≈ limSet
i∈I Nat(Ci, (c 7→ D(d, f(c))))

≈ limSet
i∈I D(d, F (Ci))

≈ D(d, limD
i∈I F (Ci)).
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Since this is natural in d, we have that F (limPro(C)
i∈I Ci) ≈ limD

i∈I F (Ci), and so F preserves
cofiltered limits.

Now for essential uniqueness of the extension. If F ′ : Pro(C) → D is another extension,
then since it preserves cofiltered limits we have that for all C ∈ Pro(C) that

F ′(C) ≈ F ′(lim
Pro(C)
(c,x)∈el(C) c)

≈ limD
(c,x)∈el(C) F

′(c),

hence F ′(C) is essentially determined by its restriction to C, which is to say it is essentially
determined by f .

Corollary 1.1.36. Suppose C and D are finitely complete small categories and f : C → D
is a functor. Then there is an induced functor F : Pro(C)→ Pro(D) that preserves cofiltered
limits such that the compositions C ↪→ Pro(C)→ Pro(D) and C → D ↪→ Pro(D) are naturally
isomorphic. This extension is essentially unique.

If f is left exact, then so is the induced functor F , because F is right adjoint to the
functor f ∗ : Pro(D)→ Pro(C) defined by f ∗(D) = D ◦ f with D regarded as a functor.

Proof. We have the composition C f−→ D ↪→ Pro(D), which is a functor from a finitely
complete small category to a small category that admits cofiltered limits. Hence by Theo-
rem 1.1.35 there is an essentially unique lift Pro(C)→ Pro(D).

Now suppose that f is left exact. The claim is that for all C ∈ Pro(C) and D ∈ Pro(D)
that we have isomorphisms

Pro(C)(f ∗(D), C) ≈ Pro(D)(D,F (C))

natural in C and D. We calculate that

Pro(D)(D,F (C)) = Pro(D)(D, limPro(D)
(c,x)∈el(C) f(c))

≈ limSet
(c,x)∈el(C) Pro(D)(D, f(c))

≈ limSet
(c,x)∈el(C)D(f(c))

≈ Nat(C, f ∗(D))

= Pro(C)(f ∗(D), C).

Warning 1.1.37. Cofiltered limits in C need not coincide with cofiltered limits in Pro(C).
For example, let P(R) be the poset category of all subsets of R, which contains Open(R) as a
subcategory. The inclusion Open(R) ↪→P(R) induces a functor F : Pro(Open(R))→P(R)
that preserves cofiltered limits. Let I ⊆ Open(R) be the subcategory of all open subsets
that contain 0, which is cofiltered. On one hand, limOpen(R)

s∈I s = ∅ since this is the only open
set contained in every open set from I, but on the other lim

Pro(Open(R))
s∈I s ̸= ∅ since

F (lim
Pro(Open(R))
s∈I s) = lim

P(R)
s∈I s =

⋂
s∈I

s = {0}.

This F functor takes formal intersections of open sets to their intersection. ♢
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Suppose C is a finitely complete small category and I is a small category. Consider the
functor Fun(I, C)→ Fun(I,Pro(C)) induced by C ↪→ Pro(C). Since Pro(C) admits small cofil-
tered limits, so does Fun(I,Pro(C)), hence the functor induces an essentially unique functor
Pro(Fun(I, C))→ Fun(I,Pro(C)). In many useful situations this functor is an equivalence.

Definition 1.1.38. A category I is loopless if every endomorphism is an identity, and I is
cofinite if I is loopless and for all i ∈ I there are only finitely many j such that I(i, j) is
nonempty. ♢

Theorem 1.1.39 ([Isa02, 3.3, 3.6, 3.8]). Suppose C is a finitely complete small category and
I is a small category. Let F : Pro(Fun(I, C))→ Fun(I,Pro(C)) denote the functor above.

• If I is finite, then F is an equivalence.

• If I is cofinite, then F is essentially surjective.

• If the morphism sets of I are finite, then F is essentially surjective.

Lemma 1.1.40 (Level representations). Suppose C is a finitely complete small category
and I a small category. Suppose the above functor F : Pro(Fun(I, C)) → Fun(I,Pro(C)) is
essentially surjective.

For every functor C : I → Pro(C) there exists a functor C ′ : I × J → C with J a small
cofiltered category such that C is equivalent to the functor i 7→ lim

Pro(C)
j∈J C ′(i, j). This functor

C ′ is known as a level representation of C.

Proof. Since F is essentially surjective, there is a pro-object in Pro(Fun(I, C)) whose im-
age through F is isomorphic to C. We may represent this pro-object as a cofiltered limit
over some cofiltered category J of elements of Fun(I, C), and then we may use the natural
isomorphism Fun(J,Fun(I, C)) ≈ Fun(I × J,C).

Corollary 1.1.41. Suppose C is a finitely complete small category. Then Pro(C) is finitely
complete.

Proof. Let F : I → Pro(C) be a finite diagram. By Theorem 1.1.39 and Lemma 1.1.40 there
is a level representation F ′ : I × J → C for some cofiltered small category J . Then one can
check that lim

Pro(C)
i∈I F (i) is lim

Pro(C)
j∈J limC

i∈I F
′(i, j).

1.1.2 Pro-open sets

For a topological space X, the poset category Open(X) is finitely complete since finite
intersections of open sets are open. Hence, we have a category Pro(Open(X)) of pro-open
sets .1 Elements of Pro(Open(X)) may be regarded as formal intersections of open sets in that

1This is admittedly a misleading hyphenation, where “pro-(open set)” would be more accurate. Another
option is “open pro-subset” since it does turn out that pro-open sets are a kind of pro-object in the category
of subsets. A dear colleague suggested “proöpen set,” but the only time one meets a dieresis is literature of
the non-mathematical type.
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each U ∈ Pro(Open(X)) is represented by some small cofiltered diagram U : I → Open(X)

such that U = lim
Pro(Open(X))
i∈I Ui. Pro-open sets may be thought of as being “generalized open

sets,” we give a characterization in Lemma 1.1.46 that they are essentially order filters on
Open(X). This may seem like an unnecessarily abstract approach for this object, but we feel
that pro-objects motivate and give intuition for finding canonical constructions for germs.

Let us start by examining a basic invariant of pro-open sets. The inclusion Open(X) ↪→
P(X) into the poset of all subsets of X induces a functor

ker : Pro(Open(X))→P(X)

since P(X) admits all cofiltered limits.2 Representing pro-open sets U ∈ Pro(Open(X)) by
small cofiltered diagrams I → Open(X), this functor has a simple description:

kerU =
⋂
i∈I

Ui.

This functor is not in general an equivalence, but one can see that it is full and faithful when
X is a T1 space (Lemma 1.1.49).

We will now develop theory of pro-open sets. We would like to think of pro-open sets
as if they were sets as much as possible, but to avoid some pitfalls we will use the following
conventions:

• We use ⊆ and ∪ for both pro-open sets and open sets.

• We use ∩ for finite intersections of both pro-open sets and open sets.

• We use limit notation for infinite intersections since Open(M) does not generally have
them.

• When we work with arbitrary subsets A, we always write N (A) for the pro-open set
generated by A since, for example, only N (A ∩B) ⊆ N (A) ∩N (B) generally holds.

In this section we use the convention that open sets are lower case (u, v, . . . ) and pro-open
sets are upper case (U , V , . . . ).

Lemma 1.1.42. Suppose X is a topological space. The category Pro(Open(X)) is thin (i.e.,
it is a preorder), and the inclusion Open(X) ↪→ Pro(Open(X)) is full. Hence, we are justified
in using the notation U ⊆ V for Pro(Open(X))(U, V ) ̸= ∅.

Proof. Suppose U : I → Open(X) and V : J → Open(X) are pro-objects. Then

Pro(Open(X))(U, V ) ≈ limj∈J colimi∈I Open(X)(Ui, Vj)

≈ limj∈J colimi∈I {∗ | Ui ⊆ Vj}
≈ limj∈J {∗ | ∃i ∈ I, Ui ⊆ Vj}
≈ {∗ | ∀j ∈ J,∃i ∈ I, Ui ⊆ Vj}.

Hence, these morphism sets are subsingletons for all such U and V .
2This usage of “kernel” matches the corresponding notion in filter theory.
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Corollary 1.1.43. Suppose X is a topological space and U, V ∈ Pro(Open(X)). Then
U ⊆ V if and only if for all v ⊇ V there exists some u ⊇ U such that u ⊆ v, where u and v
are open sets.

Corollary 1.1.44. Suppose X is a topological space and U ∈ Pro(Open(X)). Then

U ≈ lim
Pro(Open(X))
u⊇U u

where the limit ranges over all u ∈ Open(X) such that U ⊆ u.

Proof. One can check that, regarding U as an element of Funlex(Open(X), Set), that el(U)
is equivalent to the full subcategory of Open(X) generated by all u ∈ Open(X) such that
U ⊆ u. Hence lim

Pro(Open(X))
(u,x)∈el(U) u ≈ lim

Pro(Open(X))
u⊇U u.

Corollary 1.1.45. Suppose X is a topological space and f : Open(X) → C is a func-
tor to a small category admitting cofiltered limits. The essentially unique functor F :
Pro(Open(X))→ C that extends f is given by F (U) = limD

u⊇U f(u).

Lemma 1.1.46. Suppose X is a topological space. There is a one-to-one correspondence
between order filters on Open(X) and isomorphism classes of Pro(Open(X)). In particular,
letting F denote the set of order filters on Open(X), the function

F → Pro(Open(X))

F 7→ (u 7→ {∗ | u ∈ F})

is injective and essentially surjective, and the function

Pro(Open(X))→ F
U 7→ {u ∈ Open(X) | U ⊆ u}

is surjective and essentially injective.

Proof. Suppose we have U ∈ Pro(Open(X)) represented by U : I → Open(X) with I a
small cofiltered category. For all u ∈ Open(X),

U(u) ≈ Pro(Open(X))(U, u) ≈ {∗ | ∃i ∈ I, Ui ⊆ u}.

Hence, U is isomorphic to a pro-object whose values are either ∅ or {∗}. We can use these
objects as the skeleton of the category Pro(Open(X)). It suffices to show that this skeleton
is in bijective correspondence with F .

For U in the skeleton, U is determined by the set {u ∈ Open(X) | U ⊆ u} (and is, in
particular, isomorphic to the object set for el(U)), and one can check that this is an order
filter on Open(X) from the conclusion of the above calculation.

Conversely, given an order filter F ⊆ Open(X), let U ∈ Pro(Open(X)) be the pro-object
defined by U(u) = {∗ | u ∈ F} for all u ∈ Open(X). Upward closure implies functoriality of
U , nonemptiness of F implies F (X) = {∗} is the terminal object, and downward directedness
implies F preserves binary products, thus F is left exact since Open(X) is a poset category.
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Remark 1.1.47. Here is how we can use reindexing lemmas to yield a similar result, which
also reveals that the significance of filters is that they serve as the indexing categories for
pro-open sets. We start by showing that pro-objects can all be represented by inclusion
functors J ↪→ Open(X) where J is cofiltered. Given a pro-object U : I → Open(X), let
J = {U(i) | i ∈ I}, which is a cofiltered subcategory of Open(X), and so the inclusion functor
V : J ↪→ Open(X) defines a pro-object. Let X : I → J be the functor from restricting the
codomain of U , hence U = V ◦ X. By Lemma 1.1.33, to check that X is final it suffices
to check that (X ↓ j) is cofiltered for each j ∈ J . Objects of this category are inclusions
X(i) ⊆ j for i ∈ I and morphisms are inclusions X(i) ⊆ X(j) induced from morphisms
f : i → j, so it is easy to see that (X ↓ j) is cofiltered. Thus, by Corollary 1.1.32 U and V
define the same pro-object.

Now, let V : J ↪→ Open(X) be a pro-object where J ⊆ Open(X) is a cofiltered subcat-
egory. Replacing J with the upwards closure of J does not change the resulting pro-object.
Therefore, we may assume J is an order filter on Open(X). ■

Definition 1.1.48. Suppose X is a topological space. Define the functor N : P(X) →
Pro(Open(X)) by

N (A) = lim
Pro(Open(X))
u∈(A↓Open(X)) u,

where, using the notation for the coslice category, the limit ranges over open subsets u that
contain A. For A ⊆ X, we call N (A) the neighborhood pro-open set of A. When U is a
pro-open set, we write x ∈ U for the relation N{x} ⊆ U . ♢

If u ∈ Open(X), then note that N (u) = u as pro-open sets. Furthermore, for A ⊆ X
then one can check that N (A) ⊆ u holds if and only if A ⊆ u does.

Lemma 1.1.49. A topological space X is T1 if and only if N : P(X)→ Pro(Open(X)) is
full and faithful.

Proof. A characterization of T1 spaces is that every set is the intersection of all the open
sets containing it, which is equivalent to ker ◦N being the identity.

Lemma 1.1.50. If X is a topological space and {Ai}i is a family of subsets of X, then

N (
⋃
i

Ai) =
⋃
i

N (Ai).

Proof. For every u ∈ Open(X),⋃
i

Ai ⊆ u ⇐⇒ ∀i, Ai ⊆ u

⇐⇒ ∀i,N (Ai) ⊆ u

⇐⇒ colim
Pro(Open(X))
i N (Ai) ⊆ u.

The conclusion follows from the Yoneda lemma.
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Lemma 1.1.51. If X is a topological space and A,B ⊆ X, then N (A∩B) ⊆ N (A)∩N (B).

Proof. This follows from the facts that N (A ∩B) ⊆ N (A) and N (A ∩B) ⊆ N (B).

Warning 1.1.52. It is not generally the case that N (A∩B) = N (A)∩N (B). For example,
if X = [0, 1] ⊂ R, A = {0}, and B = (0, 1), then on one hand N (A ∩ B) = ∅, but on the
other N (A) ∩N (B) ̸= ∅ since every open neighborhood of 0 intersects (0, 1).

However, if F : I →P(X) is a small cofiltered diagram, then one can at least say that,
for all u ∈ Open(X), limi∈I N (F (i)) ⊆ u if and only if there exists some i ∈ I such that
F (i) ⊆ u. ♢

Lemma 1.1.53. If X is a topological space, then X is a normal space if and only if for all
closed sets A,B ⊆ X then N (A ∩B) = N (A) ∩N (B).

Proof. First the converse. Suppose A,B ⊆ X are disjoint closed sets. By hypothesis,
N (A) ∩ N (B) = ∅. Hence, there exist open neighborhoods u ⊇ A and v ⊇ B such that
u ∩ v = ∅, as required for a normal space.

Second, suppose X is normal. It suffices to show that N (A) ∩ N (B) ⊆ N (A ∩ B).
Suppose u ⊇ A ∩ B is an arbitrary open neighborhood. Then A− u and B − u are disjoint
closed sets. Since X is normal, there exist disjoint open neighborhoods vA ⊇ A − u and
vB ⊇ A − u. Hence, A ⊆ vA ∪ u, B ⊆ vB ∪ u, and (vA ∪ u) ∩ (vb ∪ u) = u, which means
N (A) ∩N (B) ⊆ u, as required.

1.1.3 Category of smooth manifold germs

We now apply the generalities from Sections 1.1.1 and 1.1.2 to smooth manifolds, and in
Section 1.1.4 we will resume our discussion of jets. The category we construct here is a
generalization of the category of smooth manifolds with halations from [SP09], and the goal
is to be able to work with the many kinds of germs we come across. Our category should
generalize to sites, and we leave it to future work to properly develop this within the context
of topos theory.

The overall idea is to define functions on smooth manifold germs rather than define germs
of functions on smooth manifolds, lifting the concept to the domain. In the process, we also
generalize germs to mean arbitrary open filters on a manifold rather than the usual case of
the neighborhood filter at a point.

Definition 1.1.54. A smooth manifold germ is a pair (M,U) where M is a smooth manifold
(without boundary) and U ∈ Pro(Open(M)). ♢

Recall that for M and N smooth manifolds, C∞(M,N) denotes the set of smooth maps
M → N . We can formally lift this to smooth manifold germs in the following way. We
may regard C∞ as being a functor Open(M)op → Open(N) → Set, where, in particular, if
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we have open submanifolds U ⊆ U ′ ⊆ M and V ⊆ V ′ ⊆ N , then we have a commutative
diagram of functions induced by these inclusions:

C∞(U ′, V ) C∞(U, V )

C∞(U ′, V ′) C∞(U, V ′)

Then for smooth manifold germs (M,U) and (N, V ) we define the set of smooth maps of
manifold germs to be

C∞((M,U), (N, V )) = lim
v⊇V

colim
u⊇U

C∞(u, v).

This is the essentially unique functor Pro(Open(M))op × Pro(Open(N)) → Set, which we
also denote by C∞. Of course, if U : I → Open(M) and V : J → Open(N) are small
cofiltered diagrams representing the smooth manifold germs, then we have the alternative
representation

C∞((M,U), (N, V )) ≈ lim
j∈J

colim
i∈I

C∞(U(i), V (j)).

We now represent maps of smooth manifold germs in a more concrete way.

Lemma 1.1.55. Suppose (M,U) and (N, V ) are smooth manifold germs. Let X be the set
of all pairs (u, f ∈ C∞(u,N)) with u ⊇ U such that for all open v ⊇ V we have f−1(v) ⊇ U .
Define the equivalence relation ∼ on X by (u, f) ∼ (u′, f ′) if there exists some open u′′ ⊇ U
contained in u ∩ u′ such that f |u′′ = f ′|u′′. Then

C∞((M,U), (N, V )) ≈ X/∼

where f ∈ C∞((M,U), (N, V )) is represented as an element of X by taking its projection to
colimu⊇V C

∞(u,N) and taking a representative, which is precisely an element of X.

Proof. This is a matter of unfolding definitions.

There is a composition law for smooth maps of manifold germs. Suppose (M,U), (M ′, U ′),
and (M ′′, U ′′) are smooth manifold germs. We define

C∞((M ′, U ′), (M ′′, U ′′))× C∞((M,U), (M ′, U ′))→ C∞((M,U), (M ′′, U ′′))

using the same principle as in Remark 1.1.28. We now give a description from the point of
view of Lemma 1.1.55. Suppose φ ∈ C∞((M,U), (M ′, U ′)) and ψ ∈ C∞((M ′, U ′), (M ′′, U ′′)),
and represent φ by f ∈ C∞(u,M ′) with u ⊇ U open and ψ by g ∈ C∞(u′,M ′′) with u′ ⊇ U ′

open. We have U ⊆ f−1(u′), so U ⊆ u ∩ f−1(u′). The composition ψ ◦ φ is represented by
g ◦ (f |u∩f−1(u′)), which one can check has the property that preimages of open supersets of
U ′′ are supersets of U .
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Definition 1.1.56. The category of smooth manifold germs is the category whose objects
are smooth manifold germs and whose morphisms are smooth maps of smooth manifold
germs. ♢

Remark 1.1.57. If Man were finitely complete, another way we could have defined this cate-
gory is by identifying the relevant full subcategory of Pro(Man). In light of Theorem 1.1.29,
we still can by defining Pro(Man) as formal cofiltered limits, and this category still has all
the same shapes of limits and colimits as one would expect. From this perspective we can
construct limits and colimits in this Pro(Man) and then check whether they are smooth
manifold germs. ■

Suppose U ∈ Pro(Open(M)) and u ⊇ U is open. Considering u as an smooth manifold
in its own right, we can define a pro-open set U ′ ∈ Pro(Open(u)) by the property that for all
v ∈ Open(u), U ′ ⊆ w if and only if U ⊆ w. Or, in other words, the inclusion u ⊆M induces a
functor Open(u) ↪→ Open(M), and, by regarding U as an element of Funlex(Open(M), Set),
then U ′ is from precomposing with this inclusion. We write U |u for this restriction, with the
understanding that it is only valid when U ⊆ u.

An essential feature of smooth manifold germs is that, up to isomorphism, one may
restrict the pro-open set to any open set containing it:

Lemma 1.1.58. Suppose (M,U) is a smooth manifold germ and u ⊇ U is open. Then
(M,U) ≈ (u, U |u).

Proof. The map u ↪→ M induces a map (u, U |u) → (M,U) of smooth manifold germs. It
also induces a map (M,U)→ (u, U |u), which is the two-sided inverse of the above map.

The main type of smooth manifold germs we consider are from the neighborhood pro-open
sets of subsets of the manifolds.

Definition 1.1.59. For M and N smooth manifolds and A ⊆ M and B ⊆ N subsets, we
define the notation C∞

A (M,N)B = C∞((M,N (A)), (N,N (B))). If we omit either A or B,
we mean to take A =M or A = N respectively.

For f ∈ C∞(M,N) such that for all open V ⊇ B then f−1(V ) ⊇ A, we write [f ]A,B ∈
C∞
A (M,N)B for its germ. More generally, if U ⊇ A is open and f ∈ C∞(U,N) satisfies

the same condition then we write [f ]A,B ∈ C∞
A (M,N)B as well for its germ. We write

[f ]A ∈ C∞
A (M,N) for the special case of B = N . ♢

Remark 1.1.60. The special case C∞
p (M,N) for p ∈M is the usual set of smooth map germs

at p. More generally, for A ⊆ M the set C∞
A (M,N) is known as the smooth map germs

along A (see [Nes20, Chapter 13] for example). Specialized to this situation, the set is given
by

C∞
A (M,N) = colim

U∈A↓Open(M)
C∞(U,N)

where A ↓ Open(M) is all the open sets that contain A, slightly abusing comma category
notation since A is not necessarily an open set. ■
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Lemma 1.1.61. Suppose M and N are smooth manifolds and A ⊆M and B ⊆ N .

1. If B is closed, then for all [f ]A,B ∈ C∞
A (M,N)B, f(A) ⊆ B.

2. For all U ⊇ A open and f ∈ C∞(M,N), if f(A) ⊆ B then we have the corresponding
germ [f ]A,B ∈ C∞

A (M,N)B.

3. If B is closed, then

C∞
A (M,N)B ≈ colim

U∈A↓Open(M)
{f ∈ C∞(U,N) | f(A) ⊆ B}.

Proof. (1) Suppose x ∈ dom f is such that f(x) ̸∈ B. Since N is a T1 space, there exists an
open set V ⊆ N such that B ⊆ V and f(x) ̸∈ V . Hence, x ̸∈ f−1(V ), and since A ⊆ f−1(V )
we have that x ̸∈ A. Therefore for every x ∈ A, f(x) ∈ B.

(2) If f(A) ⊆ B then for all open V ⊇ B we have f−1(V ) ⊇ A, hence f satisfies the
requirement to project to a germ.

(3) This follows from (1) and (2).

Example 1.1.62. For p ∈M and q ∈ N , the set C∞
p (M,N)q is equivalently the set of germs

of smooth maps of pointed spaces. ♢

Lemma 1.1.63. Suppose M is a smooth manifold, n ∈ N, and A ⊆ M and B ⊆ Rn are
closed subsets. Then the map

{f ∈ C∞(M,Rn) | f(A) ⊆ B} → C∞
A (M,Rn)B

defined by f 7→ [f ]A,B is a surjection.

Proof. Let [f ]A,B ∈ C∞
A (M,Rn) be arbitrary, where f ∈ C∞(U,Rn) for some open U ⊇ A

and f(A) ⊆ B. We have that A and M \U are disjoint closed sets, so since M is normal there
exist disjoint open sets V,W ⊆M such that A ⊆ V , that M \U ⊆ W , and that V and W are
disjoint. Using bump functions (see, for example [Lee13, 2.25]), there exists a φ ∈ C∞(U,R)
such that φ(V ) = 1 and φ(W ) = 0. Since (φ · f)|V = f |V , we have that [φ · f ]A,B = [f ]A,B,
and since (φ · f)|W∩U = 0, there exists a function f ′ ∈ C∞(M,N) such that f ′|U = φ · f and
f ′|W = 0. Because [f ′]A,B = [φ · f ]A,B, we conclude that [f ′]A,B = [f ]A,B.

Corollary 1.1.64. Let M , n, A, and B are as in Lemma 1.1.63. Then

C∞
A (M,Rn)B ≈ {f ∈ C∞(M,Rn) | f(A) ⊆ B}/∼

where ∼ is the equivalence relation defined by having f ∼ g if there exists some open neigh-
borhood U of A such that f |U = g|U .
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1.1.4 Jets and the local ring of germs of functions

In this section, we review the local ring of germs of smooth functions on a manifold and
use it to provide a standard algebraic interpretation of fibers of the jet bundle, and we give
cases where the ring of germs is isomorphic to a localization of the ring of smooth functions.
More generally, we review germs of smooth functions along subsets of a manifold, which may
be less familiar (see [Nes20, Chapter 13] for example). We do this from the perspective of
pro-objects, using what we have set up in Section 1.1.3.

Let M be a smooth manifold. The set C∞(M) := C∞(M,R) has a ring structure since
R is a smooth ring. For A ⊆M , then C∞

A (M), the ring of germs of smooth functions along
A. Recall that

C∞
A (M) := colim

U∈A↓Open(M)
C∞(U),

where the colimit ranges over open neighborhoods of A, abusing comma category notation.
For p ∈M , the special case C∞

p (M) is the ring of germs of smooth functions at p (or the
stalk of C∞ at p). When it is not ambiguous, we may write C∞

p for C∞
p (M).

Remark 1.1.65. Thinking of C∞ as a functor Open(M)op → R-Alg, then since R-Alg is co-
complete there is an induced functor C∞ : Pro(Open(M))op → R-Alg. From this point of
view, the formula for germs along a subset A ⊆M is

C∞
A (M) = C∞(N (A)) = C∞(lim

Pro(Open(M))
U∈A↓Open(M) U) = colimR-Alg

U∈A↓Open(M)C
∞(U),

using the fact that cofiltered limits are carried to filtered colimits. Hence, we’re able to work
with smooth functions defined “on” A by having them come with a particular infinitesimal
extension to a neighborhood of A. ■

Lemma 1.1.66. Let M be a smooth manifold and A ⊆ M a closed set. The canonical
projection C∞(M)→ C∞

A (M) is surjective. In particular, C∞
A (M) is the quotient of C∞(M)

by the equivalence relation where f and g in C∞(M) are equivalent if there exists an open
set U ⊆M such that f |U = g|U .

Proof. This is Lemma 1.1.63 and Corollary 1.1.64 specialized to B = N = R.

Remark 1.1.67. This lemma is not generally true when A is not closed. For example, if
U = R \ {0} then C∞

U (R) = C∞(U) has functions that are not restrictions of functions from
C∞(R) such as x 7→ x−1. ■

It is worth discussing the relationship between rings of germs and localizations of the
ring of smooth functions. For A ⊆M , let

SA = {f ∈ C∞(M) | for all x ∈ A, f(x) ̸= 0},

which is a multiplicative set. Recall that S−1
A C∞(M) denotes the localization of C∞(M) by

SA, and it is the universal ring such that whenever h : C∞(M)→ R is a ring homomorphism
with the property that that h(s) is a unit for all s ∈ SA, then h factors through S−1

A C∞(M).
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Concretely, elements of S−1
A C∞(M) may be written as formal fractions f/s with f ∈ C∞(M)

and s ∈ SA, with an equivalence relation such that f/s = f ′/s′ if and only if there exists
some t ∈ SA such that t(fs′ − f ′s) = 0.

Lemma 1.1.68. Let M be a smooth manifold and A ⊆ M a closed set. Then there is an
isomorphism

h : S−1
A C∞(M)→ C∞

A (M)

defined by h(f/s) = [f/s]A, regarding f/s as a function defined on the open set s−1(R\{0}).

Proof. Note that for all s ∈ SA that s is nonzero on the open set s−1(R \ {0}), hence s is a
unit in C∞

A (M). Therefore, the canonical map factors as

C∞(M)→ S−1
A C∞(M)

h−→ C∞
A (M),

where h is defined as in the lemma statement. By Lemma 1.1.66, the canonical map
C∞(M)→ C∞

A (M) is a surjection, and thus so is h. It suffices to show that h is an injection.
Let f/s ∈ S−1

A C∞(M) be such that h(f/s) = 0. Then there is some open neighborhood U
of A such that U ⊆ s−1(R \ {0}) and f/s|U = 0. We can multiply this through by s to get
that f |U = 0. Let φ ∈ C∞(M) be such that φ(A) = 1 and the support of φ is contained
within U (see [Lee13, 2.25] for instance). Then φ ∈ SA and φ(1f − s0) = 0, and so f/s = 0
in S−1C∞(M). Since f/s was arbitrary, h is injective.

For p ∈M , the ring C∞
p (M) is a local ring whose maximal ideal mp(M) (also written mp)

consists of those germs that vanish at p. Note that mp(M) = C∞
p (M)0, regarding C∞

p (M)0
as a subset of C∞

p (M). The preimage of mp(M) in C∞(M), which we also denote by mp(M)
when it does not cause confusion, is also a maximal ideal and consists of all smooth functions
that vanish at p.

For f :M → Rn a smooth function, whether there exists an open neighborhood U ⊆M
of p on which f is invertible is a property of the germ [f ]p ∈ C∞

p (M,Rn) due to the inverse
function theorem, since the germ determines dfp : TpM → Tf(p)Rn. When there exists such
an open neighborhood, then f |U is a chart centered at p, and with π1, . . . , πn : Rn → R being
the standard projections, the germs [π1 ◦ f ]p, . . . , [πn ◦ f ]p define a system of local coordinate
germs . Germs x1, . . . , xn ∈ C∞

p (M) define a system of local coordinate germs if and only if
the germ x1 × · · · × xn ∈ C∞

p (M,Rn) is nonsingular at p.
The following lemma and corollary are surprisingly useful. We give a generalization of

the usual Hadamard lemma for families of functions.

Lemma 1.1.69 (Parameterized Hadamard lemma). Suppose M is a smooth manifold of
dimension m, Q is a smooth manifold, and p ∈ M . Let x1, . . . , xm ∈ mp(M) be a system of
local coordinate germs.

Suppose [f ]Q×p ∈ mQ×p(Q×M). Then there are germs f1, . . . , fm ∈ C∞
Q×p(Q×M) such

that
f = f1x1 + · · ·+ fmxm
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with the property that s 7→ fi(s, p) is constant for all i.
Furthermore, if there is a k ∈ N such that [f ]Q×p ∈ mQ×p(Q×M)k, then there are germs

fI ∈ C∞
Q×p(Q×M) for I ∈ Nm ranging over multiindices with |I| = k such that

f =
∑
|I|=k

fIxI

with the property that s 7→ fI(s, p) is constant for all I.

Proof. Define the smooth map h : Q × Rm × [0, 1] → R by h(s, x, t) = f(s, tx). Then since
f(s, 0) = 0 for all s ∈ Q,

f(s, x) = h(s, x, 1)− h(s, x, 0) =
∫ 1

0

∂h

∂t
(s, x, t) dt =

∫ 1

0

m∑
i=1

xi
∂f

∂xi
(s, tx) dt

=
m∑
i=1

(∫ 1

0

∂f

∂xi
(s, tx) dt

)
xi.

Hence, let fi(s, x) =
∫ 1

0
∂f
∂xi

(s, tx) dt for each i, which are smooth germs in s and x. Note
that ∂fi

∂s
(s, 0) =

∫ 1

0
∂2f
∂xi∂s

(s, 0) dt = 0 since ∂f
∂s
(s, 0) = 0, hence s 7→ fi(s, 0) is constant.

For the case of [f ]Q×p ∈ mQ×p(Q×M)k we may iteratively apply the above k times.

Corollary 1.1.70 (Hadamard lemma). Let M be a smooth manifold of dimension m, p ∈M ,
and f ∈ mp. Let x1, . . . , xm ∈ mp be a system of local coordinate germs at p. Then there are
germs f1, . . . , fm ∈ C∞

p such that

f = f1x1 + · · ·+ fmxm.

Furthermore, if f ∈ mk
p for some k ∈ N, then there are germs fI ∈ C∞

p for I ∈ Nm ranging
over multiindices with |I| = k such that

f =
∑
|I|=k

fIxI .

We now resume our discussion of jets, giving some well-known algebraic characterizations.
The function jk : C∞(M,N)→ Jk(M,N) depends only on the germ of a map, so it induces
a well-defined surjective function jkp : C∞

p (M,N)→ Jkp (M,N) for each p ∈M . Similarly, jkp
gives functions C∞

p (M,N)q → Jkp (M,N)q for each p, q ∈M .

Lemma 1.1.71. Let M be a smooth manifold and p ∈M . Give Jkp (M,R) the ring structure
induced by the ring structure of R. The kernel of C∞

p → Jkp (M,R) is mk+1
p , hence

C∞
p /m

k+1
p
∼= Jkp (M,R).
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Proof. This is an invariant way of truncating a Taylor series to kth order, as can be checked
in coordinates.

Given a smooth map f :M → N with q = f(p), there is an induced map f ∗ : C∞
q → C∞

p

defined by [g]q 7→ [g ◦f ]p. Since f ∗mq ⊆ mp, we additionally have f ∗mk+1
q ⊆ mk+1

p , and hence
there is an induced map f ∗ : C∞

q /m
k+1
q → C∞

p /m
k+1
p of rings.

Lemma 1.1.72. Let M and N be smooth manifolds with p ∈M and q ∈ N . Every element
jkfp ∈ Jkp (M,N)q induces a ring homomorphism (jkfp)

∗ : Jkq (N,R)→ Jkp (M,R), and every
ring homomorphism Jkq (N,R) → Jkp (M,R) is uniquely induced in this way. In particular,
the rule jkfp 7→ f ∗ defines a bijection

Jkp (M,N)q → HomRing(C
∞
q /m

k+1
q , C∞

p /m
k+1
p ).

1.1.5 The Malgrange Preparation Theorem

For the purpose of analyzing singularities, the Malgrange Preparation Theorem is a useful
tool since it can be used to show that, for suitably large k, singularity types satisfying a
stability condition are determined by their k-jets — in particular, they have a polynomial
form up, modulo diffeomorphisms of the domain and codomain. Even if it were not helpful
for obtaining exact descriptions of singularities, having a finite-dimensional space helps limit
the search for singularity types. We reproduce the statements of theorems here, which are
drawn from [GG73]. We also prove parameterized versions of the theorem that will be used
in Section 1.4.

For the following, we let M and N be smooth manifolds, let p ∈ M , let f ∈ C∞
p (M,N),

and let q = f(p). Recall that a C∞
p (M)-module A is also a C∞

q (N)-module by the action
φa = f ∗(φ)a, where φ ∈ C∞

q (N) and a ∈ A.

Theorem 1.1.73 (Malgrange Preparation Theorem [GG73, IV.3.6] and [Mat68]). Let S ⊆
M be finite and let A be a finitely generated C∞

S (M)-module. Then A is a finitely generated
C∞
q (N)-module if and only if A/mq(N)A is a finite-dimensional vector space over R.

Theorem 1.1.74 ([GG73, IV.3.10]). Let A be a finitely generated C∞
p (M)-module, and let

e1, . . . , ek ∈ A. The elements e1, . . . , ek generate A as a C∞
q (N)-module if and only if the

images of e1, . . . , ek generate A/mk+1
p (M)A as a C∞

q (N)-module.

Corollary 1.1.75 ([GG73, IV.3.11]). If the images of e1, . . . , ek generate the vector space
A/(mk+1

p (M)A+mq(N)A), then e1, . . . , ek generate A as a C∞
q (N)-module.

Proof. This follows from the preceding and Nakayama’s Lemma via Corollary A.1.2.

The following parameterized and global versions of the preparation theorem are described
in [AGZV12, I.4.2] in the case of A a ring of smooth functions, which we generalize here.



CHAPTER 1. SINGULARITY THEORY FOR DECOMPOSITIONS 33

Corollary 1.1.76. Let S be a smooth manifold, t0 ∈ S, and f ∈ C∞
(p,t0)

(M ×S,N). Let A be
a finitely generated C∞

(p,t0)
(M × S)-module, which we give the structure of a C∞

(q,t0)
(N × S)-

module via the map (x, t) 7→ (f(x, t), t). Then A is a finitely generated C∞
(q,t0)

(N×S)-module
if and only if A/(mt0(S)A+mq(N)A) is a finite-dimensional vector space over R.

Furthermore, e1, . . . , ek generate A as a C∞
(q,t0)

(N ×S)-module if and only if their images
generate the vector space A/(mk+1

p (M)A+mt0(S)A+mq(N)A).

Proof. This is essentially Theorem 1.1.73, where m(q,t0)(N × S)A = mt0(S)A + mq(N)A by
Lemma 1.1.69. For the last part, we combine Theorem 1.1.74 and Corollary 1.1.75 and
use the fact that if φa ∈ mk+1

(p,t0)
(M × S)A, then using Lemma 1.1.69 to write φ(x, t) =∑

|I|+|J |=k+1 φI,J(x, t)x
ItJ , we can see that φI,J(x, t)xItJa ∈ mt0(S)A when |J | > 0, hence

mk+1
(p,t0)

(M × S)A+mt0(S)A = mk+1
p (M)A+mt0(S)A.

For M , N , and S smooth manifolds and p ∈ M , we think of C∞
p×S(M × S,N) as being

smooth map germs parameterized by S. For each t0 ∈ S, there is a natural map C∞
p×S(M ×

S,N)→ C∞
(p,t0)

(M × S,N) defined by [f ]p×S 7→ [f ](p,t0).

Lemma 1.1.77. Let S be a compact smooth manifold and f ∈ C∞
p×S(M ×S,N). Let A be a

finitely generated C∞
p×S(M×S)-module, which we give the structure of a C∞

q×S(N×S)-module
via the map (x, t) 7→ (f(x, t), t). Then A is a finitely generated C∞

q×S(N × S)-module if and
only if for all t0 ∈ S, A/(mt0(S)A+mq(N)A) is a finite-dimensional vector space over R.

Furthermore, e1, . . . , ek generate A as a C∞
q×S(N ×S)-module if and only if for all t0 ∈ S

their images generate the vector space A/(mk+1
p (M)A+mt0(S)A+mq(N)A).

Proof. The forward directions of each part are clear. We first show the converse of the
last part. Suppose e1, . . . , ek ∈ A are such that for all t0 ∈ S their images generate
A/(mk+1

p (M)A + mt0(S)A + mq(N)A). Letting a ∈ A, we will show that a =
∑k

i=1 φiei
for some germs φi ∈ C∞

q×S(N × S).
For t0 ∈ S, by Lemma 1.1.68 the ring C∞

(p,t0)
(M × S) is the localization of C∞

p×S(M × S)
at the complement of m(p,t0)(M×S). Let At0 denote the localization of A at this set, making
it into a C∞

(p,t0)
(M × S)-module. Since localization commutes with quotients, we have that

At0/(m
k+1
p (M)At0 + mt0(S)At0 + mq(N)At0) is a vector space spanned by the images of

e1, . . . , ek. Hence, by Corollary 1.1.76, At0 is generated by the images of e1, . . . , ek as a
C∞

(q,t0)
(N × S)-module. There is a closed set Ct0 ⊆ S containing an open neighborhood of t0

and functions φt0,i ∈ C∞
q×Ct0

(N × S) such that the element
∑k

i=1 φt0,i[ei]Ct0
of ACt0

is equal
to the image [a]Ct0

.
Since S is compact, there is a finite subcollection Ct1 , . . . , Ctr for t1, . . . , tr ∈ S whose

interiors cover S. Let {χti}1≤i≤r be a partition of unity subordinate to the subcover. Then,

k∑
i=1

(
r∑
j=1

χtjφtj ,i

)
ei = a,



CHAPTER 1. SINGULARITY THEORY FOR DECOMPOSITIONS 34

where we have χtjφtj ,i ∈ C∞
q×S(N ×S) by asserting it vanishes outside of N ×Ct0 . Note that

the sum
∑r

j=1 χtjφtj ,i makes sense because we can restrict the N components of the domains
of each φtj ,i to be the same since there are finitely many of them. Thus A is generated by
e1, . . . , ek.

For the converse of the first part, use Corollary 1.1.76 to get finite sets of local generators
of A at each t0 ∈ S, use compactness in a similar way to get generators associated to a finite
collection of closed sets whose interiors cover S, then use a similar bump function argument
to yield elements of A whose localizations are the elements. The collection of these is a finite
generating set for A.

1.2 The Thom Transversality Theorem
Recall that a smooth map f : M → N is transverse to a submanifold W ⊆ N on S ⊆ M ,
denoted f −⋔ W on S, if for every p ∈ S ∩ f−1(W ), then Tf(p)N = Tf(p)W + dfp(TpM). Or,
equivalently, if for such p the composition

qf(p) ◦ dfp : TpM → Tf(p)N/Tf(p)W

is surjective, where q : TN → TN/TW is the quotient of vector bundles over W . When
S is omitted, we assume S = M . A standard fact about transversality is that if f −⋔
W on M , then f−1(W ) is an embedded submanifold of M whose codimension in M is
the codimension of W in N . Given the Whitney C∞ topology on smooth maps M →
N (Definition 1.2.1), the set of maps transverse to W is dense (and in fact residual). A
powerful generalization of this transversality theorem is the Thom Transversality Theorem
(Theorem 1.2.9), which additionally lets us control the jets of a map. This is essential in
our classification of singularities — the only singularity types we need to consider are those
whose jet extensions are transverse to every orbit in the jet manifolds.

The treatment here closely follows [GG73]. We first need to recall two topologies on
C∞(M,N).

Definition 1.2.1. Let M and N be smooth manifolds and C∞(M,N) the set of smooth
mappings M → N . The Whitney C∞ topology on C∞(M,N) is the topology whose basis is
given by the collection of sets

B(U) = {f ∈ C∞(M,N) | jkf(M) ⊆ U}

for each k ∈ N and open U ⊆ Jk(M,N).
The weak topology on C∞(M,N) is the topology whose basis is given by the collection

of sets
B′(K,U) = {f ∈ C∞(M,N) | jkf(K) ⊆ U}

for each k ∈ N, compact K ⊆M , and open U ⊆ Jk(M,N).
When no topology is specified for C∞(M,N), we assume the Whitney C∞ topology. ♢
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Remark 1.2.2. Suppose Jk(M,N) is given a metric compatible with M and N . A sequence of
functions f1, f2, . . . ∈ C∞(M,N) converges to f ∈ C∞(M,N) in the Whitney C∞ topology
if for each k there is a compact subset Kk ⊆M such that (1) the sequence stabilizes outside
Kk and (2) jkfi converges uniformly to jkf on Kk. ■

Lemma 1.2.3. Let L, M , and N be smooth manifolds.

• jk : C∞(M,N)→ C∞(M,Jk(M,N)) defined by f 7→ jkf is continuous.

• C∞(L,M)× C∞(L,N)→ C∞(L,M ×N) defined by (f, g) 7→ (x 7→ (f(x), g(x))) is a
homeomorphism.

• The composition map C∞(M,N)×C∞(L,M)→ C∞(L,N) is continuous if L is com-
pact or if C∞(L,M) is replaced by the open subset of proper mappings.

Definition 1.2.4. Let X be a topological space. A subset S ⊆ X is residual if it is the
countable intersection of dense open subsets of X. X is a Baire space if every residual set is
dense. ♢

The Whitney C∞ topology lacks a countable base at every point and is not metrizable.
It is, however, at least a Baire space, which is sufficient for our purposes.

Lemma 1.2.5 ([Hir76, 2.4.4]). Let M and N be smooth manifolds and S ⊆ C∞(M,N). If
S is closed with respect to the weak topology, then S as a subspace of C∞(M,N) with the
Whitney C∞ topology is a Baire space.

Corollary 1.2.6. Let M and N be smooth manifolds. Then C∞(M,N) with the Whitney
C∞ topology is a Baire space.

We will also need a way to control the boundary conditions for the Thom transversality
theorem, which the following definition and lemma provides.

Definition 1.2.7. Let M and N be smooth manifolds, C ⊆ M a closed subspace, and
f :M → N . Define C∞(M,N ; f |C) to be the set of g ∈ C∞(M,N) such that g|C = f |C . ♢

Lemma 1.2.8. Given the hypotheses of Definition 1.2.7, C∞(M,N ; f |C) as a subspace of
C∞(M,N) is a Baire space.

Proof. By Lemma 1.2.5, we only need to show that C∞(M,N ; f |C) is closed with respect
to the weak topology. Let g ∈ C∞(M,N) be in the complement of C∞(M,N ; f |C). With
an x ∈ C such that g(x) ̸= f(x), let V ⊂ N be a neighborhood of g(x) disjoint from f(x).
The set M × V is open in J0(M,N) =M ×N , and B′({x},M × V ) is a basis neighborhood
of g disjoint from C∞(M,N ; f |C).

We are now ready to state the transversality theorem, which includes a generalization by
Schommer-Pries to incorporate boundary conditions.
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Theorem 1.2.9 (Thom Transversality Theorem). Let M and N be smooth manifolds and
W a submanifold of Jk(M,N). Then

TW = {f ∈ C∞(M,N) | jkf −⋔ W}

is a residual subset of C∞(M,N). If W is closed, then TW is open.
Furthermore, if C ⊆ M is a closed subset and g : M → N a smooth map such that

jkg −⋔ W on C, then TW ∩ C∞(M,N ; g|C) is a residual subset of C∞(M,N ; g|C).

Proof. See [GG73, Theorem II.4.9] or [Hir76, 3.2.8] for the first part. The second part is an
adaptation of [SP09, Theorem 1.7] and [GG73, Theorem II.4.11], and we sketch the details
here. The beginning of the first part of the theorem is to choose a countable covering of
W by subsets W1,W2, . . . open in W such that each Wi satisfies (1) Wi is a subset of W ,
(2) Wi is compact, (3) there exist coordinate neighborhoods Ui of M and Vi of N such that
(α × β)(Wi) ⊂ Ui × Vi, and (4) Ui is compact. Each Wi is used to define an open subset
{f ∈ C∞(M,N) | jkf −⋔ W on (jkf)−1(Wi)}, and the intersection of all of these is TW , so
the argument reduces to showing these are each dense. The argument proceeds by using a
jet bundle version of the parametric transversality theorem [GG73, II.4.7] to show that for
every f ∈ C∞(M,N) the set of perturbations to f that make jkf −⋔ W on (jkf)−1(Wi) is
dense, and notably this perturbation is supported on Ui.

Hence, given f ∈ C∞(M,N ; g|C), since jkg is already transverse to W on C, we only
need W1,W2, . . . to cover W ∩α−1(M \C). We can arrange for each Ui to be disjoint from C,
and with such a choice it follows that the perturbations considered in the proof stay within
C∞(M,N ; g|C).

Remark 1.2.10. That the sets produced by the Thom Transversality Theorem are residual
means that, for any countable collection of jet transversality constraints, the set of smooth
functions satisfying them is dense. More precisely, given natural numbers ki and submani-
folds Wi ⊆ Jki(M,N) for all i ∈ N, then

⋂
i TWi

⊆ C∞(M,N) is dense since it is a residual
subset of a Baire space. ■

We will also need John Mather’s multijet transversality theorem to put singularities with
intersecting images into general position.

Definition 1.2.11. LetM andN be smooth manifolds, and letM r denote the r-fold product
M ×M ×· · ·×M . The fat diagonal ∆r

M ⊂M r is the set {p ∈M r | pi = pj for some i ̸= j},
hence the submanifold M r \∆r

M is the space of r-tuples of distinct points of M .3
Given a multiindex k ∈ Nr, the k-multijet bundle Jk(M,N) is the pullback of the product

bundle
∏r

i=1 J
ki(M,N) → M r to M r \∆r

M . Elements of Jk(M,N) are called k-multijets.
There is a source map α : Jk(M,N) → M r \ ∆r

M and target map β : Jk(M,N) → N r

defined componentwise.
For a smooth map f : M → N , the k-multijet extension jkf : M r \∆r

M → Jk(M,N) is
given by jkfp = (jk1fp1 , . . . , j

krfpr). ♢
3The fat diagonal is not to be confused with the diagonal ∆r

M := {(p, . . . , p) ∈Mr | p ∈M} ⊆Mr.
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Theorem 1.2.12 (Multijet Transversality Theorem). Let M and N be smooth manifolds,
k ∈ Nr a multiindex, and W a submanifold of Jk(M,N). Then

TW = {f ∈ C∞(M,N) | jkf −⋔ W}

is a residual subset of C∞(M,N).
Furthermore, if C ⊆ M is a closed subset and g : M → N a smooth map such that

jkg −⋔ W on C, then TW ∩ C∞(M,N ; g|C) is a residual subset of C∞(M,N ; g|C).

Proof. The proof of the first part when k1 = · · · = kr is given in [GG73, II.4.13], and the
following is a description for arbitrary multiindices. Let k′ ∈ Nr be a multiindex where
k′1 = · · · = k′r and ki ≤ k′i for all i. Consider the map Jk′

(M,N)→ Jk(M,N) defined com-
ponentwise by the projections Jk′i(M,N) → Jki(M,N). Since each factor is a submersion,
the product is a submersion, and we can take the preimage of W to get a submanifold W ′

of Jk′
(M,N). For f : M → N , jkf −⋔ W if and only if jk′

f −⋔ W ′, so the first part of the
theorem follows.

For the second part, a similar modification to the one in Theorem 1.2.9 can be made to
ensure perturbations have support disjoint from C.

1.3 Foliated manifolds and distributions
Recall that a distribution is a subbundle of a tangent bundle, and that an integrable distri-
bution is one that can be locally given as the tangent bundle of a submanifold.

In our version of the Thom–Boardman singularities, we begin with families of integrable
distributions on the domain and codomain manifolds. The primary source of these distribu-
tions is from the standard foliation on a product of manifolds, where ifM =M1×M2×. . .Mm,
then at each point p ∈M we get a filtration of distributions

0 ⊆ TpM1 ⊆ Tp(M1 ×M2) ⊆ · · · ⊆ Tp(M1 ×M2 × · · · ×Mm) = TpM,

where the imprecise notation Tp(M1 × · · · ×Mk) means the tangent space of the level set
containing p of the projection M1 × · · · ×Mn ↠Mk+1 × · · · ×Mm. To classify singularities
means to enumerate the orbits of C∞

p (M,N) under the actions of diffeomorphisms of M and
N that preserve relevant structure — for example, diffeomorphisms that act invariantly on
a collection of distributions.

In this section, the aim is to precisely describe the diffeomorphisms for the foliation
described above. This is admittedly done in strictly more generality than necessary. We
review the definition of smooth manifolds via pseudogroups (see [GG73] for reference), we
define foliated manifolds in these terms, and we show that foliated manifolds according to
this definition do give the usual notion of a foliated manifold. For a foliated manifold whose
leaves form a flag at each point, the transition maps have differentials taking values in a fixed
parabolic subgroup of the general linear group. We also give a description of the tangent
space of the diffeomorphism group as a restricted kind of vector field, which is used in the
definition of infinitesimal stability of germs (Section 1.4).
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Definition 1.3.1. For spaces X and Y , a local homeomorphism from X to Y is a home-
omorphism φ : U → V where U ⊆ X and V ⊆ Y are open subsets, which we may write
as φ : X →◦ Y with domφ = U and codφ = V . A local homeomorphism of X is a local
homeomorphism from X to X. ♢

Definition 1.3.2. A pseudogroup on Rn is a collection Γ of local homeomorphisms of Rn

with the following properties:

1. idRn ∈ Γ,

2. if φ, ψ ∈ Γ with domφ = imψ then φ ◦ ψ ∈ Γ,

3. if φ ∈ Γ, then φ−1 ∈ Γ,

4. if φ ∈ Γ and U ⊆ domφ is open, then φ|U ∈ Γ, and

5. if φ is a local homeomorphism of Rn along with an open cover {Uα}α∈I of domφ such
that φ|Uα ∈ Γ for every α ∈ I, then φ ∈ Γ. ♢

Remark 1.3.3. More abstractly, we can understand pseudogroups in the following way. Con-
sider the sheaf F on Rn where for U ⊆ Rn an open set, F (U) consists of continuous injective
maps U → Rn, which by invariance of domain are homeomorphisms onto their open images.
Each F (U) is a disjoint union of the sets F (U, V ) of those mappings φ : U → Rn with
imφ = V for V ⊆ Rn open. There is a map (−)−1 : F (U, V )→ F (V, U) from taking inverse
functions, and hence F defines a groupoid on the open subsets of Rn. Thus a pseudogroup
on Rn is, equivalently, a subsheaf Γ of F such that Γ defines a subgroupoid of the groupoid
for F . ■

Definition 1.3.4. Let M be a topological n-manifold (a second-countable Hausdorff space
that is locally homeomorphic to Rn). Let A be a set of local homeomorphisms from M to
Rn, called charts , and let Γ be a pseudogroup on Rn. A is a Γ-atlas on M if

1. M =
⋃
φ∈A domφ, and

2. for all φ, ψ ∈ A, the transition function ψ ◦ φ−1|φ(domφ∩domψ) is in Γ.

Two Γ-atlases are compatible if their union is a Γ-atlas. A Γ-structure on M is an equivalence
class of compatible Γ-atlases. (Note: a Γ-structure is equivalently a maximal Γ-atlas.) ♢

Definition 1.3.5. For k ∈ N ∪ {∞}, let diffk(Rn) be the pseudogroup of local homeomor-
phisms on Rn that are in class Ck. In particular, diff∞(Rn) consists of local diffeomor-
phisms . ♢

Definition 1.3.6. A differentiable manifold of class Ck is manifold with a diffk(Rn)-structure.
A smooth manifold is a differentiable manifold of class C∞. ♢
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Definition 1.3.7. For G a subgroup of GL(Rn) and k ∈ N ∪ {∞}, define the pseudogroup

ΓkG = {φ ∈ diffk(Rn) | for all x ∈ domφ, dφx ∈ G}. ♢

Definition 1.3.8. Suppose that M and N are n-manifolds, that N has a ΓkG-structure, and
that f : M → N is a homeomorphism. This induces a pullback ΓkG-structure on M whose
charts are given by φ ◦ f :M →◦ Rn for all charts φ : N →◦ Rn.

If both M and N have a ΓkG-structure, we say that a homeomorphism f : M → N is
a diffeomorphism if the pullback structures with respect to both f and f−1 are compatible
with respect to the structures on M and N , respectively.

We write Diff(M,N) for the set of diffeomorphisms M → N . The diffeomorphism group
is Diff(M) := Diff(M,M). ♢

Definition 1.3.9. Let V be a finite-dimensional vector space and {Ui}i∈I an I-indexed
family of subspaces. Then the stabilizer subgroup of this collection of subspaces is denoted

GL(V ; {Ui}i) =
⋂
i∈I

{g ∈ GL(V ) | gUi ⊆ Ui}.

A filtration of length m is a nondecreasing sequence of m subspaces U1 ⊆ U2 ⊆ · · · ⊆ Um
ending with Um = V , and a (partial) flag is a filtration of increasing subspaces. For the
special case of a filtration, we write

GL(U1 ⊆ · · · ⊆ Um) := GL(V ; {Ui}i). ♢

Remark 1.3.10. The subgroup GL(U1 ⊆ · · · ⊆ Um) is known to be a parabolic subgroup of
GL(V ); in the case that dimUi = i for all i then it is a Borel subgroup. Borel subgroups of
GL(V ) are all conjugate to the group of upper triangular matrices. ■

Example 1.3.11. If U is a k-dimensional subspace of an n-dimensional vector space V , then
the Grassmannian Grk(V ) of k-dimensional subspaces of V can be identified with the coset
space GL(V )/GL(U ⊆ V ). In more generality, GL(V )/GL(U1 ⊂ · · · ⊂ Un) when dimUi = i
for all i can be identified with the flag variety on V : cosets of this subgroup are in one-to-one
correspondence with the set of all flags 0 ⊂ U ′

1 ⊂ · · · ⊂ U ′
n = V . ♢

Example 1.3.12. Consider a filtration U1 ⊆ · · · ⊆ Um = Rm. Choosing a basis for Rm such
that each subspace is the span of some prefix of the basis, then elements of GL(U1 ⊆ · · · ⊆
Um) with respect to this basis are in upper-block-diagonal form:

A11 A12 · · · A1m

0 A22 · · · A2m
...

... . . . ...
0 0 · · · Amm


Letting ki = dim(Ui/Ui−1) for each 1 ≤ i ≤ m (and setting U0 = 0), then each Aii is a ki×ki
invertible matrix and each Aij is a ki × kj matrix. ♢
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Figure 1.1: Illustrations of the product foliations of [0, 1]2 and [0, 1]3. The foliated cube
(right) is thought of as a stack of 2-dimensional leaves that themselves are foliated squares,
and a foliated square (left) is thought of as a stack of 1-dimensional leaves.

Definition 1.3.13. Let {Ui}i∈I be an I-indexed family of subspaces of Rn. Define the
pseudogroup

F ({Ui}i) = Γ∞
GL(Rn;{Ui}i).

As a special case, for k1, . . . , kn ∈ N with k1 ≤ · · · ≤ kn, define

F (k1 ≤ · · · ≤ kn) = F ({Rki}ni=1),

where include Rki ⊆ Rn in the usual way by (x1, . . . , xki) 7→ (x1, . . . , xki , 0, . . . , 0).
A smooth {Ui}i-foliated manifold is a manifold with an F ({Ui}i)-structure, a A smooth

(k1 ≤ · · · ≤ km)-foliated manifold is a manifold with an F (k1 ≤ · · · ≤ km)-structure, and a
smooth codimension-k foliated n-manifold is a smooth (n− k ≤ n)-foliated manifold. ♢

This is not the usual definition of a foliated manifold, but it is equivalent, as we will see
shortly. While we do this in generality, in the sequel we only use the following standard
foliation on a product structure:

Definition 1.3.14. Let X1, . . . , Xm be smooth manifolds of dimensions k1, . . . , km, respec-
tively. The product foliation on X1×· · ·×Xm is the F (k1 ≤ k1+k2 ≤ · · · ≤ k1+k2+· · ·+km)-
structure generated by the product charts φ1 × · · · × φm with φi a chart on Xi for all i.

We write Diff(X1 ⊆ X1 × X2 ⊆ · · · ⊆ X1 × · · · × Xm) to indicate the diffeomorphism
group for the product foliation. ♢

Remark 1.3.15. The product foliation is sensitive to the order of the product: X1 ×X2 and
X2 × X1 generally have different product foliations despite being diffeomorphic as smooth
manifolds. The 1-dimensional leaves (Definition 1.3.19) of R × R are either horizontal or
vertical depending on the product order (see Figure 1.1). ■
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What the definition of a {Ui}i-foliated manifold M gives us is an I-indexed family of
distributions for M :

Lemma 1.3.16. Let U ⊆ Rm be a subspace, and let M be a (U ⊆ Rm)-foliated manifold.
There is a distribution V ⊆ TM with the property that whenever φ is a chart and p ∈ domφ,
then Vp = (dφp)

−1(U).

Proof. We can use p 7→ (dφp)
−1(U) to locally define a distribution over domφ, so what we

need to show is that the distribution is independent of the chart. Let ψ be another chart for
M , and let p ∈ domφ ∩ domψ. If v ∈ (dφp)

−1(U), then

dψp(v) = d(ψ ◦ φ−1)p(v).

Since transition functions are in the F (U ⊆ Rm) pseudogroup, by definition this is in U ,
hence (dφp)

−1(U) ⊆ (dψp)
−1(U). By symmetry, this is an equality.

Lemma 1.3.17. Let U be a subspace of Rn, f ∈ F (U ⊆ Rn), and x ∈ dom f . Suppose
u ∈ U is such that x+ ut ∈ dom f for all t ∈ [0, 1]. Then

f(x+ u)− f(x) ∈ U.

Consequentially, f restricts to a local homeomorphism between the affine subspaces x + U
and f(x) + U .

Proof. Letting h(t) = f(x+ tu), then

f(x+ u)− f(x) = h(1)− h(0) =
∫ 1

0

∂h

∂t
dt =

∫ 1

0

dfx+tu(u) dt.

For all t ∈ [0, 1], since dfx+tu ∈ GL(U ⊆ Rn), then dfx+tu(u) ∈ U . Hence, f(x+u)−f(x) ∈ U .
Therefore, by restricting to a star-shaped open neighborhood V of u in dom f , then f

carries V to f(x) + V .

Lemma 1.3.18. Let U ⊆ Rm be a subspace, and let M be a (U ⊆ Rm)-foliated manifold.
The distribution V from Lemma 1.3.16 is integrable.

Proof. Let p ∈M and φ be a chart for M with p ∈ domφ. Let P be a connected component
of φ−1(φ(p)+U) containing p. The affine subspace φ(p)+U is a submanifold and φ is a local
homeomorphism, so P is a submanifold of M . Let q ∈ P and v ∈ TqP . Then since P has
the local defining function M →◦ Rm ↠ Rm/U from φ and the quotient, we see dφq ∈ U ,
and hence TqP ⊆ (dφq)

−1(U) By consideration of dimension, this is an equality.
Now we will use Lemma 1.3.17 to show that, locally, P does not depend on the choice of

chart. Let ψ be another chart containing p, and define P ′ to be the connected component of
ψ−1(ψ(p)+U) containing p. Consider the transition function ψ ◦φ−1, which is an element of
the pseudogroup F (U ⊆ Rm). By the lemma, the transition function locally sends φ(p) +U
to ψ(p) + U . Therefore, there is some open neighborhood of p inside of which P and P ′

coincide.



CHAPTER 1. SINGULARITY THEORY FOR DECOMPOSITIONS 42

Definition 1.3.19. Let U ⊆ Rm be a subspace, and let M be a (U ⊆ Rm)-foliated manifold.
Given a chart φ for M and x ∈ codφ, a plaque P is a connected component P of φ−1(x+U),
which is a submanifold of dimension dimU . Let φP denote the restriction of φ|P to P →
x + U , and let M ′ be M with the final topology such that the maps φP are continuous for
all plaques P . A leaf is a connected component L ⊆ M ′, which is a smooth manifold of
dimension dimU with an atlas generated by the collection of the φP functions for all plaques
P with P ⊆ L. ♢

According to this definition, if L is a leaf of M , then the restriction to L of the map
M ′ ↪→ M is a smooth immersion. Furthermore, for p ∈ L, we have TpL = Vp, where V is
the distribution associated to the (U ⊆ Rm)-foliation from Lemma 1.3.16. This means that
for a ({Ui}i)-foliated manifold, at every point p, there is a leaf Li containing p associated to
each Ui for i ∈ I. In fact, given a chart φ, then letting Pi be the plaque for Ui at p for each
i ∈ I, the plaques {Pi}i are locally modeled by {Ui}i.

If the subspaces are closed under intersection, then so are the leaves. In that case, for
each i ∈ I, leaf Li inherits a F ({Uj}j≤i)-structure, where Uj is regarded as a subspace of Ui.
Every leaf of Li is an intersection of Li with a leaf of M .

Example 1.3.20. If X1, . . . , Xm are smooth manifolds of respective dimensions k1, . . . , km,
then the leaves of the product foliation forX1×· · ·×Xm that contain a point p ∈ X1×· · ·×Xm

are

{p} ⊆ X1 × {(p2, . . . , pm)}
⊆ X1 ×X2 × {(p3, . . . , pm)}
...
⊆ X1 × · · · ×Xm−1 × {(pm)}
⊆ X1 × · · · ×Xm. ♢

Lemma 1.3.21. Let {Ui}i be an I-indexed family of subspaces of Rm, and let M be a
{Ui}i-foliated manifold. Given p ∈ M , there is a trivialization of the tangent bundle in an
open neighborhood W of p that trivializes each distribution Vi (where Vi is the distribution
associated to Ui from Lemma 1.3.16). That is, if π : TM → M is the projection, the
distribution in π−1(W ) ≈ W × Tp appears as W × Vp.

Proof. Any chart for the F ({Ui}i) structure suffices.

Suppose M is a {Ui}i-foliated manifold and N is a {Vj}j-foliated manifold. For the local
classification of singularities for smooth maps M → N , in coordinates the problem is to
classify germs C∞

0 (Rm,Rn)0 of functions that send 0 to 0, modulo the actions of F ({Ui}i)0,0
and F ({Vi}i)0,0 (the sets of germs of elements in the respective pseudogroups that send 0
to 0). The following lemma is stated in terms of charts, but consider also its application
in understanding germs of elements of the foliation pseudogroups, particularly when the
subspaces form a filtration.
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Lemma 1.3.22. Let k and m be natural numbers such that 0 ≤ k ≤ m. Suppose φ and ψ
are charts for a smooth (k ≤ m)-foliated manifold M , and let f = ψ ◦ φ−1|φ(domφ∩domψ) be
the transition function. Let (x1, . . . , xm) be local coordinates for φ and (y1, . . . , ym) be local
coordinates for ψ. Then for k + 1 ≤ i ≤ m, locally f ∗yi is a function of xk+1, . . . , xm.

Proof. By the lemma, the transition function induces a well-defined local homeomorphism
of Rm/Rk, and with respect to the local coordinates (xk+1, . . . , xm) and (yk+1, . . . , ym) to
parameterize the quotient, f ∗(yi) is a function of xk+1, . . . , km.

Corollary 1.3.23. Suppose φ, ψ are charts for a smooth (k1 ≤ · · · ≤ km)-foliated manifold
M . Let the local coordinates with respect to φ and ψ respectively be

(x1, . . . , xkm) and (y1, . . . , ykm),

and let f = ψ ◦ φ−1|φ(domφ∩domψ) be the transition function. If 1 ≤ i ≤ km, 1 ≤ j ≤ m, and
kj−1 < i ≤ kj (setting k0 = 0), then locally f ∗yi is a function of only xkj−1+1, . . . , xkm.

Example 1.3.24. For a (2 ≤ 3)-foliated manifold, transition functions are locally of the
form

f ∗y1 = f1(x1, x2, x3)

f ∗y2 = f2(x1, x2, x3)

f ∗y3 = f3(x3)

for locally defined smooth functions f1, f2, and f3. ♢

Remark 1.3.25. We will have occasion to consider families of diffeomorphisms, and one thing
we would like is a notion of the tangent space for the space of diffeomorphisms.

Suppose G ⊆ GL(Rm) is a smooth Lie group and M is an m-manifold with a Γ∞
G -

structure. A smooth family of diffeomorphisms indexed by a smooth manifold C is a function
g : C → Diff(M) that is smooth in the sense that the map M × C → M defined by
(x, t) 7→ gt(x) is smooth.

Let g : (−ε, ε) → Diff(M) be a smooth family of diffeomorphisms Let φ : M →◦ Rm

be a chart centered at p ∈ M with φ(p) = 0 and coordinates (x1, . . . , xm), and let ψ :
M →◦ Rm be a chart centered at q = g0(p) with coordinates (y1, . . . , ym). With this, let
g′ : U×(−δ, δ)→ Rm be g with respect to the charts, with δ > 0 and the open neighborhood
0 ∈ U ⊆ domφ chosen so g′ is well-defined.

By the definitions of Γ∞
G and of diffeomorphisms, d(g′t)x ∈ G for each t ∈ (−δ, δ) and

x ∈ codφ. For fixed x, we may regard this as being a path in G, so by taking the time
derivative we get a path ∂d(g′t)x

∂t
(x, t) ∈ Lie(G) in the Lie algebra, which we think of as a

subspace sitting inside Lie(GL(Rn)) = Hom(Rm,Rm). We may reorder the differentials to
get d

(
∂g′

∂t

∣∣∣
t

)
x
∈ Lie(G) for all t, where we write ∂g′

∂t

∣∣∣
t
: Rm → Rm for the derivative evaluated

at t.
We may think of ∂g′

∂t

∣∣∣
t
as being a vector field on U , and this vector field may be regarded

as being the time derivative of the family g in a neighborhood of p. ■



CHAPTER 1. SINGULARITY THEORY FOR DECOMPOSITIONS 44

Definition 1.3.26. Let G ⊆ GL(Rm) be a smooth Lie group, let M be an m-manifold with a
Γ∞
G -structure, and let g ∈ Diff(M). The tangent space Tg Diff(M) at g is defined to be the set

of all smooth vector fields v ∈ C∞(TM) such that for all p ∈M and all charts φ :M →◦ Rm

and ψ : M →◦ Rm with p ∈ domφ and f(p) ∈ codψ, then h = dψ ◦ v ◦ φ−1 : Rm →◦ Rm

satisfies dhx ∈ Lie(G) for all x in a neighborhood of φ(p). ♢

Example 1.3.27. If Rm has a Γ∞
G -structure with the identity map as a chart, the tangent

space Tid Diff(Rm) is the set of all smooth vector fields v ∈ C∞(TRm) such that dvx ∈ Lie(G)
for all x ∈ Rm. ♢

Lemma 1.3.28. Let M be a (k1 ≤ · · · ≤ km)-foliated km-manifold and let v ∈ C∞(TRm).
Give TM local coordinates (x1, . . . , xkm , y1, . . . , ykm), where (x1, . . . , xkm) parameterize an
open subset of M and, for each i, yi corresponds to ∂/∂xi. In these coordinates, v ∈
Tid Diff(M) if and only if v satisfies the conclusion of Corollary 1.3.23, that v∗yi is a function
of only xkj−1+1, . . . , xkm where 1 ≤ i ≤ km, 1 ≤ j ≤ m, and kj−1 < i ≤ kj (setting k0 = 0).

Proof. The condition that v ∈ Tid Diff(M) is that dvx ∈ Lie(GL(k1 ≤ · · · ≤ km)) for all x.
This Lie algebra is the set of all upper-block-diagonal matrices of the form

A11 A12 · · · A1m

0 A22 · · · A2m
...

... . . . ...
0 0 · · · Amm


where Ast is a ks × kt matrix. Thus, for 1 ≤ i, j ≤ km with (i, j) in the zero region of this
matrix, ∂v∗yi

∂xj
(x) = 0 for all x, implying v∗yi has no functional dependence on xj. Conversely,

if v is of this form then we can see that dvx lies in the Lie algebra for all x.

Remark 1.3.29. There is a coordinate-free statement of this lemma for germs of diffeomor-
phisms at p ∈ M . With k0 = 0, for each 0 ≤ i < m there is a (km − ki)-dimensional
smooth manifold germ Mi (the “plaque space” at p) and a germ in C∞

p (M,Mi) projecting
onto it — every open neighborhood of p contains a connected subneighborhood consisting of
ki-plaques, and the quotient by plaques in this neighborhood gives a (km − ki)-dimensional
smooth manifold; by taking the formal limit of these quotients over all such open neighbor-
hoods of p one obtains the manifold germ Mi. Each Mi has a tangent bundle TMi defined
as a formal inverse limit, and for each for each 0 ≤ i ≤ j < m, we have a canonical smooth
map germ Mi →Mj and a bundle map germ TMi → TMj. Letting I be the poset category
with objects {0, 1, . . . ,m − 1} and morphisms i → j when i ≤ j, then we can view both
{Mi}i and {TMi}i as functors from I to the category of smooth manifold germs.

The tangent space Tid Diff(M) near p is, equivalently, the set of natural transformations
from {Mi}i to {TMi}i whose components for each i are sections of the projections TMi →Mi.
That is to say, an element of the tangent space is a collection of smooth section germs
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si :Mi → TMi such that the following diagram commutes:

TM0 TM1 · · · TMm−1

M0 M1 · · · Mm−1

s0 s1 sm−1

The map s0 determines the rest. Then, since M0 is the manifold germ of M centered at p and
TM0 is the corresponding bundle germ, we can identify this set of natural transformations
as a subspace of C∞

p (TM). ■

Definition 1.3.30. Let M be an m-manifold with Γ∞
G -structure. A local diffeomorphism

is a local homeomorphism φ : M →◦ M such that the restriction domφ → codφ is a
diffeomorphism. For p, q ∈ M , we may consider the collection of all local diffeomorphisms
sending p to q, and the stalk of this directed system is Diffp(M)q, the diffeomorphism germs
sending p to q. When p = q, we write Diffp(M), the group of diffeomorphism germs at p. ♢

Lemma 1.3.31. Let G be a smooth Lie group, let M be an m-manifold with a Γ∞
G -structure,

and let p ∈ M . Let v : [0, 1] → Tid Diff(M) be a smooth family of vector fields on M each
vanishing at p, and let g0 ∈ Diffp(M) be a diffeomorphism germ. Then there is a smooth
family g : [0, 1]→ Diffp(M) of diffeomorphism germs solving the differential equation

d
dt
g(x, t) = vt(g(x, t)) g(x, 0) = g0(x),

where vt(g(t, x)) is from interpreting vt as being an element of C∞(TM) and we regard
d
dt
gt(x) as an element of Tgt(x)M .

Proof. The existence of a solution is from taking the flow of the vector field starting from
g0, restricting the domains of the diffeomorphisms to a neighborhood of p as necessary for
there to exist a global flow. The flow has the property that p remains fixed through time
since the vector fields vanish there. Since the spatial derivative of the vector field locally lies
in Lie(G), by reversing the discussion from Remark 1.3.25 the resulting spatial derivative of
the solution lies in G, so each gt is a local diffeomorphism centered at p.

1.4 Stability
In general, if G is a topological group acting on a topological space X, we say a point x ∈ X
is stable if its orbit Gx is an open set. The sense in which such a point is stable is that small
perturbations of the point can be compensated for by the group action.

The ideal when it comes to a suitable notion of a “generic” smooth map M → N is a
stable map, which is a stable element of C∞(M,N) with respect to the action by Diff(M)×
Diff(N), where M and N might have additional structure (in the sense of Definition 1.3.7,
in which case the diffeomorphism groups are of structure-preserving diffeomorphisms). For
g ∈ Diff(M), h ∈ Diff(N), and f ∈ C∞(M,N), we use the action (g, h) · f = hfg−1.
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Table 1.1: Density of stable maps in C∞(M,N). The region where stable maps are not dense
is, roughly, when 7 ≤ n ≤ 7

6
m− 8

6
(see [Mat71] or [GG73, p. 163]).

dimN

dimM 1 2 3 4 5 6 7 8 9 10

1 • • • • • • • • • •
2 • • • • • • • • • •
3 • • • • • • • • • •
4 • • • • • • • • • •
5 • • • • • • • • • •
6 • • • • • • • • • •
7 • • • • • • • • • •
8 • • • • • • • • •
9 • • • • • • •
10 • • • • • •

Unfortunately, even for smooth manifolds M and N , stable maps are not in general dense
in C∞(M,N). Mather in [Mat71] gave the exact conditions on the dimensions of M and
N for which stable maps are dense (the dimension pairs for low dimensions are given in
Table 1.1). This provides a baseline for stable maps with respect to smooth manifolds with
additional structure — diffeomorphisms for foliated manifolds have orbits as least as fine,
making achieving stability no more easier. The table gives hope that in low dimensions
achieving the ideal is tractable.

As we discussed in Remark 1.3.25 and Definition 1.3.26, we may regard the tangent space
Tid Diff(M) of Diff(M) at the identity to be some subspace of C∞(TM), the space of smooth
sections of TM (where if M is just a smooth manifold, then Tid Diff(M) is C∞(TM) itself).
See, for example, [GG73] for a description of the tangent space of the smooth diffeomorphism
group as a Fréchet manifold.

For f ∈ C∞(M,N), we may regard the tangent space TfC∞(M,N) to be C∞(f ∗TN).
Taking the differential of the action of the diffeomorphism groups on C∞(M,N) yields a
map

C∞(TM)⊕ C∞(TN)→ C∞(f ∗TN)

(v, w) 7→ −f∗v + f ∗w

where f∗v and f ∗w are the vector fields defined by, for x ∈M ,

(f∗v)x = dfx(vx) and (f ∗w)x = wf(x).

If f is stable, then this map is surjective. The converse yields the following definition:
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Definition 1.4.1. Let M and N be smooth manifolds, possibly with additional structure.
Let θ(M) ⊆ C∞(TM) and θ(N) ⊆ C∞(TN) respectively be the tangent spaces of the
structure-preserving diffeomorphism groups for M and N . We say that f ∈ C∞(M,N) is
infinitesimally stable if the map

θ(M)⊕ θ(N)→ C∞(f ∗TN)

(v, w) 7→ −f∗v + f ∗w

is surjective.
For p ∈ M , we say that the germ f ∈ C∞

p (M,N) is (locally) infinitesimally stable if the
corresponding map θp(M)⊕ θp(N)→ C∞

p (f ∗TN) of germs of sections is surjective. ♢

The implicit function theorem does not apply to Fréchet manifolds, so infinitesimal stabil-
ity does not immediately imply stability. For smooth manifolds with no additional structure,
Mather proved that if f is proper and infinitesimally stable then it is indeed stable. It should
be noted that local infinitesimal stability of all germs of a smooth map is not sufficient for
infinitesimal stability since it ignores interactions between germs with the same image.

Local notions of stability are still useful since they are a necessary condition for stability,
so we will define what it means for germs to be stable. After showing that infinitesimal
stability implies local stability for smooth maps to Rn with a product foliation, as a corollary
we will have that local infinitesimal stability implies local stability for germs from a smooth
manifold to a (k1 ≤ · · · ≤ kr)-foliated manifold.

Definition 1.4.2. Let M be a manifold with a Γ∞
G -structure and N a manifold with a Γ∞

H -
structure. Let f ∈ C∞

p (M,N)q and f ′ ∈ C∞
p′ (M,N)q′ be map germs. We say f and f ′ are

equivalent if there exist diffeomorphism germs φ ∈ Diffp(M)p′ and ψ ∈ Diffq(M)q′ such that
ψ ◦ f = f ′ ◦ φ (see Definition 1.3.30). ♢

After a perturbation of a stable map, its map germs can be said to move according to the
diffeomorphisms that carry the map back to its original configuration, so the correct notion
of stability of map germs needs to account for the fact that small perturbations can move
their centers. This definition is from Poénaru [Poé74, II.III.1]:

Definition 1.4.3. With M and N as in Definition 1.4.2, let f ∈ C∞(M,N) and p ∈ M .
The germ [f ]p ∈ C∞

p (M,N) is (locally) stable if for all small enough neighborhoods U ⊆ M
of p, there exists a neighborhood V ⊆ C∞(U,N) of f |U such that for all f ′ ∈ V , there exists
a point p′ ∈ U such that [f ]p is equivalent to [f ′]p′ . ♢

For infinitesimal stability implying stability, we rely heavily on the work of Dufour and
Buchner [Duf75,Duf77,Buc77]. They each extended the work of Mather to apply to stability
of diagrams of smooth maps. The global version can be generalized to the case where each
leaf space is a manifold, but we leave it in terms of product foliations due to its applicability
to n-categorical decompositions. The more general local version is given as a corollary.
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Theorem 1.4.4. Let M be a smooth m-manifold, and let Rn be given the standard prod-
uct (Rk1 ⊆ Rk2 ⊆ · · · ⊆ Rkr)-foliation, where kr = n. If f ∈ C∞(M,Rn) is proper and
infinitesimally stable, then it is stable.

For p ∈ M and f ∈ C∞
p (M,Rn), if f is locally infinitesimally stable, then it is locally

stable.

Proof. Letting k0 = 0, for each 0 ≤ i ≤ r − 2 let πi : Rn/Rki → Rn/Rki+1 be the canonical
quotient. Consider the diagram (called a cascade by Dufour):

M
f−→ Rn π0−→ Rn/Rk1 π1−→ . . .

πr−2−−→ Rn/Rkr−1 .

Letting k0 = 0, there is an action of Diff(M) ×
∏

0≤i≤r−1Diff(Rn/Rki) on C∞(M,Rn) ×∏
0≤i≤r−2C

∞(Rn/Rki ,Rn/Rki+1) defined by

(g, g0, . . . , gr−1) · (f, h0, . . . , hr−2) = (g0fg
−1, g1h0g

−1
0 , . . . , gr−1hr−2g

−1
r−2).

Ignoring the foliation structure, the differential of this action at the diagram above is

T : C∞(TM)⊕
⊕

0≤i≤r−1

C∞(T (Rn/Rki))→ C∞(f ∗TRn)⊕
⊕

0≤i≤r−2

C∞(π∗
i T (Rn/Rki+1))

(v, {wi}i) 7→ (−f∗v + f ∗w0, {−(πi)∗wi + (πi)
∗wi+1}i).

If this map is surjective, the cascade is infinitesimally stable. Infinitesimally stable cascades
of proper maps are stable by [Duf75].

We will show that f is infinitesimally stable in this sense and then relate stability of the
diagram back to stability of f . To show the above map is surjective, suppose {φ, {ψi}i} is
an arbitary element of the codomain of T . We claim that there is an element {v, {wi}i} of
the domain of T such that T ({v, {wi}i) + {φ, {ψi}i} = {φ′, {0}i} for some φ ∈ C∞(f ∗TRn).
Start with {v, {wi}i} = {0, {0}i}. Let 0 ≤ i ≤ r − 2 be least such that {φ′, {ψ′

i}i} =
T ({v, {wi}i) + {φ, {ψi}i} has ψ′

i ̸= 0. The equation (πi)∗w
′
i = ψ′

i can be solved for w′
i since

(πi)∗ is surjective. Replacing wi with wi+w′
i, then we may assume ψ′

j = 0 for all i ≤ j ≤ r−2,
and then we may recurse until φ′

j = 0 for all j.
We will find some {a, {bi}i} in the domain of T such that T ({a, {bi}i}) = {φ′, {0}i}.

For each 0 ≤ i ≤ r − 2, we have the condition −(πi)∗bi + (πi)
∗bi+1 = 0. Using standard

(y1, . . . , yn) coordinates for Rn, we have for each i representations

bi =
∑

ki<j≤n

βij(yki+1, . . . , yn)
∂
∂yj
.

The condition is thus

−
∑

ki+1<j≤n

βij(yki+1, . . . , yn)
∂
∂yj

+
∑

ki+1<j≤n

βi+1,j(yki+1+1, . . . , yn)
∂
∂yj

= 0.
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Hence, for each i and j, βij(yki+1, . . . , yn) = βi+1,j(yki+1+1, . . . , yn), which inductively implies
that β0j(y1, . . . , yn) = βij(yki+1, . . . , yn) for all i and j such that 0 ≤ i ≤ r − 2 and ki <
j ≤ n. We can see that (1) {β0j}1≤j≤n determines the rest and (2) β0j is a function of
only yki+1, . . . , yn, where i is such that ki < j ≤ ki+1. Thus, β0 ∈ C∞(TRn) must satisfy
Lemma 1.3.28 and may be regarded as being an element of Tid Diff(Rk1 ⊆ · · · ⊆ Rkr). Since
by hypothesis f is infinitesimally stable, there exists some a ∈ C∞(TM) and b0 ∈ C∞(TRn)
such that f∗a+ f ∗b0 = φ′ and that b0 satisfies the above constraints. Hence, T ({a, {bi}i}) =
{φ′, {0}i}. Subtracting the correction from before, we have T ({a, {bi}i} − {v, {wi}i}) =
{φ, {φi}i}. Therefore, T is surjective and the cascade is infinitesimally stable.

Since the cascade is thus stable, its orbit under the action of the product of diffeomor-
phism groups is open. Thus, restricting this orbit to C∞ × {0}0≤i≤r−2 yields an open orbit
under the Diff(M)×Diff(Rk1 ⊆ · · · ⊆ Rkr) action, and therefore f is stable.

Now for the statement about local infinitesimal stability. The notion of local infinites-
imal stability of a cascade is the same except we work with germs everywhere. For [f ]p ∈
C∞
p (M,Rn) locally infinitesimally stable, we may assume the domain of f is suitably re-

stricted such that it is infinitesimally stable. This local result is incidental to the underlying
proofs of the above global result. A quick overview: there is a large enough k ∈ N such
that any germ with a jet in the same orbit as jkfp in Jk(M,Rn) is equivalent, and there is
a small enough neighborhood of f such that any g in it has a jet extension jkg transversely
intersecting this orbit near jkfp.

Corollary 1.4.5. Let M be a smooth m-manifold, let p ∈ M , and let N be a smooth
(k1 ≤ · · · ≤ kr)-foliated n-manifold (with kr = n). If the germ f ∈ C∞

p (M,N) is locally
infinitesimally stable, then it is locally stable.

Proof. Working in coordinates, this follows immediately from Theorem 1.4.4.

Definition 1.4.6. A map germ f ∈ C∞
p (M,N) is finitely determined if there is some k ∈ N

such that every f ′ ∈ C∞
p (M,N) with jkfp = jkf ′

p is an equivalent germ. We say such a germ
is k-determined. ♢

A k-determined map germ is, in local coordinates, equivalent to a polynomial, which is a
desirable property because it helps bound the effort that goes into classifying singularities. If
there is a universal bound on k for all locally stable germs, then the classification of finitely
determined germs reduces to the study of orbits of a Lie group action on a finite-dimensional
manifold (the jet space), and [Mat69b, Lemma 3.1] can be used to classify orbits.

Theorem 1.4.7 (Tougeron’s Finite Determinacy Theorem). When M and N are both
smooth manifolds with no additional structure, every locally infinitesimally stable germ in
C∞
p (M,N) is (dimN + 1)-determined.

Proof. See, for example, [AGZV12, I.6.3].
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Theorem 1.4.8 (Nakai). If M is a smooth manifold and N is a (k1 ≤ · · · ≤ kr)-foliated
manifold. There is some d ∈ N such that every locally infinitesimally stable germ is d-
determined.

Proof. In Theorem 1.4.4 we analyzed local infinitesimal stability in terms of local infinitesimal
stability (and thus local stability) of cascades. According to [Nak89, Theorem 0.3.1], since
these are finite convergent trees, local stability is finitely determined. This d is not given
explicitly, however.

Remark 1.4.9. Based on examples, it appears that a locally stable germs f ∈ C∞
0 (Rm,Rn),

where Rn has the product (1 ≤ · · · ≤ n)-foliation can be put into a polynomial form such
that fi has degree at most n + 2 − i for all 1 ≤ i ≤ n. It is plausible that there is a finite
determinacy theorem with these degree bounds.

Even without this finer result, we still can check that germs are “locally infinitesimally
k-stable,” which is whether the map θp(M) ⊕ θq(N) → C∞

p (f ∗TN)/mp(M)k+1 is surjective
(i.e., whether the equations for local infinitesimal stability can be solved to order k). ■

We conclude by giving technical lemmas for more relaxed algebraic conditions for deter-
mining local infinitesimal stability of Morse 2-functions and Morse 3-functions.

Lemma 1.4.10. Let f ∈ C∞
p (M,R2)0 for M a smooth manifold and R2 with the standard

product foliation. Let (y1, y2) be standard coordinates for R2, and use y2 for coordinates for
R2/R. If

C∞
p (f ∗TR2) = f∗C

∞
p (TM) + f ∗C∞

0 (R2) ∂
∂y1

+ f ∗C∞
0 (R2/R) ∂

∂y2

+m0(R2/R)C∞
p (f ∗TR2) +m0(R2)2C∞

p (f ∗TR2),

then f is locally infinitesimally stable (and thus locally stable).4
Equivalently, f is locally infinitesimally stable if

C∞
p (f ∗TR2) = f∗C

∞
p (TM) + (f 2

1 , f2)C
∞
p (f ∗TR2) + R ∂

∂y1
+ Rf1 ∂

∂y1
+ R ∂

∂y2
,

where (f 2
1 , f2) ⊆ C∞

p (M) is the ideal generated by f 2
1 and f2.

Proof. Wassermann in [Was75, Corollary 1.8] gives a useful version of Nakayama’s Lemma
(Lemma A.1.1) that can apply to this situation, though we give a proof using the more
general Lemma A.1.3. Similar to Theorem 1.4.4, we consider the cascade

M
f−→ R2 π−→ R2/R.

4N.B. In m0(R2)2C∞
p (f∗TR2) for example, since C∞

p (f∗TR2) is a C∞
p (M)-module then we are effectively

multiplying by the ideal C∞
p (M)m0(R2)2.
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This cascade induces a system of rings and modules:

C∞
0 (R2/R) C∞

0 (R2) C∞
p (M)

C∞
0 (T (R2/R)) C∞

0 (TR2) C∞
p (TM)

C∞
0 (π∗T (R2/R)) C∞

p (f ∗TR2)

π∗ f∗

π∗
−π∗

f∗
−f∗

We define the R-modules A and B by

A = C∞
0 (T (R2/R))⊕ C∞

0 (TR2)⊕ C∞
p (TM)

B = C∞
0 (π∗T (R2/R))⊕ C∞

p (f ∗TR2)

and, similarly to Theorem 1.4.4, define T : A → B according to the diagram, which in
symbols is

T (u, v, w) = (π∗u− π∗v, f ∗v − f∗w).
Define the following Jacobson ideals:

I1 = m0(R2/R) ⊆ m0(R2/R)
I0 = C∞

0 (R2)m0(R2/R) +m0(R2)2 ⊆ m0(R2)

I = C∞
p (M)m0(R2/R) + C∞

p (M)m0(R2)2 ⊆ mp(M)

We can see that

C∞
0 (R2)π∗(I1) = C∞

0 (R2)m0(R2/R) ⊆ I0

C∞
p (M)f ∗(I0) = C∞

p (M)m0(R2/R) + C∞
p (M)m2

0(R2) = I,

hence these Jacobson ideals satisfy the hypotheses of the lemma.
We now check the adequacy conditions for the special case where (2) does not hold for

the “i = 2” condition. In the following, note that C∞
p (M)f ∗C∞

0 (TR2) = C∞
p (f ∗TR2) and

C∞
0 (R2)π∗C∞

0 (T (R2/R)) = C∞
0 (π∗T (R2/R)).

• Condition at C∞
0 (π∗T (R2/R)). Suppose we are given a submoduleN ⊆ C∞

0 (π∗T (R2/R))
such that

C∞
0 (π∗T (R2/R)) = N + π∗C∞

0 (T (R2/R)) + I0C
∞
0 (π∗T (R2/R)).

It suffices to prove that C∞
0 (π∗T (R2/R)) = N + π∗C∞

0 (T (R2/R)). Letting L =
C∞

0 (π∗T (R2/R)), the assumption is equivalently that the map

π∗ : C∞
0 (T (R2/R))→ L/(N +m0(R2/R)L+m0(R2)2L)

of C∞(R2/R)-modules is a surjection. Since C∞(R2/R) is generated by the one element
∂
∂y2

then by Corollary 1.1.75 we have that π∗ : C∞
0 (T (R2/R)) → L/N is a surjection

as well, and hence L = N + π∗C∞
0 (T (R2/R)).



CHAPTER 1. SINGULARITY THEORY FOR DECOMPOSITIONS 52

• Condition at C∞
p (f ∗TR2). Suppose we are given that

C∞
p (f ∗TR2) = f∗C

∞
p (TM) + f ∗C∞

0 (TR2) + IC∞
p (f ∗TR2).

It suffices to prove the following:

C∞
p (f ∗TR2) = f∗C

∞
p (TM) + f ∗C∞

0 (TR2)

IC∞
p (f ∗TR2) = If∗C

∞
p (TM) + f ∗I0C

∞
0 (TR2)

Since I ⊆ Cp(M)m0(R2), then Theorem 1.1.73 applies to the assumption, yielding the
first equation. Multiplying the first equation by I0 yields the second equation.

Hence, the adequacy conditions are satisfied.
Now we check that B = T (A) + I0C

∞
0 (π∗T (R2/R)) + IC∞

p (f ∗TR2). Similar to the
argument in the proof of Theorem 1.4.4, since π∗ is surjective we only need to check that

C∞
p (f ∗TR2) ⊆ T (A) + I0C

∞(π∗T (R2/R)) + IC∞
0 (f ∗TR2).

One can see that this is satisfied if

C∞
p (f ∗TR2) = f∗C

∞
p (TM) + f ∗C∞

0 (R2) ∂
∂y1

+ f ∗C∞
0 (R2/R) ∂

∂y2
+ IC∞

p (f ∗TR2),

which is our hypothesis, hence by Lemma A.1.3 we have that B = T (A). Like in Theo-
rem 1.4.4, since B = T (A) then f is infinitesimally stable (and thus locally stable).

For the equivalent formulation, we compute that

m0(R2/R)C∞
p (f ∗TR2) +m0(R2)2C∞

p (f ∗TR2) = (f2)C
∞
p (f ∗TR2) + (f1, f2)

2C∞
p (f ∗TR2)

= (f 2
1 , f2)C

∞
p (f ∗TR2).

The module f ∗C∞
0 (R2) ∂

∂y1
consists of elements φ(f1, f2) ∂

∂y1
, and by the Hadamard Lemma

(Lemma 1.1.69) there are constants c0, c1 ∈ R and functions φ11, φ12, φ2 ∈ C∞
0 (R2) such that

φ(f1, f2) = c0 + c1f1 + φ11(f1, f2)f
2
1 + φ12(f1, f2)f1f2 + φ2(f1, f2)f2.

Hence, f ∗C∞
0 (R2) ∂

∂y1
⊆ R ∂

∂y1
+ Rf1 ∂

∂y1
+ (f 2

1 , f2)C
∞
p (f ∗TR2). Similarly, f ∗C∞

0 (R2/R) ∂
∂y2
⊆

R ∂
∂y2

+ (f 2
1 , f2)C

∞
p (f ∗TR2). Therefore, the hypothesis may equivalently be written as

C∞
p (f ∗TR2) = f∗C

∞
p (TM) + (f 2

1 , f2)C
∞
p (f ∗TR2) + R ∂

∂y1
+ Rf1 ∂

∂y1
+ R ∂

∂y2
.

Corollary 1.4.11. Let f ∈ C∞
p (M,R2)0 for M a smooth manifold and R2 with the standard

product foliation. Then f is locally infinitesimally stable if

C∞
p (f ∗TR2) = f∗C

∞
p (TM) + (f 2

1 , f2)C
∞
p (f ∗TR2) +mp(M)4C∞

p (f ∗TR2)

+ R ∂
∂y1

+ Rf1 ∂
∂y1

+ R ∂
∂y2
.

Hence, local infinitesimal stability is determined by the 4-jet of f .
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Proof. Let A = f∗C
∞
p (TM) + (f 2

1 , f2)C
∞
p (f ∗TR2). Since we assume that C∞

p (f ∗TR2)/(A+
mp(M)4C∞

p (f ∗TR2)) is a vector space of dimension at most three, by Corollary A.1.2 we
deduce that

mp(M)3C∞
p (f ∗TR2) ⊆ A.

Thus, mp(M)4C∞
p (f ∗TR2) ⊆ A, so we have that

C∞
p (f ∗TR2) = f∗C

∞
p (TM) + (f 2

1 , f2)C
∞
p (f ∗TR2) + R ∂

∂y1
+ Rf1 ∂

∂y1
+ R ∂

∂y2
.

By Lemma 1.4.10, f is locally infinitesimally stable.
We now consider the claim that local infinitesimal stability is determined by the 4-

jet. Suppose f ′ ∈ C∞
p (M,R2

0) is another germ with j4fp = jpf ′
p. Let (x1, . . . , xm) be

coordinates for M and (y1, y2) the standard coordinates for R2. Given that j4fp = j4f ′
p, then

in coordinates there are functions φ1, φ2 ∈ mp(M)5 such that f ′ = f+φ. For u1, u2, w1, w2 ∈
C∞
p (M), then

(u1
∂f ′

∂x1
+ u2

∂f ′

∂x2
+ w1(f

′
1)

2 ∂
∂y1

+ w2f
′
2
∂
∂y1

)− (u1
∂f
∂x1

+ u2
∂f
∂x2

+ w1f
2
1

∂
∂y1

+ w2f2
∂
∂y1

)

= u1
∂φ
∂x1

+ u2
∂φ
∂x2

+ w1(2f1φ1 + φ2
1)

∂
∂y1

+ w2φ2
∂
∂y2
.

This difference is an element of mp(M)4C∞
p (f ∗TR2) ⊆ mp(M)A. Defining A′ = f ′

∗C
∞
p (TM)+

((f ′
1)

2, f ′
2)C

∞
p ((f ′)∗TR2), then calculation implies A′ ⊆ A since each element of A′ is a sum

of elements of A. We also see from this that A ⊆ A′ + mp(M)A. Since A′ + mp(M)A ⊆
A + mp(M)A and A + mp(M)A = A, then A′ + mp(M)A = A. By Nakayama’s Lemma,
A′ = A, hence C∞

p (M,R2)/A′ = C∞
p (M,R2)/A, so by Lemma 1.4.10 we see f ′ is locally

infinitesimally stable too.

Lemma 1.4.12. Let f ∈ C∞
p (M,Rn)0 for M a smooth manifold and Rn = Rk × Rn−k with

the standard product foliation for some fixed 0 ≤ k ≤ n. Let (y1, . . . , yn) be the standard
coordinates for Rn, and use (yk+1, . . . , yn) for coordinates for Rn/Rk. If

C∞
p (f ∗TRn) = f∗C

∞
p (TM) +

∑
1≤i≤k

f ∗C∞
0 (Rn) ∂

∂yi
+
∑

k+1≤i≤n

f ∗C∞
0 (Rn/Rk) ∂

∂yi

+m0(Rn/Rk)C∞
p (f ∗TRn) +m0(Rn)n−k+1C∞

p (f ∗TRn),

then f is locally infinitesimally stable (and thus locally stable).

Proof. The proof is along the same lines as Lemma 1.4.10. We consider the cascade M f−→
Rn π−→ Rn/Rk, which induces the following system of rings and modules:

C∞
0 (Rn/Rk) C∞

0 (Rn) C∞
0 (M)

C∞
0 (T (Rn/Rk)) C∞

0 (TRn) C∞
p (TM)

C∞
0 (π∗T (Rn/Rk)) C∞

p (f ∗TRn)

π∗ f∗

π∗
−π∗

f∗
−f∗
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We define the R-modules A and B and the homomorphism T : A → B using the obvious
generalization. Define the following Jacobson ideals:

I1 = m0(Rn/Rk) ⊆ m0(Rn/Rk)

I0 = C∞
0 (Rn)m0(Rn/Rk) +m0(Rn)n−k+1 ⊆ m0(R2)

I = C∞
p (M)m0(Rn/Rk) + C∞

p (M)m0(Rn)n−k+1 ⊆ mp(M)

With these choices, the argument from Lemma 1.4.10 carries through, where we use n−k+1
instead of 2 since the n−k elements ∂

∂yk+1
, . . . , ∂

∂yn
generate C∞

0 (T (Rn/Rk)) as a C∞
0 (Rn/Rk)

module.

Corollary 1.4.13. Let f ∈ C∞
p (M,Rn+1)0 for M a smooth manifold and Rn = Rn×R with

the standard product foliation. Then f is locally infinitesimally stable if

C∞
p (f ∗TRn+1) = f∗C

∞
p (TM) + IC∞

p (f ∗TRn+1) +mp(M)2n+2C∞
p (f ∗TRn+1)

+
∑

1≤i≤n+1

R ∂
∂yi

+
∑

1≤i,j≤n

Ryi ∂
∂yj
,

where I ⊆ C∞
p (M) is the ideal I = (f1, . . . , fn)

2 + (fn+1).

Proof. This follows from the same sorts of calculations in Lemma 1.4.12, and then using
the application of Nakayama’s lemma from Corollary 1.4.11, where now the quotient has
dimension at most n+ (n+ 1).

Lemma 1.4.14. Let f ∈ C∞
p (M,R3)0 for M a smooth manifold and R3 given the standard

product foliation. Let (y1, y2, y3) be coordinates for R3, and use (y2, y3) for coordinates for
R3/R and (y3) for coordinates for R3/R2. If

C∞
p (f ∗TR3) = f∗C

∞
p (TM) + f ∗C∞

0 (R3) ∂
∂y1

+ f ∗C∞
0 (R3/R) ∂

∂y2
+ f ∗C∞

0 (R3/R2) ∂
∂y3

+m0(R3/R2)C∞
p (f ∗TR3) +m0(R3/R)2C∞

p (f ∗TR3),

then f is locally infinitesimally stable (and thus locally stable).

Proof. The proof is similar to Lemma 1.4.10, but now there is a system of four rings, and
we use the following Jacobson ideals:

I2 = m0(R3/R2) ⊆ m0(R3/R2)

I1 = C∞
0 (R3/R)m0(R3/R2) +m0(R3/R)2 ⊆ m0(R3/R)

I0 = C∞
0 (R3)m0(R3/R2) + C∞

0 (R3)m0(R3/R)2 ⊆ m0(R3)

I = C∞
p (M)m0(R3/R2) + C∞

p (M)m0(R3/R)2 ⊆ mp(M).
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1.5 The Thom–Boardman singularities
The higher-Morse-theoretic decomposition we use relies on a generalization of the classifica-
tion of singularities of smooth maps developed by Thom and Boardman in [Tho56,Boa67].
This purpose of this section is to review this theory and to lay the groundwork for the
generalization.

Suppose M and N are smooth manifolds of respective dimensions m and n. For f ∈
C∞(M,N) in a dense subset, Thom and Boardman defined, for all r ∈ N and i1, . . . , ir ∈ N,
locally closed submanifolds S[i1][i2] . . . [ir](f) ⊆M that stratify M .5 (Strictly speaking, the
submanifolds nest, and only those of these that end in a single ir = 0 form a stratification
of M .)

It starts with the simplest classification of points of M , which is how far the differential
df drops rank:

S[i1](f) = {p ∈ dom f | drk dfp = i1}.
(The dropped rank is drk dfp = min(dimTpM, dimTf(p)N)− rk dfp.) For f in a dense subset,
S[i1](f) is a submanifold of M , and so one can define

S[i1][i2](f) = S[i2](f |S[i1](f)).

Again, for f in a dense subset, S[i1][i2](f) is a submanifold of Si(f). In this way one
recursively defines

S[i1][i2] . . . [ir](f) = S[ir](f |S[i1][i2]...[ir−1](f)).

The result is a stratification of M such that within each stratum S the differential d(f |S)
has constant rank. If p ∈ S[i1][i2] . . . [ir](f), we say that f has a S[i1][i2] . . . [ir] Thom–
Boardman singularity at p. It is a local classification in that the type of a Thom-Boardman
singularity depends on no more than the germ of f at p, and the classification is invariant
under diffeomorphisms of M and N .

It should be said that what is meant by a classification of singularities is, generally
speaking, a characterization of the orbits of smooth map germs [f ]p ∈ C∞

p (M,N)q up to the
actions of the groups Diffp(M) and Diffq(N) of smooth map germs of diffeomorphisms that
preserve relevant structure, for instance orientations or foliations. The Thom–Boardman
singularity type is not a complete classification of singularities (for example [Por72]), but
it can be a useful first approach. In small enough (co)dimensions, the Thom–Boardman
singularity type can be enough to derive a finite list of possible normal forms for a singularity.
As an example from Morse theory, nondegenerate critical points of a smooth map f : Rm → R
are the S[1][0] singularities, and one can determine that they are locally modeled by quadratic
forms. The signature of a quadratic form is a singularity invariant, and the signature is
sufficient to further stratify S[1][0] into the m remaining singularity types.

We will be considering a variation on Thom–Boardman singularities, taking into account
foliations on the domain and codomain, and to see how to do this it is worth going into

5The traditional notation is Si1i2...ir , however in anticipation of singularity types with more complicated
symbols we use 1× 1 matrices for consistency.
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detail about how to show the above stratification of M can be carried out. A beautiful
algebraic approach by Boardman [Boa67] and Mather [Mat73] involves defining subvarieties
of the jet bundles Jk(M,N) for each Thom–Boardman singularity type and then applying
Theorem 1.2.9 (the Thom Transversality Theorem). These subvarieties stratify the jet bun-
dles themselves, and thus if f : M → N is in the dense set for which the jet extension
jkf : M → Jk(M,N) is transverse to the subvarieties, the preimage of the stratification
stratifies M .

We will use the Porteous intrinsic derivative to define the relevant submanifolds of the
jet bundles [Por71], which we have found to be adaptable in refining singularity types based
on foliations and other data.

Here is the high-level strategy for the construction of the jet bundle submanifolds for the
Thom–Boardman singularities. Suppose we have defined a submanifold S ⊆ Jk(M,N) to
classify singularities, where we say a smooth map f :M → N has an S singularity at p ∈M
if jkfp ∈ S. By the Thom Transversality Theorem, for a dense set of smooth maps, when
f has an S singularity at p its jet extension intersects S transversely, and so the S points
of such an f form a submanifold S(f) ⊆ M . When jkfp ∈ S, the condition jkf −⋔ S at p is
whether the map

qjkfp ◦ d(j
kf)p : TpM → NjkfpS

is surjective, whereNS = TJk(M,N)/TS is the normal bundle of S, pulling back TJk(M,N)
to be a bundle over S. In the case that jkf intersects S transversely, these assemble into a
map of vector bundles over S(f), and we can identify the tangent bundle of S(f) with the
kernel bundle K ⊆ TM over S(f) of this map. There also is another way in which the maps
assemble into a map of bundles. The differential of jkf at p is determined by jk+1fp, so,
lifting S to S ′ ⊆ Jk+1(M,N), the differential defines a map of bundles over S:

D : S ′ → Hom(TM,NS)

jk+1fp 7→ qjkfp ◦ d(j
kf)p

where TM stands for the pullback of TM along α : Jk(M,N)→M and then pulling it back
to S. Inside S ′ is the subset of (k+1)-jets whose k-jet extension intersects S transversely, and
in the ideal case this set forms a submanifold S ′′ ⊆ S ′. Now that we have this bundle map, we
can make use of the structure of Hom(TM,NS) to stratify S ′′. For each jk+1fp ∈ S ′′, we can
consider S(f) to be a submanifold locally at p, and in particular d(f |S(f))p : TpS(f)→ Tf(p)N
is well-defined, which by our identification from earlier is the restriction of dfp to the kernel
Kp. The kernels assemble into a vector bundle K over S, so we may consider the restriction
map Hom(TM,NS) → Hom(K,NS). Let S[i] ⊆ S ′′ denote the set of (k + 1)-jets whose
image in Hom(K,NS) has dropped rank i. In the ideal case, for all i ∈ N the set S[i]
is a submanifold, and we say these S[i] manifolds refine the S-type singularity.6 We then
recursively refine submanifolds in this way.

6We ignore S′ \S′′ since these jets only appear for smooth functions whose jet extension is not transverse
to S, and such functions are in the complement of a dense set by the Thom Transversality Theorem.
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To be able to pull this off, there are two ingredients: (1) we need to be able to efficiently
characterize the normal bundle NS, and (2) we need to be able to show that the rank
decomposition of Hom(K,NS) pulls back to a decomposition of S ′′. The key is that for each
S we consider:

• the composition S ′′ → Hom(K,NS) is a submersion onto its image, and we can char-
acterize this image;

• the intersection of this image with the submanifold Homi(K,NS) ⊆ Hom(K,NS) of
homomorphisms that drop rank by i is still a submanifold; and

• as a submanifold of the image, we can characterize the normal bundle of this intersec-
tion to get a normal bundle for S[i] in S ′′.

The process naturally gives a direct sum decomposition of the normal bundle of each singu-
larity type, with the next direct summand coming from the Porteous intrinsic derivative.

The main way we will modify the above process is to consider dropped ranks in more
than just Hom(K,NS). For example, foliations of the codomain give a filtration of TpM by
taking preimages of tangent spaces through dfp, beyond just the filtration 0 ⊆ Kp ⊆ TpM ,
and we can consider the submanifold of Hom(TM,NS) from specifying dropped ranks for
each subspace. If we have submanifolds of the domain, then for singularities along that
submanifold we can also consider the intersection of the filtration with its tangent space. To
do this process effectively, we need to develop methods to calculate normal bundles in these
situations.

We have not said anything about classifying multi-singularities arising from sets of points
mapping to the same point, but in essence the only difference is that we use multijets and
the Multijet Transversality Theorem (theorem 1.2.12).

1.5.1 Submanifolds of linear maps with rank conditions

For our classification of singularities, we need to be able to calculate normal bundles for
certain intersections of submanifolds of Hom(V,W ), where V and W are finite-dimensional
vector spaces.

For a ∈ Hom(V,W ), let drk a = min(dimV, dimW ) − rk a be the amount by which a
drops rank, and for r ∈ N define the topological subspaces

Homr(V,W ) = {a ∈ Hom(V,W ) | drk a = r}.

These manifolds are analyzed in [GG73], where the normal bundle at a ∈ Homr(V,W ) is
shown to be naturally isomorphic to Hom(ker a, coker a), but we are interested in a more
general setup. Given a finite index set I, suppose for all i ∈ I that Vi ⊆ V and Wi ⊆ W
are subspaces and ri ∈ N (note: subspaces are allowed to repeat). For a ∈ Hom(V,W ) and
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i ∈ I we let ai : Vi → W/Wi denote the composition Vi ↪→ V
a−→ W ↠ W/Wi. The subset in

particular that we are interested in is

Hom(V,W ; {ri}i) :=
⋂
i∈I

{a ∈ Hom(V,W ) | ai ∈ Homri(Vi,W/Wi)} . (1.5.1)

While this notation is ambiguous, {Vi}i and {Wi}i will be clear from context.
When the collections {Vi}i and {Wi}i are closed under intersections, we will show that

Hom(V,W ; {ri}i) is a submanifold and give calculations for normal bundles in Theorem 1.5.15
and Corollary 1.5.20. Note that the condition drk ai = ri is equivalent to dim(Vi∩a−1(Wi)) =
ki for ki = ri + max(0, dimVi + dimWi − dimW ), which is the dimension of the kernel of
ai. We will find it more convenient to work with the kernel dimensions {ki}i in this section.
Whether we are using the dropped-rank convention or the kernel convention is determined
by whether we are using {ri}i or {ki}i.

Recall that the Grassmannian Grn(V ), for V a finite-dimensional vector space and 0 ≤
n ≤ dimV , is the moduli space of n-dimensional subspaces of V . The smooth manifold
structure for Grn(V ) is given by the following: for U ∈ Grn(V ) and a choice of section
s : V/U → V of q : V ↠ V/U , there is a chart for Grn(V ) centered at U whose inverse is
given by

Γ : Hom(U, V/U)→ Grn(V )

f 7→ {u+ sfu | u ∈ U}.

This should be thought of as giving the graph of f in the coordinate system associated to the
splitting of V given by s and q. The tangent bundle for Grn(V ) is canonically isomorphic to
Hom(U, V/U), where by abuse of notation “U → Grn(V )” is the tautological vector bundle
whose fiber at a point of Grn(V ) is the point itself as a vector space.

Supposing for all i ∈ I we have subspaces Vi ⊆ V and numbers ki ∈ N, we define the
following Schubert-variety-like subset of Grn(V ):

Vn(V ; {Vi}i; {ki}i) =
⋂
i∈I

{U ∈ Grn(V ) | dim(U ∩ Vi) = ki}.

The first thing we will show is that when {Vi}i is closed under intersections that this is a
smooth submanifold of Grn(V ), and as a corollary we obtain a description of its tangent
bundle.

Definition 1.5.1. A semilattice I is a poset such that for all i, j ∈ I there exists a greatest
lower bound of {i, j}, denoted by i∧ j ∈ I called the meet . A semilattice is bounded if it has
a maximum element ⊤ ∈ I. ♢

Remark 1.5.2. A bounded semilattice is a poset that, as a category, is finitely complete. In
other words, it is closed under meets of arbitrary finite subsets. If S ⊆ I is finite, we write
∧S for the greatest lower bound of S, which we also write as

∧
i∈S i. ■
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Remark 1.5.3. Given a family {Vi}i∈I of distinct subspaces of a vector space V , if the family is
closed under pairwise intersections then we may give I the structure of a semilattice defined
by (1) for all i, j ∈ I, then i ≤ j if and only if Vi ⊆ Vj and (2) for all i, j ∈ I, then i ∧ j
is the element such that Vi∧j = Vi ∩ Vj. If the family has a maximal subspace, then I is a
bounded semilattice.

Another way to give this data is as a binary-product-preserving functor I → Subspace(V )
from a semilattice I to the poset category of subspaces of V . If I is a bounded semilattice,
then the corresponding concept is instead a left exact functor I → Subspace(V ). ■

Definition 1.5.4. Let {Vi}i be an I-indexed family of subspaces of V , let n ∈ N, and for
each i ∈ I let ki ∈ N. Then we define

V◦
n(V ; {Vi}i; {ki}i) = Vn(V ; {Vi}i; {ki}i)/∼

where ∼ is the relation where U ∼ U ′ if and only if, for all i ∈ I, U ∩ Vi = U ′ ∩ Vi. ♢

The purpose of this space is to record only the portion of U that is within the subspaces.
Certainly, if there is an i ∈ I such that Vj ⊆ Vi for all j ∈ I, then the map

V◦
n(V ; {Vi}i; {ki}i)→ Vki(Vi; {Vi}i; {ki}i)

defined by [U ] 7→ U ∩ Vi is a homeomorphism.
For each i ∈ I, the restriction of U ∈ Vn(V ; {Vi}i; {ki}i) to Vi defines the element U ∩ Vi

of Grki(Vi), and more specifically of Vki(Vi; {Vj}j≤i, {kj}j≤i). This is functorial in the sense
that, whenever i′ ≤ i, there is an induced map

Vki(Vi; {Vj}j≤i, {kj}j≤i)→ Vki′ (Vi′ ; {Vj}j≤i′ , {kj}j≤i′)

defined by intersecting the element of the Grassmannian with Vi′ . The problem we now
consider is in organizing the data of how these spaces fit together. We think of the amount
of “new” information about U that U ∩ Vi provides by considering how much of it can be
recovered from the images U ∩ Vi′ for all i′ < i. Then by walking up the I semilattice, we
construct coordinate charts from only the new information that arises at each step.

Definition 1.5.5. Suppose I is a poset. A downward set is a subset S ⊆ I such that if
i ∈ I, j ∈ S and i ≤ j then i ∈ S. For S ⊆ I, the downward set generated by S is the
minimal downward set containing S ⊆ I and is denoted by

↓S := {j ∈ I | j ≤ i for some i ∈ S}.

We write I ↓S := ↓S if we wish to make I explicit. The set ↓◦ S; = (↓S) \ S (or I ↓◦ S) is
the open downward set generated by S. ♢
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To organize the data, rather than considering individual indices, we instead consider
restrictions to entire downward sets. For downward sets S ⊆ S ′ ⊆ I, there is an induced
map

V◦
n(V ; {Vi}i∈S′ ; {ki}i∈S′)→ V◦

n(V ; {Vi}i∈S; {ki}i∈S).
We will show that this map is a fiber bundle and describe the fibers. In particular, we will
do so for the case that S ′ has one more element than S, and the rest follows by induction.

In the following, for i ∈ I we will have k′i denote the dimension of U ∩ Vi/
∑

j<i U ∩ Vj
for U ∈ Vn(V ; {Vj}j, {kj}j). This does not depend on the choice of U and these numbers
are the unique solution to the equations ki =

∑
j≤i k

′
j for all i ∈ I. They can be calculated

by inclusion-exclusion on the semilattice as

k′i = ki −
∑

∅̸=T⊆↓◦ i

(−1)|T |+1k∧T .

Lemma 1.5.6. Suppose {Vi}i is a finite I-indexed family of distinct subspaces that is closed
under intersections, let n ∈ N, and for all i ∈ I let ki ∈ N. Let m ∈ I be some maximal
element. Define the map

γ : V◦
n(V ; {Vi}i ̸=m; {ki}i ̸=m)→ Grkm−k′m(Vm)

[U ] 7→
∑
i<m

U ∩ Vi

and form the fiber bundle E → Grkm−k′m(Vm) whose fiber over W is given by Grk′m(Vm/W ).
The map

V◦
n(V ; {Vi}i; {ki}i)→ V◦

n(V ; {Vi}i ̸=m; {ki}i ̸=m)
induced by the inclusion I \ {m} ⊆ I of downward sets is a fiber bundle isomorphic to an
open subspace of γ∗E. In particular, the fiber above [U ] ∈ V◦

n(V ; {Vi}i ̸=m; {ki}i ̸=m) is the
open subspace

Vk′m(Vm/γ([U ]); {(γ([U ]) + Vi)/γ([U ])}i<m; {0}i<m) ⊆ Grk′m(Vm/γ([U ]))

and the inclusion of this fiber into V◦
n(V ; {Vi}i; {ki}i) is given by

η[U ] : Vk′m(Vm/γ([U ]); {(γ([U ]) + Vi)/γ([U ])}i<m; {0}i<m)→ V◦
n(V ; {Vi}i; {ki}i)

W 7→ W +
∑
i ̸=m

U ∩ Vi

These bundles fit into a commutative diagram mapping fibers injectively to fibers:

V◦
n(V ; {Vi}i; {ki}i) E

V◦
n(V ; {Vi}i ̸=m; {ki}i ̸=m) Grkm−k′m(Vm)

γ
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Proof. We see that γ is well-defined since k′m = dimVm/
∑

i<m U ∩Vi and dimVm = km. The
fiber bundle E is from taking the tautological vector bundle W ′ for Grkm−k′m(Vm), forming
the vector bundle Vm/W ′, and then taking Grk′m of the fibers.

Next we show η[U ] is well-defined. Given W in the domain of η[U ], then by choosing some
splitting Vm ≈ γ([U ])⊕ Vm/γ([U ]) we may lift W to being a k′m-dimensional subspace of Vm
whose intersection with γ([U ]) is trivial. Hence, W + γ([U ]) is a km-dimensional subspace,
and since the difference in any two sections of Vm ↠ Vm/γ([U ]) has its image lying in Um,
the choice of section does not change the resulting subspace. Thus adding

∑
i ̸=m U ∩ Vi

to W yields a well-defined subspace. The subspace is not n-dimensional, however, but
η[U ] ∩

∑
i Vi = η[U ] is of the correct dimension if it satisfies all the subspace dimension

constraints, which we now check.
We see that η[U ](W )∩γ([U ]) = γ([U ]) for all W . Thus, for i < m, since γ([U ])∩U ∩Vi =

U ∩ Vi, we have η[U ](W ) ∩ U ∩ Vj = U ∩ Vj. From this we get the inequality

dim(η[U ](W ) ∩ Vj) ≥ dim(η[U ](W ) ∩ U ∩ Vj) = dim(U ∩ Vj) = kj.

The function W 7→ dim(η[U ](W ) ∩ Vj) is upper semi-continuous, and thus the set of those
W ∈ Grk′m(Vm/γ([U ])) for which this inequality is an equality for all kj is open. Supposing
these inequalities are equalities, then we see

W ∩ (γ([U ]) + Vi)/γ([U ]) = ((W + γ([U ])) ∩ Vi)/γ([U ]) = (γ([U ]) + U ∩ Vi)/γ([U ]),

which is 0-dimensional, and thus W lies inside the domain of η[η]. For injectivity, note that
we can recover W by intersecting with Vm and quotienting by

∑
i ̸=m Vi.

Corollary 1.5.7. Suppose {Vi}i is a finite I-indexed family of distinct subspaces that is
closed under intersections, let n ∈ N, and for all i ∈ I let ki ∈ N. Then V◦

n(V ; {Vi}i; {ki}i)
is a smooth submanifold. In particular, Vn(V ; {Vi}i; {ki}i) is a smooth manifold.

Proof. If I is the empty set, then this is Grn({0}), which is a smooth manifold (though
potentially empty). Now we proceed by induction on the cardinality of I. Let m ∈ I be
maximal. By the lemma, we may regard V◦

n(V ; {Vi}i; {ki}i) as being an open subspace of
the pullback of a smooth fiber bundle over a Grassmannian. By induction, γ is a smooth
map, and so the pullback inherits a smooth structure.

Corollary 1.5.8. Assume the same hypotheses as the lemma, with m ∈ I maximal. Let
[U ] ∈ V◦

n(V ; {Vi}i; {ki}i). The fiber bundle from the previous lemma yields the following
short exact sequence:

0→ Hom

(
U ∩ Vm∑
i<m U ∩ Vi

,
U + Vm
U

)
→ T[U ]V◦

n(V ; {Vi}i; {ki}i)
→ T[U ]V◦

n(V ; {Vi}i ̸=m; {ki}i ̸=m)→ 0
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Proof. A representation of [U ] in the fiber is U ′ = (U ∩ Vm)/γ([U ]), and

Vm/γ([U ])

(U ∩ Vm)/γ([U ])
∼=

Vm
U ∩ Vm

∼=
U + Vm
U

,

which we can use to calculate the tangent space for the fiber:

TU ′Vk′m(Vm/γ([U ]); {(γ([U ]) + Vi)/γ([U ])}i<m; {0}i<m)
= TU ′ Grk′m(Vm/γ([U ]))
∼= Hom(U ′, (Vm/γ([U ]))/U

′)
∼= Hom(U ′, (U + Vm)/U)

With this we can write the short exact sequence for the tangent spaces in the desired way.

Corollary 1.5.9. Suppose {Vi}i is a finite I-indexed family of distinct subspaces that is
closed under intersections and includes V , let n ∈ N, and for all i ∈ I let ki ∈ N. For
U ∈ Vn(V ; {Vi}i; {ki}i), recursive application of the previous lemma yields the following
isomorphism:

TUVn(V ; {Vi}i; {ki}i) ∼=
⊕
i∈I

Hom

(
U ∩ Vi∑
j<i U ∩ Vj

,
U + Vi
U

)
.

Furthermore, the dimension of the tangent space is

dimTUVn(V ; {Vi}i; {ki}i) =
∑
i∈I

k′i(dimVi − ki).

Example 1.5.10. Suppose we have four subspaces of V with the following Hasse diagram:

V

V4

V2 V3

V1
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We can use the corollary to give the tangent space of Vn(V ; {Vi}i; {ki}i) at U as

Hom

(
U

U ∩ V4
,
V

U

)
⊕Hom

(
U ∩ V4

U ∩ V2 + U ∩ V3
,
U + V4
U

)
⊕Hom

(
U ∩ V2
U ∩ V1

,
U + V2
U

)
⊕ Hom

(
U ∩ V3
U ∩ V1

,
U + V3
U

)
⊕Hom

(
U ∩ V1,

U + V1
U

)
Notice that the codomains are all ordered by inclusion in the same way the subspaces are.
Furthermore, the direct sum of the domains gives a decomposition of U . The dimension of
the tangent space at U is

k′1(dimV1 − k1) + k′2(dimV2 − k2) + k′3(dimV3 − k3) + k′4(dimV4 − k4) + n′(dimV − n)

where

k′1 = k1 k′2 = k2 − k1 k′3 = k3 − k1 k′4 = k4 − k2 − k3 + k1 n′ = n− k1

which are obtained by inclusion-exclusion. ♢

Lemma 1.5.11. Suppose {Vi}i is a finite I-indexed family of distinct subspaces that is closed
under intersections, let n ∈ N, and for all i ∈ I let ki ∈ N. For U ∈ Vn(V ; {Vi}i; {ki}i), then
we have a canonical isomorphism

TUVn(V ; {Vi}i; {ki}i) ∼=
⋂
i∈I

{f : Hom(U, V/U) | f(U ∩ Vi) ⊆ U+Vi
U
}

and it commutes with the canonical isomorphism TU Grn(V ) ∼= Hom(U, V/U) by the natural
inclusions.

Proof. Since it is a submanifold, we have the inclusion TUVn(V ; {Vi}i; {ki}i) ⊆ TU Grn(V ),
which we compose with the isomorphism TU Grn(V ) ∼= Hom(U, V/U). Now that we have
established that Vn(V ; {Vi}i; {ki}i) is a submanifold, we can determine what the tangent
space is inside Hom(U, V/U) more directly.

Let i ∈ I and consider Vn(V ;Vi; ki). This has a map to Grki(Vi) by U 7→ U ∩ Vi and
induces a map

TUVn(V ;Vi; ki)→ TU∩Vi Grki(Vi)
∼= Hom(U ∩ Vi, Vi

U∩Vi ).

The preimage of this hom set in Hom(U, V/U) is the set of all f such that f(U ∩Vi) ⊆ U+Vi
U

.
Since Vn(V ;Vi; ki) is precisely those elements of Grn(V ) that can restrict to Grki(Vi), this
characterizes the tangent space.

By intersecting these conditions for all i ∈ I, we get the desired result.
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Remark 1.5.12. If we do not require that the set of subspaces be closed under intersection,
then, if it is locally a submanifold at all, Vn(V ; {Vi}i; {ki}i) might not have constant dimen-
sion. For example, consider the following subspaces of R6 with each ei ∈ R6 a standard basis
vector:

V1 = ⟨e1, e2, e4, e5⟩ V2 = ⟨e2, e3, e4, e5⟩

The subspaces U = ⟨e1, e2, e3⟩ and U ′ = ⟨e4, e5, e6⟩ are in V3(V ;V1, V2; 2, 2), and using the
characterization of the tangent space from Lemma 1.5.11, whose proof computes the tangent
space directly as an intersection of tangent spaces, one can calculate that the dimension at U
would be 6 and the dimension at U ′ would be 5, with the difference being that V1∩V2∩U =
⟨e2⟩ and V1∩V2∩U ′ = ⟨e4, e5⟩ have different dimensions. What we can say, however, is that
we have a stratification

V3(V ;V1, V2; 2, 2) =
⋃
k∈N

V3(V ;V1, V2, V1 ∩ V2; 2, 2, k)

by submanifolds. These submanifolds are nonempty exactly when k ∈ {1, 2}, and using
Corollary 1.5.9 we calculate that their dimensions are given by 5 + 2k − k2. A warning: the
dimension formula is positive for all 0 ≤ k ≤ 3, however k = 0 and k = 3 are non-viable
since these give negative-dimensional direct summands. ■

Now that we have the Lemma 1.5.11 formulation of the tangent bundle of the space
Vn(V ; {Vi}i; {ki}i), we can work out a useful description of the normal bundle. Assume the
hypotheses of that lemma, that {Vi}i is closed under intersections, but also suppose V is
included among the subspaces. Regarding I as a poset category, the indexed family may
be regarded as a functor V• : I → Vect, sending i to Vi and i ≤ j to Vi ↪→ Vj. Given
U ∈ Vn(V ; {Vi}i; {ki}i), there are also functors U ∩V• : I → Vect and (U +V•)/U : I → Vect
sending i respectively to U ∩ Vi and (U + Vi)/U . An element f ∈ TUVn(V ; {Vi}i; {ki}i) of
the tangent space describes a natural transformation from U ∩ V• to (U + V•)/U , where fi
is the restriction of f to Hom(U ∩ Vi, (U + Vi)/U). Naturality is that for i ≤ j there is a
commutative diagram:

U ∩ Vi U ∩ Vj

U+Vi
U

U+Vj
U

fi fj

We summarize this in the following lemma.

Lemma 1.5.13. Suppose {Vi}i is a finite I-indexed family of distinct subspaces that is
closed under intersections and contains V , let n ∈ N, and for all i ∈ I let ki ∈ N. Then for
U ∈ Vn(V ; {Vi}i; {ki}i), the tangent space at U is

TUVn(V ; {Vi}i; {ki}i) ∼= Hom(U ∩ V•, (U + V•)/U)
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where V• is the indexed family as a functor I → Vect and the homomorphism set is in the
category of natural transformations.7

Proof. As discussed, every tangent vector gives a natural transformation like this using
the respresentation of the tangent space from Lemma 1.5.11. Conversely, given a natural
transformation η : U ∩ V• → (U + V•)/U , since V is one of the subspaces, say Vm, then ηm
is a map U → V/U that we can take to be the tangent vector. We see ηi agrees with the
natural transformation for ηm since Vi ⊆ V and so there is a commutative diagram from
naturality that implies ηi is determined by ηm.

Lemma 1.5.14. Suppose {Vi}i is a finite I-indexed family of distinct subspaces that is
closed under intersections and contains V , let n ∈ N, and for all i ∈ I let ki ∈ N. Then for
U ∈ Vn(V ; {Vi}i; {ki}i), the normal space in GrU(V ) at U is

NUVn(V ; {Vi}i; {ki}i) ∼= Hom

(
U ∩ V•,

V

U + V•

)
where V• is the indexed family as a functor I → Vect and the homomorphism set is in the
category of natural transformations.

Proof. The normal space is defined by the short exact sequence

0→ TUVn(V ; {Vi}i; {ki}i)→ TU GrU(V )→ NUVn(V ; {Vi}i; {ki}i)→ 0

and substituting the spaces we know, this short exact sequence is isomorphic to

0→ Hom(U ∩ V•, (U + V•)/U)→ Hom(U, V/U)→ NUVn(V ; {Vi}i; {ki}i)→ 0

where the first map sends a natural transformation to its map on V . For f ∈ Hom(U, V/U)
and i ∈ I, by restricting and projecting we get a map fi : U ∩Vi → V/(U +Vi). This extends
to a map Hom(U, V/U) → Hom(U ∩ V•, V/(U + V•)) since for i ≤ j, we have commutative
diagrams

U ∩ Vi U ∩ Vj

V
U+Vi

V
U+Vj

fi fj

(Note that V/(U + V•) : I → Vect sends morphisms to surjections rather than injections.)
We claim this map is surjective by the following algorithm. Suppose we have a natural
transformation f : U ∩ V• → V/(U + V•) with projections fi for all i ∈ I. We inductively
define a linear map fS :

∑
i∈S U ∩ Vi → V/U on downward sets S ⊆ I. Suppose j ∈ I is

a minimal element not in the downward set S. Consider U ∩ Vj ∩
∑

i∈S U ∩ Vi, which is
7We use “Hom” rather than “Nat” to underline that these are linear maps, albeit ones that preserve

additional internal structure.



CHAPTER 1. SINGULARITY THEORY FOR DECOMPOSITIONS 66

the subspace of U ∩ Vj in the domain of definition of S. Choose a complementary subspace
V ′
j ⊆ U ∩ Vj to this. Restricting fj to V ′

j → V/(U + Vj), choose an arbitrary lift of it to
f ′
j : V

′
j → V/U . We can add f ′

j to fS using a splitting of U ∩ Vj to get the map fS∪{j}.
We claim that this map fits into a short exact sequence:

0→ Hom(U ∩ V•, (U + V•)/U)→ Hom(U, V/U)→ Hom(U ∩ V•, V/(U + V•))→ 0

For f ∈ Hom(U ∩ V•, (U + V•)/U), the image in Hom(U ∩ V•, V/(U + V•)) at i ∈ I is
U ∩ Vi ↪→ U

f−→ V/U ↠ V/(U + Vi), and since f restricted to U ∩ Vi is fi, we know its
image lies in (U + Vi)/U , which is being quotiented out. Therefore the image is 0. Next, for
f ∈ Hom(U, V/U) mapping to 0, this means for all i the restriction to U ∩ V• has an image
that, when quotiented by U + V•, is 0, hence f(U ∩ V•) ⊆ (U + V•)/U . Therefore f lies in
the image of Hom(U ∩ V•, (U + V•)/U).

Since this is a short exact sequence, we obtain the identification of the normal bundle
with this set of homomorphisms of natural transformations.

We now return to the setup for Equation (1.5.1). Let Γ : Hom(V,W )→ GrdimV (V ×W )
be the inverse coordinate chart centered at V × 0 ∈ GrdimV (V ×W ) using the canonical
splitting V ×W = V × 0⊕ 0×W ; the graph of a ∈ Hom(V,W ) is given by Γ(a) = {(v, av) |
v ∈ V }.

Theorem 1.5.15. Let I be a finite index set, and for each i ∈ I let Vi ⊆ V and Wi ⊆ W
be subspaces and let ri ∈ N. Suppose the family {Vi ×Wi}i consists of distinct subspaces,
is closed under intersections, and contains V × W . Let Hom(V,W ; {ri}i) =

⋂
i∈I{a ∈

Hom(V,W ) | drk ai = ri} be as in Equation (1.5.1) with ai : Vi → W/Wi the restriction and
projection of a, and let Γ : Hom(V,W ) → GrdimV (V × W ) be as immediately above. Let
ki = ri+max(0, dimVi+dimWi− dimW ) for all i ∈ I (the kernel dimensions associated to
the dropped ranks). Then

Hom(V,W ; {ri}i) = Γ−1(VdimV (V ×W ; {Vi ×Wi}i, {ki}i),

and thus Hom(V,W ; {ri}i) is a submanifold of Hom(V,W ). For a ∈ Hom(V,W ; {ri}i), we
have the following natural isomorphism:

TaHom(V,W ; {ri}i) ∼=
⋂
i∈I

{f ∈ Hom(V,W ) | f(ker ai) ⊆ im ai +Wi}

where im ai +Wi means q−1(im ai) for the quotient map q : W ↠ W/Wi. Furthermore, we
have the following natural isomorphisms:

TaHom(V,W ; {ri}i) ∼= Hom(ker a•, im a• +W•)

NaHom(V,W ; {ri}i) ∼= Hom(ker a•, coker a•)

Here, a• ∈ Hom(V•,W/W•) is the natural transformation associated to {ai}i for a given a,
and whose kernels, cokernels, and images define functors I → Vect.
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Proof. For a ∈ Hom(V,W ) and i ∈ I,

Γ(a) ∩ (Vi ×Wi) = {(v, av) | v ∈ Vi and av ∈ Wi}
= {(v, av) | v ∈ ker ai}.

This is isomorphic to ker ai via the projection onto the first component. Hence, dimker ai =
ki if and only if dim(Γ(a) ∩ (Vi ×Wi)) = ki.

For the tangent space, by Lemma 1.5.11 we have

TaHom(V,W ; {ri}i) ∼=
⋂
i∈I

{f ∈ Hom(Γ(a), V ×W/Γ(a)) | f(Γ(a) ∩ Vi ×Wi) ⊆ Γ(a)+Vi×Wi

Γ(a)
}.

The projection π1 : Γ(a) → V defined by π1(v, av) = v is an isomorphism, as is the map
φ : V ×W/Γ(a)→ W defined by φ((v, w) +Γ(a)) = w− av. Thus, we have an isomorphism
Hom(V,W ) → Hom(Γ(a), V ×W/Γ(a)) defined by f 7→ ψ−1 ◦ f ◦ φ that we can use to get
an isomorphism

TaHom(V,W ; {ri}i) ∼=
⋂
i∈I

{f ∈ Hom(V,W ) | f(π1(Γ(a) ∩ Vi ×Wi)) ⊆ φ(Γ(a)+Vi×Wi

Γ(a)
)}.

We know that π1(Γ(a) ∩ Vi ×Wi) = ker ai, and we can see that φ((Γ(a) + Vi ×Wi)/Γ(a)) =
im(a|Vi) +Wi. Hence, the condition in each set is f(ker ai) ⊆ im(a|Vi) +Wi.

For the next isomorphism, by Lemma 1.5.13 we have

TaHom(V,W ; {ri}i) ∼= Hom(Γ(a) ∩ (V• ×W•), (Γ(a) + V• ×W•)/Γ(a)),

and by the same maps above this is Hom(ker a•, im a• +W•). By Lemma 1.5.14,

NaHom(V,W ; {ri}i) ∼= Hom(Γ(a) ∩ (V• ×W•), V ×W/(Γ(a) + V• ×W•)).

Since Γ(a) ⊆ V ×W and

Γ(a) + Vi ×Wi = Γ(a) + Vi × 0 + 0×Wi = Γ(a) + 0× im(a|Vi) + 0×Wi,

we have
V ×W

Γ(a) + Vi ×Wi

∼=
W

im(a|Vi) +Wi

∼=
W/Wi

im(ai)
= coker(ai).

Therefore we have the identification NaHom(V,W ; {ri}i) ∼= Hom(ker a•, coker a•).

Remark 1.5.16. For convenience, here is an unpacked version of the natural isomorphism for
the tangent space at a ∈ Hom(V,W ; {ri}i):

TaHom(V,W ; {ri}i) ∼=
⋂
i∈I

{f ∈ Hom(V,W ) | f(Vi ∩ a−1(Wi)) ⊆ f(Vi) +Wi}.

This natural isomorphism respects the inclusion TaHom(V,W ; {ri}i) ⊆ TaHom(V,W ) and
the natural isomorphism TaHom(V,W ) = Hom(V,W ). ■
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NaH ∼= Hom



ker a11 ker a12

ker a21 ker a22

ker a31 ker a32

,

coker a11 coker a12

coker a21 coker a22

coker a31 coker a32



Figure 1.2: The normal space at the homomorphism described in Example 1.5.19

Example 1.5.17. The normal space at a ∈ Homr(V,W ) is

NaHom
r(V,W ) ∼= Hom(ker a, coker a).

The dimension of this space is (dimV − rk a)(dimW − rk a), which in terms of dropped rank
is (dimV −min(dimV, dimW ) + drk a)(dimW −min(dimV, dimW ) + drk a). Thus,

dimNaHom
r(V,W ) = r(r + |dimV − dimW |). ♢

Example 1.5.18. Suppose V1 ⊆ V and H = {a ∈ Hom(V,W ) | drk(a|V1) = r}. Then the
normal space at a ∈ H is

NHa
∼= Hom(ker(a|V1), coker(a|V1)).

The calculation of dimension in terms of r is essentially the same as in the previous example:

dimNHa = r(r + |dimV1 − dimW |). ♢

Example 1.5.19. Suppose we have subspaces Vij ⊆ V and Wij ⊆ W with 1 ≤ i ≤ 3 and
1 ≤ j ≤ 2 that are bifiltered (if i ≤ i′ and j ≤ j′ then Vij ⊆ Vi′j′ and Wij ⊆ Wi′j′). Also
suppose we have dropped ranks rij ∈ N, and let H = Hom(V,W ; {rij}ij). If a ∈ H, then the
normal bundle of H at U can be represented as in Figure 1.2, where aij : Vij → W/Wij is
the restriction and projection for a, and the homomorphism set is understood to be the set
of natural transformations between the functors represented by these diagrams. ♢

Corollary 1.5.20. Let I be a finite index set, for each i ∈ I let Vi ⊆ V and Wi ⊆ W be
subspaces and let ri ∈ N, and suppose the family {Vi ×Wi}i is closed under intersections.
Let H = Hom(V,W ; {ri}i). Consider the trivial bundle over H with fiber Hom(V•,W/W•),
and let A : H → Hom(V•,W/W•) be the section sending each a ∈ H to its associated natural
transformation. Then the normal bundle of H is naturally NH ∼= Hom(kerA, cokerA).
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Proof. We have TH ⊆ T Hom(V,W ) ∼= Hom(V,W ) naturally, and all isomorphisms from
Theorem 1.5.15 were natural. In particular, the isomorphism NH ∼= Hom(kerA, cokerA) is
from restricting and projecting a representative of a given vector in the normal bundle (a
homomorphism) to its kernel and cokernel.

1.5.2 The intrinsic derivative

We now resume our discussion of the intrinsic derivative. Suppose V and W are smooth
vector bundles over a smooth manifold M and f : M → Hom(V,W ) is a smooth section.
Suppose that fp ∈ Homr(Vp,Wp) at p ∈ M , where Vp and Wp denote the fibers at p. The
intrinsic derivative Dfp of Porteous [Por71] is the following composition of maps:

TpM
dfp−→ Tfp Hom(V,W ) ↠ Nfp Hom

r(V,W ) ∼= Hom(ker fp, coker fp).

The map Dfp depends only on the 1-jet j1fP , and so the intrinsic deriative of a germ [f ]p
at p is well-defined.

Remark 1.5.21. Recall that if π : Hom(V,W ) → M is the bundle projection, then there is
an induced surjective map of vector bundles dπ : T Hom(V,W ) → TM whose kernel is the
vertical tangent bundle, which is canonically isomorphic to π∗Hom(V,W ). This fits into a
short exact sequence of vector bundles over Hom(V,W ):

0→ π∗Hom(V,W )→ T Hom(V,W )→ π∗TM → 0

The short exact sequence splits, but not canonically (splittings are equivalently connections
on π). If f : M → Hom(V,W ) is a smooth section such that fp ∈ Homr(Vp,Wp), then
for v ∈ TpM we have dfp(v) ∈ Tfp(V,W ) ≈ TpM ⊕ Hom(Vp,Wp), and, conceptually, the
intrinsic derivative is extracting the portion of the Hom(Vp,Wp) component of dfp(v) that is
independent of the choice of splitting. ■

Remark 1.5.22. This is explained in [Boa67] in the following way. If p ∈ M and w ∈ Wp is
in the zero section, then one has a canonical splitting of the sequence

0→ Ww → TwW → TpM → 0

Furthermore, if s :M → W is a section with sp in the zero section, then the differential dsp
yields a linear map TpM → Wp by using the splitting. Hence, whenever χ : M → V is a
section such that fp ◦χp = 0, then from the section f ◦χ we obtain a linear map TpM → Wp.
If χp = 0, then we can write χ =

∑
i αiρi with each αi : M → R a smooth function that

vanishes at p and each ρi : M → V any section, and we can calculate that the TpM → Wp

map associated to f ◦αiρi is v 7→ (dαi)p(v)(f ◦ρi)p, whose image lies in coker fp. This means
that we can define a linear map ker fp → Hom(TpM, coker fp) by extending a kernel vector to
a section χ, obtaining the map associated to f ◦ χ, and then composing it with the quotient
Wp ↠ coker fp to remove the dependence on the choice of χ. ■
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Remark 1.5.23. Here is a description of how Dfp is computed in a trivialization. Suppos-
ing V = M × Rk and W = M × Rℓ, then Tfp Hom(V,W ) = TpM ⊕ Hom(Rk,Rℓ) and
Tfp Hom

r(V,W ) = TpM ⊕ TpHom
r(Rk,Rℓ). The quotient of these is Nfp Hom

r(Rk,Rℓ),
and as in Theorem 1.5.15 (and in particular Example 1.5.17), the normal bundle can be
identified with the subspace Hom(ker fp, coker fp). For v ∈ TpM , the intrinsic derivative
Dfp(v) ∈ Hom(ker fp, coker fp) is the result of restricting dfp(v) to ker fp and composing
with Wp ↠ coker fp. That is to say, after choosing splittings V = ker fp ⊕ coim fp and
W = im fp ⊕ coker fp, the block matrix for dfp(v) has the following form:

ker fp coim fp[ ]
im fp ∗ ∗

coker fp Dfp(v) ∗
■

Remark 1.5.24. The intrinsic derivative is merely a linear map defined over a single point
of M and not immediately a section of a vector bundle. If M ′ = f−1(Homr(V,W )) is a
submanifold of M , then the intrinsic derivative may be regarded as a section of a vector
bundle over M ′ in the following way. Let K be the vector bundle over M ′ of kernels of f
and L the vector bundle over M ′ of cokernels of f (these form valid vector bundles because
f has constant rank on M ′). Then the intrinsic derivatives assemble to form a section

Df :M ′ → Hom(TM |M ′ ,Hom(K,L))

This means that in the ideal case when f −⋔ Homr(V,W ) on M , the intrinsic derivative
forms a section over the submanifold f−1(Homr(V,W )). The following Lemma 1.5.25 gives
a necessary and sufficient condition for this to occur. ■

Lemma 1.5.25 ([GG73, VI.3.7]). Suppose V and W are smooth vector bundles over a
smooth manifold M , p ∈ M , and f : M → Hom(V,W ) is a smooth section such that
fp ∈ Homr(Vp,Wp). The following are equivalent:

1. Dfp : TpM → Hom(ker fp, coker fp) is surjective.

2. f −⋔ Homr(V,W ) at p.

Proof. The normal bundle to Homr(V,W ) at fp is isomorphic to the normal bundle to
Homr(Vp,Wp) at fp, so the intrinsic derivative may be regarded as taking values in the
normal bundle to Homr(V,W ) at fp, and f −⋔ Homr(V,W ) at p is equivalently stated as that

TpM
dfp−→ Tfp Hom(V,W ) ↠ Nfp Hom

r(V,W ) is surjective.

All of this generalizes to the situation from the previous section. Suppose {Vi}i and
{Wi}i are I-indexed families of subbundles of vector bundles V and W , respectively, such
that {Vi ×Wi}i is closed under intersections and contains V ×W , and suppose ri ∈ N for
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all i ∈ I. If drk(fp) = ri for all i ∈ I (that is, if we have fp ∈ Hom(Vp,Wp; {ri}), then we
define an intrinsic derivative Dfp by the composition

TpM
dfp−→ Tfp Hom(V,W ; {ri}) ↠ Nfp Hom(V,W ; {ri}) ∼= Hom(ker (fp)•, coker (fp)•)

using the isomorphism from Theorem 1.5.15, where by (fp)• we mean the natural transfor-
mation in Hom((Vp)•,Wp/(Wp)•) associated to fp. It has the same sort of description for
how it is computed in a trivialization, though coming up with a matrix form involves finding
bases that are compatible with each of the subspaces in the families.

Lemma 1.5.26. Let H = Hom(V,W ; {ri}i) using the preceding hypotheses, which is a
smooth fiber bundle over M . Suppose p ∈ M and that f : M → Hom(V,W ) is a smooth
section such that fp ∈ Hp. The following are equivalent:

1. Dfp : TpM → Hom(ker (fp)•, coker (fp)•) is surjective.

2. f −⋔ H at p.

If f −⋔ H, then the intrinsic derivative forms a section Df : TM → Hom(ker f•, coker f•)
over the submanifold f−1(H).

Remark 1.5.27. Since we can consider multiple different families of subspaces, there is no
longer “the” intrinsic derivative, and we will often work with multiple families simultaneously.
This can give us multiple submanifolds of M to work with, which can yield additional
subspaces that we can use for rank constraints. ■

1.5.3 Symmetric products and more submanifolds of linear maps

The definition of the singularity types involves taking iterated intrinsic derivatives of the
differential. In coordinates, the kth intrinsic derivative is some restriction and projection of
the kth iterated Jacobian of a smooth map that can be given in an invariant way, where the
kth iterated Jacobian of a smooth function f : U → Rn with U ⊆ Rm open is defined to be,
using (x1, . . . , xm) for the standard coordinates for Rm and (y1, . . . , yn) for Rn,

Jkf : U → Hom((Rm)⊗k,Rn)

x 7→ v1 ⊗ · · · ⊗ vk 7→

[
m∑
j1=1

· · ·
m∑

jk=1

v1j1 · · · vkjk
∂kf ∗yi

∂xj1 · · · ∂xjk
(x)

]n
i=1

The Jacobian Jf = J1f is df : U → Hom(Rm,Rn) in coordinates, and the second iterated
Jacobian J2f is the Hessian Hf : U → Hom(Rm ⊗ Rm,Rn). These are called iterated
Jacobians since the differential of Jkf is a section

d(Jkf) : U → Hom(TU, T Hom((Rm)⊗k,Rn))
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and this is induced by a map U → Hom(Rm,Hom((Rm)⊗k,Rn)) since the tangent bundles
are trivial. Applying the tensor-hom adjunction to this yields Jk+1f .

In general, Jkfp ∈ Hom((Rn)⊗k,Rm) is a symmetric function due to the symmetry of tak-
ing partial derivatives. We take a diversion through the generalization of symmetric products
introduced by [Boa67,Por71] to handle symmetries in the higher intrinsic derivatives.

Definition 1.5.28 ([Boa67]). Let V be a vector space and n ∈ N. The nth symmetric
power V ⊙n of V is the quotient of the nth tensor power V ⊗n by the permutation action of the
symmetric group Sn, where σ ∈ Sn has the right action (x1⊗· · ·⊗xn) ·σ = xσ(1)⊗· · ·⊗xσ(n).

For subspaces W1, . . . ,Wn ⊆ V , the symmetric product W1 ⊙ · · · ⊙Wn is the image of
the composition W1 ⊗ · · · ⊗Wn ↪→ V ⊗n ↠ V ⊙n. ♢

Remark 1.5.29. The iterated Jacobians define functions Jkf : U → Hom((Rm)⊙k,Rn). It
should be pointed out that the function

C∞
p (Rm,Rn)→

∏
k∈N

Hom((Rm)⊙k,Rn)

defined by [f ]p 7→ (Jkfp)k∈N is surjective, since this is giving the Taylor series of the germ
with respect to the chosen coordinates (see Remark 1.1.10). In particular, this product is
non-canonically isomorphic to the infinite jet space Jp(Rm,Rn). The grading induced by the
product is not preserved by changes of coordinates, with the change in Jkfp depending in
some complicated way on J ifp for all i ≤ k. Instead, there is a filtration on the infinite
product, where subspace i ∈ N is given by those element a ∈

∏
k Hom((Rm)⊙k,Rn) for which

aj = 0 for all 1 ≤ j < i. From the point of view of the infinite jet space, for each i ∈ N there
is a projection Jp(Rm,Rn) → J ip(Rm,Rn), and the preimage of the set of jets of constant
functions gives subspace i of the filtration. ■

Lemma 1.5.30. Suppose W1, . . . ,Wn ⊆ V are subspaces of a vector space V , and let U be
a vector space. The map W1 ⊗ · · · ⊗Wn ↠ W1 ⊙ · · · ⊙Wn induces an injection

Hom(W1 ⊙ · · · ⊙Wn, U) ↪→ Hom(W1 ⊗ · · · ⊗Wn, U).

If f is in the image, then for all w1 ⊗ · · · ⊗ wn ∈ W1 ⊗ · · · ⊗ Wn and σ ∈ Sn such that
wσ(1) ⊗ · · · ⊗ wσ(n) ∈ W1 ⊗ · · · ⊗Wn then

f(w1 ⊗ · · · ⊗ wn) = f(wσ(1) ⊗ · · · ⊗ wσ(n)).

In particular, f is in the image if and only if there exists an f : V ⊙n → U such that the
following diagram commutes:

V ⊗n V ⊙n

W1 ⊗ · · · ⊗Wn U

f

f
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Proof. By exactness, we have the following commutative diagram of injections and surjec-
tions:

Hom(V ⊗n, U) Hom(V ⊙n, U)

Hom(W1 ⊗ · · · ⊗Wn, U) Hom(W1 ⊙ · · · ⊙Wn, U)

In particular, the bottom arrow is an injection. If f is in the image of this map, then certainly
tensor factors can be reordered in the described way since these have the same image in V ⊙n.
Furthermore, the characterization of elements of the image in terms of the existence of an
extension to V ⊙n follows from surjectivity of Hom(V ⊙n, U) ↠ Hom(W1 ⊙ · · · ⊙Wn, U).

Corollary 1.5.31. Suppose W1, . . . ,Wn ⊆ V are subspaces such that there exists a basis
for V for which each Wi is a span of some subset of the basis vectors. Letting U be a
vector space, then Hom(W1 ⊙ · · · ⊙ Wn, U) can be identified with the set of linear maps
f : W1⊗ · · · ⊗Wn → U that satisisfy the property that for all w1⊗ · · · ⊗wn ∈ W1⊗ · · · ⊗Wn

and σ ∈ Sn such that wσ(1) ⊗ · · · ⊗ wσ(n) ∈ W1 ⊗ · · · ⊗Wn then

f(w1 ⊗ · · · ⊗ wn) = f(wσ(1) ⊗ · · · ⊗ wσ(n)).

Proof. By the previous lemma, it suffices to show that there is a symmetric function f :
V ⊗n → U such that f is the restriction of f . Let {ej}j be a basis for V such that each Wi is
a span of basis vectors. We define f on a basis by the following. For ej1 ⊗ · · · ⊗ ejn ∈ V ⊗n a
simple tensor of basis vectors, if there is a permutation σ ∈ Sn such that

eσ(j1) ⊗ · · · ⊗ eσ(jn) ∈ W1 ⊗ · · · ⊗Wn

then set f(ej1 ⊙ · · · ⊙ ejn) = f(eσ(j1) ⊗ · · · ⊗ eσ(jn)), and otherwise set f(ej1 ⊗ · · · ⊗ ejn) = 0.
This rule does not depend on the choice of σ because if σ′ ∈ Sn were another permutation
with the same property, then using σ′σ−1 in the hypothesis gives

f(eσ(j1) ⊗ · · · ⊗ eσ(jn)) = f(eσ′(j1) ⊗ · · · ⊗ eσ′(jn)).

We also see that f is symmetric since (1) for a simple tensor with a permutation that carries
it into W1 ⊗ · · · ⊗ Wn, we just established that every permutation of that simple tensor
yields the same value through f , and (2) for simple tensors without such a permutation, no
permutation of it has one either, so all permutations take the value 0 through f . Lastly,
f(w1 ⊙ · · · ⊙ wn) = f(w1 ⊗ · · · ⊗ wn) for all w1 ⊗ · · · ⊗ wn ∈ W1 ⊗ · · · ⊗Wn since we may
write this as a linear combination of tensors of basis elements, and this identity holds for
such elements by construction.

Remark 1.5.32. It is tempting to reduce this to the hypotheses that for all w1 ⊗ · · · ⊗ wn ∈
W1 ⊗ · · · ⊗Wn and 1 ≤ j ≤ k ≤ n such that wj, wk ∈ Wj ∩Wk, then

f(w1 ⊗ · · · ⊗ wj ⊗ · · · ⊗ wk ⊗ · · · ⊗ wn) = f(w1 ⊗ · · · ⊗ wk ⊗ · · · ⊗ wj ⊗ · · · ⊗ wn).
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However, not every permutation can be factored into transpositions of this type. For exam-
ple, consider R3 as the span of ⟨e1, e2, e3⟩, and let

W1 = ⟨e1, e2⟩ W2 = ⟨e2, e3⟩ W3 = ⟨e3, e1⟩

Then e1 ⊗ e2 ⊗ e3 and e2 ⊗ e3 ⊗ e1 are both in W1 ⊗W2 ⊗W3 (and have the same image in
W1⊙W2⊙W3), and indeed their indices are related by a 3-cycle, but every transposition of
indices yields a vector outside W1 ⊗W2 ⊗W3. ■

Lemma 1.5.33. Let W1, . . . ,Wn ⊆ V be subspaces of a vector space V , and let W ′
1 ⊆ V be

another subspace such that W1 ⊆ W ′
1. Then there is an induced injective map

W1 ⊙ · · · ⊙Wn ↪→ W ′
1 ⊙ · · · ⊙Wn.

Proof. By definition of the symmetric product, W1 ⊙ · · · ⊙Wn ⊆ W ′
1 ⊙ · · · ⊙Wn.

1.5.4 The singularity types

Using what we have developed, we will now describe a generalization to the Thom–Boardman
singularity types. Unlike the classical types, these types are more of a general framework;
it is a suggestion for how to incorporate as many subspaces as you can get your hands on.
We do not prove here that we can carry out a procedure to define jet submanifolds of all
orders, partly because we do not need them in low dimensions, and partly because it is not
yet clear what is the “correct” general procedure. We also do not give general formulae for
normal bundles of higher-order types here, since the ones that arose for our classification of
singularities were simple enough to compute as needed.

Suppose M and N are foliated manifolds (as in Section 1.3). By virtue of being foliated,
they each have a corresponding family of integrable distributions. Let I and J be finite
index sets, and for each i ∈ I and j ∈ J let Vi ⊆ TM and Wj ⊆ TN each be one of these
integral distributions. We assume the families {Vi} and {Wj} are closed under intersections
and contain no repetitions, but we do not assume they contain TM or TN . These define an
(I × J)-indexed family {Vi ×Wj} that is closed under intersections.

Recall from Remark 1.1.8 the isomorphism J1(M,N) ∼= Hom(TM, TN) as bundles over
M ×N . For each (I × J)-indexed family {rij} of natural numbers, we define the first-order
types S[{rij}] ⊆ J1(M,N) by taking the preimage of the submanifold Hom(TM, TN ; {rij})
through this isomorphism:

J1(M,N) Hom(TM, TN)

S[{rij}] Hom(TM, TN ; {rij})

∼=

∼=

Definition 1.5.34. For S ⊆ Jk(M,N) a submanifold and f : M → N a smooth map, we
write S(f) for the set of S-type singularity points of f , which consists of those p ∈ M for
which jkfp ∈ S. That is to say, S(f) = (jkf)−1(S). ♢
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Remark 1.5.35. Theorem 1.2.9 (the Thom Transversality Theorem) implies that the set of
f ∈ C∞(M,N) for which f is transverse to each S[{rij}] is dense. Hence, for f in this dense
subset the S[{rij}](f) sets are submanifolds of M . ■

Now that we have the first-order types, we next want a way to determine whether a
jet extension is transverse to the S[{rij}] manifolds. For f ∈ C∞(M,N) such that j1fp ∈
S[{rij}], then there is a second intrinsic derivative8 d2fp := D(df)p

d2fp : TpM → Hom(ker (dfp)•, coker (dfp)•)

that by Lemma 1.5.25 is surjective if and only if j1f intersects S[{rij}] transversely at p.
The second intrinsic derivative d2fp depends only on the 2-jet j2fp, in the sense that by
Lemma 1.1.9 there is a smooth map J2(M,N) → Hom(TM, T Hom(TM, TN)) defined by
j2fp 7→ d(df)p. Hence, we can classify the 2-jets of generic maps according to their S[{rij}]
types.

We now work our way up to second-order types. Let S[{rij}]′ ⊆ J2(M,N) be the
preimage of S[{rij}] through the projection J2(M,N)→ J1(M,N). We define the following
bundles over S[{rij}]:

• K[{rij}] is such that over j1fp the fiber is the functor ker (df)• : I × J → Vect.

• L[{rij}] is such that over j1fp the fiber is the functor coker (df)• : I × J → Vect.

The sense in which these are bundles is that these functors are describing an I × J-indexed
family of vector spaces, albeit with the additional structure of having smoothly varying mor-
phisms between them. The second intrinsic derivatives of the elements of S[{rij}]′ assemble
into a map of bundles over S[{rij}]:

S[{rij}]′ Hom(TM,Hom(K[{rij}], L[{rij}]))

S[{rij}] S[{rij}]

d2

The interpretation of Hom(K[{rij}], L[{rij}]) is the vector bundle such that over j1fp the
fiber is the vector space of natural transformations between the two functors.

The idea now is to use d2 to further stratify S[{rij}]′ by rank conditions. A technical
complication is that, while we have the machinery to show that various rank conditions
define submanifolds of Hom(TM,Hom(K[{rij}], L[{rij}])), the map d2 is not in general a
surjective submersion, so a priori we do not know whether we can take the preimage of
these submanifolds through d2 to further stratify S[{rij}]′.

By adjunction, we have the isomorphism

Hom(TM,Hom(K[{rij}], L[{rij}])) ∼= Hom(TM ⊗K[{rij}], L[{rij}]).
8We will try to consistently call this the “second intrinsic derivative” rather than “intrinsic derivative.”
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Thus, for j2fp ∈ S[{rij}]′, the (i, j) ∈ I × J projection of d2fp may be seen as an element of

Hom(TpM ⊗ ker(Vi
dfp−→ Tf(p)N/Wj), coker(Vi

dfp−→ Tf(p)N/Wj)).

This element may be regarded as a restriction and projection of the iterated Jacobian J2fp,
so it is symmetric. Using the symmetric product from Section 1.5.3, we may view the
(i, j) ∈ I × J projection of d2fp as an element of

Hom(TpM ⊙ ker(Vi
dfp−→ Tf(p)N/Wj), coker(Vi

dfp−→ Tf(p)N/Wj))

and in fact we may view d2 as a map

S[{rij}]′
d2−→ Hom(TM ⊙K[{rij}], L[{rij}]),

where the meaning of TM⊙K[{rij}] is to take the symmetric product componentwise (giving
another functor I × J → Vect). By the discussion about iterated Jacobians, d2 is surjective.
It is a submersion, too, by the following argument. Since the distributions are integrable,
there are trivializations of the tangent bundles such that the distributions {Vi} and {Wj}
take the form of trivial bundles in the trivializations (see Lemma 1.3.21). This homogeneity
implies that it suffices to show that d2 is a submersion on fibers. The fiber above j1fp in
S[{rij}]′ is, in coordinates, the second-order Taylor polynomials of f at p that coincide with
j1fp to first order, hence all of J2fp is realized in the fiber. In coordinates, d2 is computing
a restriction and projection of J2fp, and restrictions and projections are submersions.

Before describing the second-order types, we mention some properties of the subspaces
of the bundle TM over j1fp ∈ S[{rij}] that we have at our disposal: the distributions {Vi}
at p, the kernels K[{rij}] at j1fp, and also TpM itself. For i, i′ ∈ I and j, j′ ∈ J , we have
a commutative diagram of kernels and cokernels, where recall that the meet ∧ is defined to
be such that Vi∧i′ = Vi ∩ Vi′ and Wj∧j′ = Wj ∩Wj′ , and for notational compactness we write
Ki,j for K[{rij}]ij and Li,j for L[{rij}]ij:

Ki,j Ki∧i′,j∧j′ Ki′,j′

Vi Vi∧i′ Vi′

TpM/Wj TpM/Wj∧j′ TpM/Wj′

Li,j Li∧i′,j∧j′ Li′,j′

dfp dfp dfp

When j = j′, we can see that Ki∧i′,j = Ki,j ∩ Ki′,j, and when i = i′, we can see that
Ki,j∧j′ = Ki,j ∩ Ki,j′ . Hence, the kernels are closed under intersections. Furthermore, the
intersection of (Vi)p and Ki′,j is Ki∧i′,j, hence the collection of all Vi, K[{rij}]ij, and TM
over j1fp is closed under intersections.
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We should also mention subspaces of Hom(K[{rij}], L[{rij}]). To be able to apply our
normal bundle machinery, we want these subspaces to be closed under intersections. As this is
a vector space of natural transformations, we have projections to Hom(K[{rij}]ab, L[{rij}]ab)
for each (a, b) ∈ I × J , and the kernels of these projections give subspaces. However,
they are not necessarily closed under intersections. Instead, for every A ⊆ I and B ⊆ J
whose corresponding subfamilies are closed under intersections, we can restrict the natural
transformations to the category A × B. The kernels associated to these restriction maps
then give a family of subspaces (and in fact subbundles) that are closed under intersection.

Now let I ′ and J ′ be finite index sets, where for each i ∈ I ′ and j ∈ J ′ we let V ′
i

be a subbundle of the TM bundle and W ′
j′ be a subbundle of the Hom(K[{rij}], L[{rij}])

bundle, both only of the types mentioned above, such that {V ′
i′} and {W ′

j′} are closed under
intersections and contain no repetitions. We assume TM is among the V ′

i and the zero
subspace is among the W ′

j .
For each (I ′ × J ′)-indexed family {r′i′j′} of natural numbers, we have a submanifold

Hom(TM,Hom(K[{rij}], L[{rij}]); {r′i′j′}). Assuming that its intersection with Hom(TM ⊙
K[{rij}], L[{rij}]) is also a submanifold, then we define the second-order type S[{rij}][{r′i′j′}] ⊆
S[{rij}]′ to be the preimage of this submanifold through d2.

Remark 1.5.36. The reason we included TM in the {V ′
i } family and the zero subspace in

{W ′
j} is that this lets us encode surjectivity of the second intrinsic derivative as a rank

condition. The second-order types that encode non-surjective second intrinsic derivatives do
not generically occur — thus we do not further stratify such types.

We can generically assume we are only considering the case where on TM the second
intrinsic derivative is surjective. We can also generically assume that for each j′ ∈ J ′

that the projection TM → Hom(K[{rij}]j′ , L[{rij}]j′) of the second intrinsic derivative is
surjective. ■

The next step is working out the condition on 3-jets for which a map’s jet extension
intersects S[{rij}][{r′i′j′}] transversely. Suppose j2fp ∈ S[{rij}][{r′i′j′}] with f generic. In
the basic form, we calculate the normal bundle for the rank conditions in Hom(TM ⊙
K[{rij}], L[{rij}]), calculate the third intrinsic derivative, and then check that it is surjective.
There is of course the complication that this normal bundle is for a more complicated space
than before, but we handle this on a case-by-case basis.

For higher types, there is more information we may make use of. As discussed, for each
j′ ∈ J ′ we have a projection of the second intrinsic derivative

d2fp : TpM → Hom((K[{rij}]j′)p, (L[{rij}]j′)p),

and since we assumed this is surjective, there is a smooth submanifold S[{rij}]j′(f) of “j′”
points of f whose tangent space at p is the kernel of this j′ projection of d2fp. These second
intrinsic derivatives assemble into a bundle map over this submanifold. Assuming the rank
conditions {r′i′j′} define a submanifold of Hom(TpM ⊙ (K[{rij}]j′)p, (L[{rij}]j′)p) and that
we can calculate a normal bundle P [{rij}]j′ [{r′i′j′}]p for it, the j′ projection bundle map has
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a third intrinsic derivative,

d3fp : TpS[{rij}]j′(f)→ P [{rij}]j′ [{r′i′j′}]p.

This third intrinsic derivative depends on no more than the 3-jet of f . For all j′, j′′ ∈ J ′

such that j′ ≤ j′′, we have a commutative diagram:

TpS[{rij}]j′(f) P [{rij}]j′ [{r′i′j′}]p

TpS[{rij}]j′′(f) P [{rij}]j′′ [{r′i′j′}]p

d3fp

d3fp

This means d3fp can be seen as a natural transformation TpS[{rij}]•(f)→ P [{rij}]•[{r′i′j′}]p
of functors J ′ → Vect. Care must be taken with this since it’s a bundle map only over
S[{rij}][{r′i′j′}](f), which limits the potential for higher derivatives since the intrinsic deriva-
tive depends on having bundles defined on an open neighborhood of p.

Let S[{rij}][{r′i′j′}]′ ⊆ J3(M,N) be the preimage of the submanifold S[{rij}][{r′i′j′}] ⊆
J2(M,N). Making use of the J3(M,N) → Hom(TM, TJ2(M,N)) map from Lemma 1.1.9,
we may obtain a bundle homomorphism over S[{rij}][{r′i′j′}]:

S[{rij}][{r′i′j′}]′
d3−→ Hom(TS[{rij}]•, P [{rij}]•[{r′i′j′}])

Being loose with notation, TS[{rij}]• is the bundle whose fiber above j2fp is the functor
(j′ ∈ J ′) 7→ TS[{rij}]j′(f), and similarly for P [{rij}]•[{r′i′j′}]. Then, in a similar way as
before, we may look for rank conditions that define submanifolds in the image of d3 and pull
them back, yielding third-order types. We must take care in choosing our rank conditions.
For j′′ > j′ we have that S[{rij}]j′ ⊆ S[{rij}]j′′ , so bundles associated to j′ cannot necessarily
be used in rank conditions associated to j′′ — intrinsic derivatives depend on having a bundle
defined in a neighborhood of p.

Now it is time to use these ideas to compute singularity types. It should be said that it
is easier to execute it in practice than to explain it in the abstract.
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Chapter 2

Classification of singularities
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Table 2.1: Classification of Morse singularities.

Type Codim. Representative germ See:

S[0] 0 f ∗y = x1 Lemma 2.1.2

S[1] m f ∗y = −x21 − · · · − x2k + x2k+1 + · · ·+ x2m Lemma 2.1.3

Table 2.2: Classification of Cerf singularities.

Type Codim. Representative germ See: Suspends

S[ 00 ] 0 f ∗y = x1 Lemma 2.1.8 S[0]

S[ 10 ][0] m f ∗y = −x21 − · · · − x2k
+ x2k+1 + · · ·+ x2m

Lemma 2.1.9 S[1]

S[ 10 ][1] m+ 1 f ∗y = −x21 − · · · − x2k
+ x2k+1 + · · ·+ x2m−1

+ xm(t+ x2m)

Lemma 2.1.10

S[ 10 ][0]|[ 10 ][0] m|m f ∗
p y = −x21 − · · · − x2k

+ x2k+1 + · · ·+ x2m + t

f ∗
p′y = −(x′1)2 − · · · − (x′k′)

2

+ (x′)2k′+1 + · · ·+ (x′m)
2

Lemma 2.1.12
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In this chapter we work through the classification of singularities for a number of sit-
uations. We start in Section 2.1 by showing how to use our version of Thom–Boardman
singularities to derive the singularity types for Morse and Cerf theory. In Section 2.3 we
derive singularity types for curves and graphs in the plane along with their Cerf theory when
the plane is given the standard R ⊆ R2 foliation, which is the model useful for decomposing
diagrams for monoidal categories. Then, in Sections 2.4 to 2.6 we classify the singularities
for the Morse and Cerf theory of maps Σ→ (R ⊆ R2) for Σ a surface, reprising [SP09] but
with exact normal forms. Finally, Sections 2.7 to 2.9 is a classification of singularities for the
Morse and Cerf theory for maps Σ → (R ⊆ R2) when the surface Σ contains a 1-manifold.
Since most of the singularities we come across are in some way Morin singularities due to
the low dimensions involved, Section 2.2 is a general overview.

In tables of singularity types, we will list a family of polynomial representatives (what we
call “normal forms,” which are not generally canonical to be clear!) per Thom–Boardman
symbol. Our spaces of singularities have no moduli, which is to say each terminal Thom–
Boardman class corresponds to only a finite set of equivalence classes of germs, and we can
generally represent these in tables by giving schemata for the plus and minus signs. In higher
dimensions one will not be so lucky.

2.1 Morse and Cerf theory
In this section, as an exercise we apply the machinery to rederiving the descriptions of Morse
and Cerf functions. It is well-known that the Thom–Boardman classification is sufficient for
density of Morse functions [GG73], and it is also sufficient for Cerf functions when allowing
a more lax notion of equivalence [SP09], but we will demonstrate that the classification can
be used to derive the notion of a Cerf function with the strict notion of equivalence. It
is also worth reviewing this since we will lean heavily on the techniques demonstrated in
the Morse Lemma and applications of Lemma 1.1.69 in later classifications. The resulting
representative jets for Morse and Cerf singularities are respectively summarized in Tables 2.1
and 2.2, and note that these results coincide with the classical theory.

2.1.1 Morse singularities

First, we take on Morse functions, which are a certain kind of generic function in C∞(M,R)
for M a smooth m-manifold. The first-order singularity types are S[r] ⊆ J1(M,R), where
r ∈ N is the dropped rank for the differential — the only possibilities of course are r ∈ {0, 1}.
The codimension of S[r] in J1(M,R) (and thus the codimension of this type of singularity
in M) is given in the following table:

Type S[0] S[1]

Codim. 0 m
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The second intrinsic derivative d2fp : TpM → Hom(K[0]p, L[0]p) for the S[0] type is the
zero function since L[0]p := coker dfp = 0 for j1fp ∈ S[0], and so it is automatically surjective.
If j1fp ∈ S[1], its second intrinsic derivative is a function

d2fp : TpM → Hom(K[1]p, L[1]p)

with K[1]p = TpM and L[1]p = TqR, following the convention that q = f(p). For this to be
surjective, then, by dimension, the restriction d2fp|K[1]p is a bijection, so the third intrinsic
derivative will be the zero function, and thus there is nothing more to classify.

Hence, S[0] and S[1] enumerate the viable Thom–Boardman singularity types, and with
those determined we next consider multijet singularities. Letting ∆2

R = {(y, y) | y ∈ R}
be the diagonal, we may take its preimage β−1(∆2

R) ⊆ J (1,1)(M,R), which is a submanifold
of codimension 1. We can take the preimage of S[r1] × S[r2] ⊆ J1(M,R) × J1(M,R) in
J (1,1)(M,R), which is a submanifold of codimension (r1 + r2)m. One can check that its
intersection with β−1(∆2

R) is a submanifold of codimension (r1 + r2)m + 1, which we call
S[r1]|[r2], and the set S[r1]|[r2](f) is pairs of distinct points (p1, p2) ∈ M ×M such that
f(p1) = f(p2), p1 ∈ S[r1](f), and p2 ∈ S[r2](f). Thus, applying Theorem 1.2.12 (the
Multijet Transversality Theorem), there is a dense subset of maps M → R whose multijet
extension j(1,1) : M2 \∆2

M → J (1,1)(M,R) is transverse to S[r1]|[r2], and for such a map f ,
S[r1]|[r2](f) has codimension (r1 + r2)m+ 1 in M2 \∆2

M . The types where r1 = 0 or r2 = 0
are uninteresting since S[0] is the type for a submersion, and for the remaining case we see
that S[1]|[1](f) is empty since the type has too high of codimension.

By Theorems 1.2.9 and 1.2.12, the subset of C∞(M,R) whose jet extensions are transverse
to S[r] and S[r1]|[r2] for all r, r1, r2 ∈ N is a residual subset, and thus dense — functions in
this dense subset are called generic. We now classify the singularities in coordinates, starting
from these types.

Remark 2.1.1. At this point we can infer that generic functions have the property that the
set of critical points is S[1](f), this set is discrete, and all the critical values are distinct
since S[1]|[1](f) is empty. ■

Recall from Definition 1.4.2 that two germs σ, τ ∈ C∞
p (Rm,R) are equivalent if there is a

diffeomorphism germ φ ∈ Diffp(Rm) and a diffeomorphism germ ψ : Diffτ(p)(R)σ(p) such that
σ = ψ ◦ τ ◦ φ. We will be using the convention that p = 0 ∈ Rm. By equivalence, we may
also assume that our germs are all in C∞

p (Rm,R)0.

Lemma 2.1.2. If f ∈ C∞
p (Rm,R) is a generic germ that is an S[0] singularity (i.e., j1fp ∈

S[0]), then, up to equivalence, it is given by

f(x) = x1.

Proof. After a linear change of variables, we may assume df =
[
1 0 · · · 0

]
. By the

constant rank theorem, there is a change of coordinates for Rm and R such that on a neigh-
borhood of p, f(x) = Jfp(x), thus we get the desired from f(x) = x1.
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Lemma 2.1.3 (Morse Lemma). If f ∈ C∞
p (Rm,R) is a generic germ that is an S[1] singu-

larity, then, up to equivalence, it is given by

f(x) = a1x
2
1 + · · ·+ amx

2
m

where a1, . . . , am ∈ {−1, 1}.

Proof. By assumption, dfp = 0, and we can calculate that the second intrinsic derivative is

d2fp : Rm → Hom(Rm,R)
v 7→

(
w 7→ wTHf(p)v

)
where Hf(p) is the Hessian matrix of f at p. Since j1f is transverse to the S[1] submanifold,
d2fp is surjective, which implies Hf(p) is nonsingular. Symmetric matrices can be orthog-
onally diagonalized, so there is a linear reparameterization such that Hf(p) is diagonal.
Scaling variables, we may assume the diagonal entries are ±2.

Applying the Hadamard lemma (Lemma 1.1.69), there are functions hij ∈ C∞(Rm) for
all 1 ≤ i ≤ j ≤ n such that

f(x) =
∑

1≤i≤j≤n

hij(x)xixj

where hii(p) = ±1 and hij(p) = 0 if i < j. Let ai = hii(p) for all 1 ≤ i ≤ n.
We show by induction on 0 ≤ k ≤ n that there is a reparameterization of the domain

such that (1) for all 1 ≤ i ≤ k, hii = ai and (2) for all 1 ≤ i < k and i < j ≤ n, hij = 0. The
base case k = 0 is vacuously satisfied. Assume the induction hypothesis is true for some k,
which gives the representation

f(x) = a1x
2
1 + · · ·+ akx

2
k +

∑
k≤i≤j≤n

hij(x)xixj.

Extracting those terms involving xk+1, we may rewrite this as

f(x) = a1x
2
1 + · · ·+ akx

2
k + hk+1,k+1(x)x

2
k + xk+1

∑
k+1<j≤n

hk+1,j(x)xj +
∑

k+1≤i≤j≤n

hij(x)xixj.

Consider the reparameterization with xi = xi for all i ̸= k and

xk =
√
|hkk(x)|

(
xi −

xk+1

2
√
|hkk(x)|

∑
k+1<j≤n

hk+1,j(x)xj

)
.

The Jacobian of this reparameterization at p is the identity matrix (hence invertible) thus
it is a valid reparameterization. It is completing the square for xk, so applying it (and going
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back to having x1, . . . , xm denote the coordinates in place of x1, . . . , xm), the result is that
we may assume hkk = ak and furthermore

f(x) = a1x
2
1 + · · ·+ akx

2
k + ak+1x

2
k+1 +

∑
k+1≤i≤j≤n

hij(x)xixj.

This completes the induction.

The results are summarized in Table 2.1, which records representative germs for each
singularity type.

2.1.2 Cerf singularities

We now move on to the Cerf singularities. A Cerf function is a path through C∞(M,R) of
functions that are generically (in a suitable sense) Morse functions. With the appropriate
topologies, a smooth such path is equivalently an element of C∞(M × [0, 1],R). The more
classic way to study these is to consider instead functions f ∈ C∞(M × [0, 1],R× [0, 1]) with
the property that f(x, t)2 = t for all (x, t) ∈ M × [0, 1]. This constraint is inconvenient to
incorporate into the Thom–Boardman framework, so instead what we will do is make things
generic with respect to the product foliation of M × [0, 1]. An intuition behind this is that
a function f ∈ C∞(M × [0, 1],R) defines the function F :M × [0, 1]→ R× [0, 1] given by

F1(x, t) = f(x, t)

F2(x, t) = t

Using the product foliation for R× [0, 1] (since, after all, we are wanting to do a 2-categorical
decomposition of smooth homotopies between Morse functions), then the second intrinsic
derivative of this with respect to just the foliation on the codomain is a function

d2Fp : Tp(M × [0, 1])→ Hom (ker dFp ↪→ ker d(F2)p, coker dFp ↪→ coker d(F2)p) ,

and we have ker dFp = TpM ∩ ker dfp, ker d(F2)p = TpM , and coker d(F2)p = 0. After
a foliation-preserving linear change of coordinates in the codomain, coker dFp = coker dfp.
Thus, the second intrinsic derivative reduces to being a map

d2Fp : Tp(M × [0, 1])→ Hom
(
ker (dfp|TpM), coker dfp

)
In particular, we get TpM in an intrinsic way from the foliation of the codomain, and TpM
forms a distribution for the domain that foliates it. From this point of view, we may as
well start with this foliation. The only catch is that when we consider equivalence of germs
C∞
p (M × [0, 1],R), we apply “affine” diffeomorphisms to the codomain. In other words, we

consider equivalence of germs as if they were germs in the F form:
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Definition 2.1.4. Let M and N be smooth manifolds with structure, and let p ∈ M
and t0 ∈ R. Germs f, f ′ ∈ C∞

(p,t0)
(M × R, N) are Cerf equivalent if the germs F, F ′ ∈

C∞
(p,t0)

(M × R, N × R) defined by

F1(x, t) = f(x, t) F ′
1(x, t) = f ′(x, t)

F2(x, t) = t F ′
2(x, t) = t

are equivalent with respect to Diff(p,t0)(M × R) and Diff(N × 0 ⊆ N × R). ♢

For example, adding an element of C∞
p2
([0, 1],R) to a germ or negating t gives a Cerf

equivalent germ — up to Cerf equivalence we may assume for f ∈ C∞
p (M × [0, 1],R) that

f(p1, t) = 0 for all t.

Remark 2.1.5. This is the same notion as equivalence of 1-dimensional unfoldings; see [Was75]
for an introduction to this theory of Thom and some generalizations to unfoldings with,
essentially, foliated additional parameters. ■

Another way to justify this type of equivalence is that translations of a Morse func-
tion through time are “uninteresting,” so we may as well ignore translations in our classi-
fication. Supporting this is the following general lemma about suspensions of germs (see
Definition 2.1.14):

Lemma 2.1.6. Let m,n, s ∈ N and f ∈ C∞
0 (Rm×Rs,Rn) be such that df |T0Rs = 0. Suppose f

is a generic Thom–Boardman singularity with respect to {T0Rm} for the domain and {T0Rn}
for the codomain. Then F ∈ C∞

0 (Rm × Rs,Rn × Rs) defined by F (x, t) = (f(x, t), t) is a
generic Thom–Boardman singularity with respect to Rm × Rs and the product foliation on
Rn × Rs. This also holds when Rn × Rs is not given the product foliation.

Proof. The differential of F has the form

dF0 =

[
df0
0 Is

]
,

and hence the second intrinsic derivative is a function

d2F0 : T0(Rm × Rs)→ Hom


T0Rm ∩ ker df0

T0Rm

,

coker df0

0

 .

By the assumption that df |T0Rs = 0 we have coker df0 = coker (df0)|T0Rm . We also have that
T0Rm ∩ ker df0 = ker (df0)|T0Rm , thus d2F0|T0Rm = d2f0 (which holds even if Rn × Rs is not
given the product foliation). Hence, d2F0 is surjective because d2f0 is. For the higher intrinsic
derivatives, the pattern is (1) that we look at restrictions to the same subspaces of T0Rm

(starting with ker df0) as we would if we had started with f and (2) that ker dkf0 ⊆ ker dkF0,
so each dk+1F0 is surjective since dk+1f0 is.
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With that said, we will now analyze the Thom–Boardman singularities up to Cerf equiv-
alence for C∞(M × [0, 1],R) where the domain is given the product foliation, but we only
consider the TM distribution and we never look at rank on T (M × [0, 1]) (this is not invari-
ant under Cerf equivalence). With a nod toward the motivation for these singularities, we
will write the first-order types as S[ r0 ], which helps distinguish them from their S[r] Morse
counterparts.

The S[ r0 ] ⊆ J1(M × [0, 1],R) type is given by those j1fp such that dfp|TpM has dropped
rank equal to r. The codimensions from before still apply, and the only possibilities are
r ∈ {0, 1}. The S[ 00 ] type has no subtypes, so we turn our attention to S[ 10 ]. The second
intrinsic derivative for j2fp ∈ S[ 10 ] is a function

d2fp : Tp(M × [0, 1])→ Hom(K[ 10 ]p, L[
1
0 ]p)

with K[ 10 ]p = ker (dfp|TpM) = TpM and L[1]p = coker (dfp|TpM) = TqR = R. In particular it
is given by

d2fp : Tp(M × [0, 1])→ Hom(TpM,R)
v 7→ (w 7→ Hfp(v ⊗ w))

where we use the inclusion TpM ↪→ Tp(M) ⊕ Tp([0, 1]) ∼= Tp(M × [0, 1]) to evaluate the
Hessian. Recall that the kernel of d2fp is the tangent space to S[ 10 ](f) at p, which we see is
1-dimensional when d2fp is surjective.

The second-order types are S[ 10 ][r] ⊆ J2(M×[0, 1],R) of those jets j2fp such that d2fp|TpM
has dropped rank equal to r (recall: this corresponds to the dropped rank for d(f |S[ 10 ](f))p).
By consideration of the 1-dimensionality of S[ 10 ](f), the possibilities are r ∈ {0, 1}. The
type S[ 10 ][0] has no subtypes, but subtypes of S[ 10 ][1] cannot yet be excluded. Restricted
to TpM , the second intrinsic derivative d2fp is the Hessian restricted to TpM ⊗ TpM . For
this type, there is a one-dimensional kernel K[ 10 ][1]p ⊆ TpM of the Hessian, and the third
intrinsic derivative can be calculated to be a function

d3fp : TpS[ 10 ](f)→ Hom(K[ 10 ][1]p ⊙K[ 10 ][1]p,R).

Both the domain and codomain of this function are one-dimensional, so surjectivity reduces
to d3fp being nonzero and thus a bijection. Thus, S[ 10 ][1] has no subtypes.

We thus have that the viable Thom–Boardman singularity types are S[ 00 ], S[ 10 ][0], and
S[ 10 ][1]. We defer discussion of multijet singularities to Section 2.1.2.

By Theorem 1.2.9 (the Thom Transversality Theorem), there is a dense subset of C∞(M×
[0, 1],R) of generic functions that have the property that their S[ 00 ], S[ 10 ], S[ 10 ][0], and S[ 10 ][1]
points stratify M × [0, 1]. We now derive normal forms. We again use the convention that
p = 0 ∈ Rm ×R, and we use the coordinates (x1, . . . , xm, t) for Rm ×R. It is relatively easy
to derive a normal form for the k-jet of a kth order type, and then using stability results
from Section 1.4 we can exactly identify equivalence classes.
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Remark 2.1.7. Even before obtaining normal forms, what we know so far is that for a generic
f ∈ C∞(M×[0, 1],R), there is a one-dimensional submanifold S[ 10 ](f) of those points (x, t) ∈
M × [0, 1] where ft has a critical point, and furthermore the one-dimensional submanifold
S[ 10 ][0](f) is where S[ 10 ](f) meets the leaves of the foliation transversely, and the zero-
dimensional submanifold S[ 10 ][1](f) is where it temporarily becomes tangent to the leaves. ■

Lemma 2.1.8. If f ∈ C∞
p (Rm × R,R) is a generic germ that is an S[ 00 ] singularity, then,

up to Cerf equivalence, it is given by

f(x, t) = x1

Proof. After a linear change of variables from GL(Rm ⊆ Rm × R), we may assume df =[
1 0 · · · 0

]
. By the implicit function theorem, there is a function φ : Rm × R → R such

that
f(φ(x1, . . . , xm, t), x2, . . . , xm, t) = x1

for all (x1, . . . , xm, t) ∈ Rm × R. The following is a valid coordinate change for F (Rm ⊆
Rm × R):

x1 = φ(x1, . . . , xm, t) x2 = x2 · · · xm = xm t = t

With it,

f ∗y = f(x1, x2, . . . , xm, t) = f(φ(x1, . . . , xm, t), x2, . . . , xm, t) = x1,

which has the desired form.

Lemma 2.1.9. If f ∈ C∞
p (Rm×R,R) is a generic germ that is an S[ 10 ][0] singularity, then,

up to Cerf equivalence, it is given by

f(x, t) = a1x
2
1 + · · ·+ amx

2
m

where a1, . . . , am ∈ {−1, 1}.

Proof. Since it is an S[ 10 ] singularity, dfp|Rm = 0, and by a Cerf change of coordinates for the
codomain we may assume dfp = 0. As we determined earlier, the second intrinsic derivative
is

d2fp : Tp(Rm × R)→ Hom(Rm,R)
v 7→ (w 7→ Hfp(v ⊗ w)).

Since we are considering type S[ 10 ][0], then d2fp|Rm is surjective, and hence the Hessian
restricted to Rm ⊗ Rm is nondegenerate. We have ker d2fp = TpS[ 10 ][0](f), hence S[ 10 ][0](f)
is one-dimensional, and also we see S[ 10 ][0](f) intersects Rm × 0 transversely. Thus, there
is a local parameterization γ : R →◦ S[ 10 ][0](f) with γ(t)2 = t for all t ∈ dom γ. With
this we construct the change of coordinates x = x + γ(t)1 and t = t, after which we may
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assume S[ 10 ][0](f) coincides with 0 × R in a neighborhood of p. Replacing f(x, t) with
f(x, t) − f(0, t) gives a Cerf equivalent germ, so we may further assume that f(0, t) = 0
for all t. Thus, we may apply the Parameterized Hadamard Lemma (Lemma 1.1.69) to get
germs fij ∈ C∞

p (Rm × R) such that

f(x, t) =
∑

1≤i≤j≤n

fij(x, t)xixj.

Like in the Morse Lemma (Lemma 2.1.3), after a linear change of coordinates we may assume
Hfp is diagonal when restricted to TpRm ⊗ TpRm. The structure of the proof of the Morse
Lemma carries through to this parameterized situation since there is an ε > 0 such that for
all |t| < ε, fii(0, t) ̸= 0, and furthermore the coordinate changes always preserve t. Thus,
there is a coordinate change such that f can be written in the desired form.

Lemma 2.1.10. If f ∈ C∞
p (Rm × R,R) is a generic germ that is an S[ 10 ][1] singularity,

then, up to Cerf equivalence, it is given by

f(x, t) = a1x
2
1 + · · ·+ am−1x

2
m−1 + xm(t+ x2m)

where a1, . . . , am−1 ∈ {−1, 1}. Such a germ is locally stable with respect to Cerf equivalence
and is 3-determined.

Proof. Unlike in Lemma 2.1.9, ker d2fp is now a one-dimensional subspace of TpM . After a
Cerf change of coordinates and a linear change of coordinates for Rm, we may assume that
dfp = 0, that ker d2fp is Rm = {x ∈ Rm | x1 = · · · = xm−1 = 0}, and that in coordinates d2fp
is in the form 

±2 0 · · · 0 0 ∗
0 ±2 · · · 0 0 ∗
...

... . . . ...
...

...
0 0 · · · ±2 0 ∗
0 0 · · · 0 0 1


Running through the proof for Lemma 2.1.3 using the Parameterized Hadamard Lemma like
in Lemma 2.1.9 and making sure to also clear out xit terms, there is a change of coordinates
such that

f(x, t) = a1x
2
1 + · · ·+ am−1x

2
m−1 + h(x, t)x2m + xmt

for a1, . . . , am−1 ∈ {−1, 1} and h ∈ C∞
p (Rm × R,R). Since h(p) = 0, by the Hadamard

Lemma there are functions h0, . . . , hm such that h = th0 + x1h1 + · · · + xmhm, and by a
Morse-lemma-style changes of coordinates, we may assume h1, . . . , hm−1 = 0. Hence,

f(x, t) = a1x
2
1 + · · ·+ am−1x

2
m−1 + hm(x, t)x

3
m + h0(x, t)x

2
mt+ xmt.

The third intrinsic derivative computes ∂3f
∂x3m

(p) = 6hm(p), which must be nonzero for j2f to
be transverse to S[ 10 ][1]. By scaling xm and t as needed, we may assume that hm(p) = 1.
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The change of coordinates with xm = xm−h0(x, t)x2m lets us assume h0(p) = 0, and therefore
we have found a normal form for the 3-jet of this singularity:

f(x, t) = a1x
2
1 + · · ·+ am−1x

2
m−1 + x3m + xmt+ r(x, t),

where r ∈ m4
p. We may assume r(0, t) = 0 by subtracting r(0, t) from f via a Cerf change of

coordinates. By the Parameterized Hadamard Lemma (Lemma 1.1.69), there are functions
rI ∈ C∞

p (Rm × R) such that
r(x, t) =

∑
|I|=4

rI(x, t)x
I .

Using x21, . . . , x2m−1 to clear out terms like in the Morse Lemma, we may assume that

r(x, t) = r′(x, t)x4m

for some r′ ∈ C∞
p (Rm × R).

For c > 0, consider the substitution xi = c1/2xi for 1 ≤ i < m, xm = c1/3xm, t = c2/3t,
and y = cy. This has

f ∗y = a1x
2
1 + · · ·+ am−1x

2
m−1 + x3m + xmt+ c4/3x4mr

′(c1/2x1, . . . , c
1/2xm−1, c

1/3xm, c
2/3t).

Thus, for arbitrarily small c we can make all higher derivatives become arbitrarily small.
Hence, within every neighborhood of a1x21+ · · ·+ am−1x

2
m−1+x3m+xmt in the C∞ topology,

there exists a germ that is equivalent to the given S[ 10 ][1] germ. It suffices now to show that
f is locally stable since then there exists a change of coordinates that can eliminate r′, and
this furthermore implies that f is 3-determined.

We can show f is locally stable by showing that the map F (x, t) = (f(x, t), t) is locally
stable using Corollary 1.4.11. Let R = C∞

p (Rm × R) and let

A =
m∑
i=1

R ∂F
∂xi

+R∂F
∂t

+ (f 2, t)C∞
p (F ∗TR2) +mp(Rm × R)4C∞

p (F ∗TR2),

which is an R-submodule of C∞
p (F ∗TR2). What we need to show is that

C∞
p (F ∗TR2) = A+ R ∂

∂y1
+ Rf ∂

∂y1
+ R ∂

∂y2
.

We have

∂F
∂xi

= (2aixi + x4m
∂r′

∂xi
) ∂
∂y1

≡A 2aixi
∂
∂y1

for 1 ≤ i < m

∂F
∂xm

= (3x2m + t+ 4r′x3m + x4m
∂r′

∂xm
) ∂
∂y1
≡A x2m(3 + 4r′xm)

∂
∂y1

∂F
∂t

= xm(1 + x3m
∂r′

∂t
) ∂
∂y1

+ ∂
∂y2

≡A xm ∂
∂y1

+ ∂
∂y2
,

where we have reduced these calculations modulo (t)C∞
p (F ∗TR2)+mp(Rm×R)4C∞

p (F ∗TR2)
in particular. Since we can divide by 3 + 4r′xm and 2ai for all 1 ≤ i < m, we see that
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A contains (x1, . . . , xm−1, x
2
m, t)

∂
∂y1

. Using xm
∂
∂y1
≡A − ∂

∂y2
, we also see that A contains

(x1, . . . , xm, t)
∂
∂y2

. Again using ∂
∂y2
≡A −xm ∂

∂y1
, then with the Hadamard lemma we deduce

that
A+ R ∂

∂y1
+ R ∂

∂y2
= C∞

p (F ∗TR2).

This completes the proof that f is locally stable.

The results are summarized in Table 2.2.

Multijet Cerf singularities

For multijet singularities, like before we can take products of singularity types in the multijet
bundle then take an intersection with an appropriate submanifold. We are only interested
in when two singularities take the same value at the same time. Let k ∈ Nk be a multiindex.
The submanifold that represents taking the same value is β−1(∆k

R) ⊆ Jk(M × [0, 1],R).
For the submanifold that represents occuring at the same time, recall the source map α :
Jk(M×[0, 1],R)→ (M×[0, 1])k\∆k

M×[0,1], so, letting πt :M×[0, 1]→ [0, 1] be the projection
to time, we have a map π×k

t ◦ α : Jk(M × [0, 1],R) → [0, 1]k, and thus (π×k
t ◦ α)−1(∆k

[0,1])
is the submanifold. Thus, we can intersect products of singularities in the multijet bundle
with the submanifold

β−1(∆k
R) ∩ (π×k

t ◦ α)−1(∆k
[0,1]),

which has codimension 2k − 2.
We ignore S[ 00 ] since such points are submersions. With S[ 10 ][r1]|[ 10 ][r2] denoting the in-

tersection of S[ 10 ][r1]×[ 10 ][r2] with the above submanifold in J (2,2)(M×[0, 1],R), we calculate
the following codimensions in consultation with Table 2.2:

Type S[ 10 ][0]|[ 10 ][0] S[ 10 ][0]|[ 10 ][1] S[ 10 ][1]|[ 10 ][1]

Codim. 2m+ 2 2m+ 3 2m+ 4

Since the domain for the multijet transversality theorem is (M × [0, 1])2 \∆2
M×[0,1], which

has dimension 2m + 2, this means only the first of the three generically occurs. Then we
consider triple coincidences of this remaining type:

Type S[ 10 ][0]|[ 10 ][0]|[ 10 ][0]

Codim. 3m+ 4

This time (M × [0, 1])2 \∆2
M×[0,1] has dimension 3m+ 3, so they do not generically occur.

The S[ 10 ][0]|[ 10 ][0] type singularity has dimension 0, so there are no further subtypes.
Applying Theorem 1.2.12 (the Multijet Transversality Theorem) to all the multijet singu-
larity types mentioned yields a residual subset of C∞(M × [0, 1],R), which we can intersect
with the residual subset we obtained from the last section to get a residual (and thus dense)
subset of generic functions. These are the Cerf functions.
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Definition 2.1.11. Let M and N be smooth manifolds with structure. Let S ⊆ M be
a finite set and let q ∈ N . We call C∞

S (M,N)q the collection of multigerms , and it is
equivalently the disjoint union

∐
p∈S C

∞
p (M,N)q. The group (

∏
p∈S Diffp(M)) × Diffq(N)

acts on multigerms, and multigerms in the same orbit are called equivalent multigerms .1
Similarly, we say elements of C∞

S×t0(M × R, N) are Cerf equivalent multigerms if the
corresponding multigerms C∞

S×t0(M×R, N×R) with the second component being the identity
on R are equivalent (like in Definition 2.1.4). ♢

Exact normal forms for multigerms are more difficult to come by since each germ in the
multigerm has the same codomain, so there is less freedom to reparameterize. In this case,
however, since Lemma 2.1.9 mostly applied domain transformations, we can still get an exact
normal form. Let p, p ∈ Rm be distinct points and let q = 0 ∈ R.

Lemma 2.1.12. If f ∈ C∞
(p,0)(Rm×R,R)q and f ′ ∈ C∞

(p′,0)(Rm×R,R)q define a generic multi-
germ that is an S[ 10 ][0]|[ 10 ][0] multisingularity, then, up to Cerf equivalence, the multigerm
is given by

f(x, t) = a1x
2
1 + · · ·+ amx

2
m

f ′(x′, t) = a′1(x
′
1)

2 + · · ·+ a′m(x
′
m)

2 + t,

where (x1, . . . , xm) are coordinates centered at p, (x′1, . . . , x′m) are coordinates centered at p′,
and where a1, . . . , am, a′1, . . . , a′m ∈ {−1, 1}.

Proof. The germs together define a germ f × f ′ ∈ C∞
p (Rm × R × Rm × R,R × R), where

p = (p, 0, p′, 0). Recall that we are considering the multijet submanifold

β−1(∆2
R) ∩ (π×2

t ◦ α)−1(∆2
R) ∩ S[ 10 ][0]|[ 10 ][0],

and we need the multijet extension j2,2(f × f ′) to be transverse to this submanifold at
j2,2(f × f ′)p. The transversality condition associated to (π×2

t ◦ α)−1(∆2
R) results in us only

needing to check transversality when both time variables are equal. Since T∆2
R is spanned

by ∂
∂y1

+ ∂
∂y2

, the quotient of TR2 by this can be represented by differences of coefficients,
so the β−1(∆2

R) transversality condition is that the differences in the differentials of the two
functions is surjective. Thus, the function we need to consider for this multisingularity is
F ∈ C∞

p (Rm × Rm × R) defined by F (x, x′, t) = f(x, t)− f ′(x′, t).
Each germ is a S[ 10 ][0]-type singularity, so their differentials are zero. Hence,

dFp =
[
01×m 01×m ∂01f(p, 0)− ∂01f ′(p′, 0)

]
.

By Cerf equivalence, we may assume that ∂01f(p, 0) = 0. This must be surjective to meet
the β−1(∆2

R) transversality condition, and thus ∂01f ′(p′, 0) ̸= 0.
1Note that Diffq(N) acts on the germs simultaneously.
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Then we can essentially apply the argument of Lemma 2.1.9 to reparameterize the two
germs as

f(x, t) = a1x
2
1 + · · ·+ amx

2
m + φ(t)

f(x, t) = a′1(x
′
1)

2 + · · ·+ a′m(x
′
m)

2 + φ′(t).

By Cerf equivalence, we may assume that φ(t) = 0, and then since we established that the
first derivative of φ′ is nonzero, by the inverse function theorem we may reparameterize t to
let us assume that φ′(t) = t.

We have now handled multigerm singularities such that the germs are mapping to the
same point, but there is still an additional type of multigerm singularity. To be able to
generalize to foliations, what we have not done is consider germs that map to the same point
after being projected to maps Rm × R→ R/R. These functions are trivial in this case, but
they do serve an important function: by making our Cerf functions generic with respect to
this, what happens is that S[ 10 ][0] singularities cannot happen at the same time since the
codimension is 2m+ 3 in a (2m+ 2)-dimensional space.

This completes the classification of Cerf functions. We summarize most of the structure
of Cerf graphics here, and what would remain is to analyze the singularity types to see
exactly how they fit together, as we will illustrate in Chapter 3 for cobordism categories.

Theorem 2.1.13. Let f be a Cerf function in C∞(M × [0, 1],R) (that is, f is in the dense
subset of generic functions with respect to the jet and multijet submanifolds from this and the
last section). Define F :M × [0, 1]→ R× [0, 1] by F (x, t) = (f(x, t), t) and π : R× [0, 1]→
[0, 1] by π(y, t) = t. Then:

• M × [0, 1] is stratified by S[ 00 ](f), S[ 10 ][0](f), and S[ 10 ][1](f) points.

• The S[ 10 ][0](f) points are further stratified by whether or not they appear in one of the
S[ 10 ][0]|[ 10 ][0](f) pairs.

• The images of all these strata (except S[ 00 ](f)) through F are disjoint, and wherever
S[ 10 ][0](f) points have the same image they come in pairs as S[ 10 ][0]|[ 10 ][0](f) points.

• The images of the S[ 10 ][1] points through π ◦ F are disjoint.

The Cerf singularities are enumerated in Table 2.2. The meaning of the “suspends”
column is whether the singularity is a suspension of another:

Definition 2.1.14. Let m,n, s ∈ N and f ∈ C∞
0 (Rm,Rn). The suspension of the germ f is

the smooth map F ∈ C∞
0 (Rm × Rs,Rn × Rs) defined by F (x, t) = (f(x), t).2 ♢

2In singularity theory literature, this is the simplest kind of unfolding of a germ.
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Remark 2.1.15. We usually imagine the codomain of a suspension is given the product folia-
tion. If Morse functions are the objects of a category and Cerf functions are the morphisms,
then suspension is the operation that gives identity morphisms. In the context of higher
categories, the s = 1 suspension corresponds to taking an m-morphism and constructing its
identity (m+ 1)-morphism. ■

Lemma 2.1.16. Let m,n, s ∈ N and f ∈ C∞
0 (Rm,Rn). Suppose f is a generic Thom–

Boardman singularity. Then the suspension F ∈ C∞
0 (Rm × Rs,Rn × Rs) of f is a generic

Thom–Boardman singularity, even when the codomain (but not the domain) is given the
product foliation.

Proof. This is a specialization of Lemma 2.1.6.

Lastly, a word about the existence of Cerf functions between any two Morse functions.
Given Morse functions f0, f1 ∈ C∞(M,R), then we can see they can be turned into Cerf
functions f ′

0 ∈ C∞(M × [0, ε],R) and f ′
1 ∈ C∞(M × [1− ε, 1],R) for 0 < ε < 1

2
by f ′

0(x, t) =
f1(x). The reason our versions of the transversality theorems (Theorems 1.2.9 and 1.2.12)
also accept a closed subset is that they allow us to show that there exists a Cerf function
f ∈ C∞(M × [0, 1],R) such that f0(x) = f(x, 0) and f1(x) = f(x, 1). All we need to do is
take f ′

0 and f ′
1 together and fill in values for M × [−ε, 1− ε] in some arbitrary smooth way,

which is possible by using a straight-line homotopy that we smooth at the endpoints using
bump functions. Thus, since the set of Cerf functions is dense, every open neighborhood of
this filled-in function contains a Cerf function.

If we assert that Cerf functions are equivalences in the category of Morse functions on a
given smooth manifold, then all objects are isomorphic. In this sense, we can say that the
choice of a Morse function can be made arbitrarily.

2.2 The Morin singularities
The Morin singularities [Mor65] are certain germs f ∈ C∞

p (M,N) with dimM ≤ dimN such
that C∞

p (M)/C∞
p (M)f ∗mf(p) is isomorphic to R[x]/(xk+1) for some k ≥ 0. Equivalently, they

are the Thom–Boardman singularities with jkfp ∈ S[1][1] · · · [1][0] (and jkf transverse to this
jet submanifold). The case of dimM = dimN is explained in [GG73].

All the singularities we will meet are essentially Morin singularities, at least after for-
getting additional structures such as foliations in the codomain — and our stratifications
are generally refinements of the Thom–Boardman stratification. This is because of the low
dimensions we consider: if j1fp ∈ S[r], then the second intrinsic derivative is a function

d2fp : TpM → Hom(K[r]p, L[r]p)

where dimK[r]p = r and dimL[r]p = dimN − dimM + r, hence the codimension of S[r](f)
in M is r(dimN −dimM + r). As Table 2.3 illustrates, when dimM ≤ 3 then, for the dense
subset of germs with jet extensions transverse to S[r] for all r ∈ N, the only types that occur
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Table 2.3: Generically occurring types S[r] for maps M → N in low dimensions; sets indicate
values of r. By definition, Morin singularities occur only outside the shaded region.

dimN

dimM 1 2 3 4 5 6 7 8

1 {0, 1} {0} {0} {0} {0} {0} {0} {0}
2 {0, 1} {0, 1} {0, 1} {0} {0} {0} {0} {0}
3 {0, 1} {0, 1} {0, 1} {0, 1} {0, 1} {0} {0} {0}
4 {0, 1} {0, 1} {0, 1} {0, 1, 2} {0, 1} {0, 1} {0, 1} {0}
5 {0, 1} {0, 1} {0, 1} {0, 1} {0, 1, 2} {0, 1} {0, 1} {0, 1}
6 {0, 1} {0, 1} {0, 1} {0, 1} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1}
7 {0, 1} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1, 2} {0, 1, 2} {0, 1, 2}
8 {0, 1} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1, 2} {0, 1, 2} {0, 1, 2}

Table 2.4: Generically occurring Morin singularity types for mapsM → N in low dimensions.
Each cell gives the minimal k for which S[0], S[1][0], . . . , S[1]k[0] are the only generically
occurring Morin singularities. Shaded cells indicate possibility for non-Morin singularities.

dimN

dimM 1 2 3 4 5 6 7 8

1 1 0 0 0 0 0 0 0
2 2 1 0 0 0 0 0
3 3 1 1 0 0 0
4 4 2 1 1 0
5 5 2 1 1
6 6 3 2
7 7 3
8 8

are S[0] and S[1]. The large region where only S[0] singularities occur can be summarized
in the following classical theorem:

Theorem 2.2.1 (Weak Whitney Immersion Theorem). Let M and N be smooth manifolds
with 2 dimM ≤ dimN . The dense subset of C∞(M,N) from applying Theorem 1.2.9 to
{S[r] | r ∈ N} consists only of immersions. Thus, every smooth map f : M → N can be
Whitney C∞ approximated by an immersion

Proof. Let X ⊆ C∞(M,N) be the described subset. By the previous discussion, since
2 dimM ≤ dimN , if f ∈ X and j1f ∈ S[r] then r = 0, and j1fp ∈ S[0] is exactly the
condition that f is an immersion at p.
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With essentially the same proof, we can give an analogous theorem for approximating
smooth maps by ones with only Morin singularities. The bound clarifies the importance of
Morin singularities in low dimensions:

Theorem 2.2.2. Let M and N be smooth manifolds with dimM ≤ 2
3
dimN + 1. The

dense subset of C∞(M,N) from applying Theorem 1.2.9 to the set of all Thom–Boardman
singularity types consists only of maps whose germs are all Morin singularities.

For sake of demonstration, we go through the analysis of Morin singularities within the
Thom–Boardman framework. We do not derive the normal forms, and instead we reproduce
the result from [Mor65] in Theorem 2.2.5.

Suppose that m = dimM and n = dimN , that m ≤ n, and that f ∈ C∞
p (M,N) is

generic and an S[1] singularity. Let K = ker dfp and L = coker dfp, the dimensions of which
are dimK = 1 and dimL = n−m+ 1. The second intrinsic derivative is a surjective map

d2fp : TpM → Hom(K,L)

Since K is one-dimensional, TpM ⊙ K = TpM ⊗ K, so we do not need to worry about
symmetry. The S[1][r] type is for drk d2fp|K = r, and if r = 0 then d3fp = 0. Otherwise,
for S[1][1] we have ker d2fp|K = K and coker d2fp|K = Hom(K,L). Thus, with TpS[1](f) =
ker d2fp, the third intrinsic derivative is a surjective map

d3fp : TpS[1](f)→ Hom(K,Hom(K,L)),

whose codomain we may write as Hom(K⊗2, L). The S[1][1][r] type is for drk d3fp|K = r,
and the cycle repeats; more formally:

Lemma 2.2.3. Let m = dimM , n = dimN , m ≤ n, and f ∈ C∞
p (M,N). For i ≥ 1,

define S[1]i by S[1]1 = S[1] and S[1]i+1 = S[1]i[1]. Suppose k ≥ 1, jkfp ∈ S[1]k, and jif is
transverse to S[1]i for all i. Then, with K = ker dfp and L = coker dfp, the (k+1)th intrinsic
derivative is a surjective map

dk+1fp : TpS[1]
k → Hom(K⊗k, L)

that in coordinates is given by restricting the iterated Jacobian Jk+1fp to TpS[1]k ⊗K⊗k and
taking the image in the quotient L. Thus if f is a S[1]k[0] singularity, in coordinates Jk+1fp
restricted to K⊗(k+1) is nonzero.

Furthermore, the dimension of TpS[1]k is m− k(n−m+ 1). Hence, if µ = ⌊ m
n−m+1

⌋, the
only Morin singularity types that generically occur are

S[0], S[1][0], S[1]2[0], . . . , S[1]µ−1[0], and S[1]µ[0].

Proof. Through our discussion we already showed all of this for k = 1 except for noting that
dimTpS[1] is m− (n−m+ 1) since dimHom(K,L) = n−m+ 1. We proceed by induction
and assume k is such that all the hypotheses hold and that f is a S[1]k+1 singularity. Then
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the restriction dk+1fp|K has rank 0, so the kernel is K and the cokernel is Hom(K⊗k, L).
Since dimK⊗k = 1 and K ⊆ TpS[1]

k, the normal bundle calculation does not have to address
symmetry of dk+1fp, hence the next intrinsic derivative is a map

dk+2fp : TpS[1]
k+1 → Hom(K,Hom(K⊗k, L))

which by the tensor-hom adjunction is of the desired form. Lastly, we have dimTpS[1]
k+1 =

dimTpS[1]
k − dimL = m− (k + 1)(n−m+ 1).

Corollary 2.2.4. Suppose dimM ≤ 2
3
dimN+1 and let “generic” refer to maps in the dense

subset from Theorem 2.2.2. The only possible Morin singularity types that generically occur
are

S[0], S[1][0], and S[1][1][0]

with the exception of dimM = dimN = 3, in which case S[1][1][1][0] is an additional possi-
bility. Furthermore, if 2 dimM ≤ dimN + 1, only S[0] and S[1][0] singularities generically
occur. (See Table 2.4.)

The following theorem is due to Morin in [Mor65]. Some examples are given in Table 2.5,
Table 2.6, and Table 2.7.

Theorem 2.2.5. Let m ≤ n and let p = 0 ∈ Rm. For k > 0, suppose f ∈ C∞
0 (Rm,Rn) is a

S[1]k[0] singularity and generic (its jet extensions are transverse to S[1]i for all i ≥ 0). Let
q = n−m+ 1. Then, up to equivalence, f is given by

for 1 ≤ j ≤ m− 1, f ∗yj = xj

for 1 ≤ j ≤ q − 1, f ∗ym−1+j =
k∑
i=1

x(j−1)k+ix
i
m

f ∗yn = xk+1
m +

k−1∑
i=1

x(q−1)k+ix
i
m.

Furthermore, f is locally stable and (k + 1)-determined (Definition 1.4.6).
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Table 2.5: The generic germs C∞
0 (R2,R2) are equivalent to one of the following. Note that

the illustrations use x2 for the third dimension to make the structure of each singularity type
clearer. The S[0] and S[1][0] types are suspensions of the same types for C∞

0 (R,R).

Type Codim. Representative germ Illustration Name

S[0] 0 f ∗y1 = x1

f ∗y2 = x2

local
homeomorphism

S[1][0] 1 f ∗y1 = x1

f ∗y2 = x22

fold

S[1][1][0] 2 f ∗y1 = x1

f ∗y2 = x1x2 + x32

cusp

Table 2.6: The generic germs C∞
0 (R2,R3) are equivalent to one of the following. This

local model for the S[1][0] singularity is known as a Whitney umbrella (also illustrated in
Figure 2.1).

Type Codim. Representative germ Illustration Name

S[0] 0 f ∗y1 = x1

f ∗y2 = 0

f ∗y3 = x2

immersion

S[1][0] 2 f ∗y1 = x1

f ∗y2 = x1x2

f ∗y3 = x22

pinch point
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Table 2.7: The generic germs C∞
0 (R3,R3) are equivalent to one of the following. The illus-

trations use x2 as a time parameter, showing the x2 = −1 and x2 = 1 cross-sections. The
swallowtail is named for the shape of the image of the S[1][0] and S[1][1][0] points in R3.
The first three types are suspensions of their C∞

0 (R2,R2) counterparts.

Type Codim. Representative germ Illustration Name

S[0] 0 f ∗y1 = x1

f ∗y2 = x2

f ∗y3 = x3

local
homeomorphism

S[1][0] 1 f ∗y1 = x1

f ∗y2 = x2

f ∗y3 = x23

fold

S[1][1][0] 2 f ∗y1 = x1

f ∗y2 = x2

f ∗y3 = x1x3 + x3

cusp

S[1][1][1][0] 3 f ∗y1 = x1

f ∗y2 = x2

f ∗y3 = x1x3 + x2x
2
3 + x43

swallowtaila

a The illustration only shows one possible time parameterization, and other choices of time axes lead to very
different illustrations.

2.3 Curves and graphs in the plane
In this section, we consider generic maps of 1-manifolds and graphs in the plane. Generic
maps of closed 1-manifolds give the theory of knot shadows , which are diagrams of knots and
links without over/under crossing information. We then extend this to be able to handle
graphs by introducing vertices along the 1-manifolds. We also do all of this but with respect
to the product foliation on the plane, which is a way to get a monoidal category description
of curve and graph diagrams.

One of our motivations for working out the singularities for curves and graphs is that these
correspond to surface graphs minus the surfaces. Surface graphs are strictly more difficult,
and it is good to have a complete list of moves for the “2-categorical” decomposition of graphs
to double check things later. Also, graphs are a case where we actually carry out the idea of
doing an “(n+1)-categorical” decomposition for n-dimensional objects to get an n-category
with a monoidal structure.

The principal complication with 1-manifolds in R2 is that their Cerf theory involves pinch



CHAPTER 2. CLASSIFICATION OF SINGULARITIES 99

Figure 2.1: A 2D Whitney umbrella in R3 parameterized by (s, t) 7→ (st, s2, t). The locus of
double points ends in a pinch point singularity at (0, 0, 0).

Figure 2.2: The three types of Cerf singularities for generic maps C∞(C,R2), where C is a
1-manifold. For f ∈ C∞(C × R,R2), the top illustrations are of (x, t) 7→ (f(x, t), t), and
the bottom are of t ∈ {−1, 0, 1} time slices. The knot diagram analogues of these moves
are respectively known as the Reidemeister I, II, and III moves. In Table 2.9 they are called
S[ 10 ][1][0], S[ 00 ]|[ 00 ];[1 0][0], and S[ 00 ]|[ 00 ]|[ 00 ].
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point singularities through time. Considered as a map R2 → R3, these are type S[1][0] Morin
singularities, which are locally modeled by the Whitney umbrella; see Figure 2.1. Pinch point
singularities correspond to the Reidemeister I move (see Figure 2.2), but they cause some
trouble for the basic Thom–Boardman classification since the only submanifold that arises
through the process is the pinch point itself, so there are no higher intrinsic derivatives to
consider. This means that there is nothing to ensure that the move does not happen “all at
once.” That is to say, the locus of double points intersecting the leaves of the R2×R product
foliation might not do so transversely at the pinch point.

This is certainly not the first time singularities of smooth homotopies of plane curves
have been worked out. Dufour in [Duf83] found stable families of plane curves using generic
diagrams R f←− R2 γ−→ R2 where f is a submersion. One side effect of this setup is that generic
families curves are almost always in constant motion, a feature that our method does not
share.

2.3.1 Curves

Letting C be a 1-manifold, we consider singularities for maps in C∞(C,R2). Singularities for
germs are very straightforward. As we discussed in Section 2.2, type S[r] ⊆ J1(C,R2) has
codimension 1 + r, thus generically only S[0] points occur (in other words, Theorem 2.2.1
applies).

Multijets are also straightforward. The codimension of β−1(∆2
R2) ⊆ J1,1(R,R2) in the

multijet bundle is 2, and so the type S[0]|[0] of pairs of S[0] germs with the same image has
codimension 2 in R×R\∆2

R. Triple intersections do not generically occur because S[0]|[0]|[0]
ends up having codimension 4 in the three-dimensional space R× R× R \∆2

R.
As the following lemma shows, the normal form for the double point singularity is a pair of

transversely intersecting lines, which we give a quick proof of. See, for example [GG73, III.3]
details about the general case; multijet transversality for immersions gives normal crossings,
which are locally modeled as intersecting vector spaces.

Lemma 2.3.1. Let C be a smooth 1-manifold and f : C∞(C,R2). Suppose p, p′ ∈ C are
distinct points such that the multijet for [f ]p and [f ]p′ is an S[0]|[0] singularity. Then there are
local coordinates x centered at p, x′ centered at p′, and (y1, y2) centered at q = f(p) = f(p′)
such that

f ∗
p y1 = x f ∗

p′y1 = 0

f ∗
p y2 = 0 f ∗

p′y2 = x′

(We write fp for [f ]p here and in tables.)

Proof. It is easy to check that being transverse to β−1(∆2
R2) implies that TpC+Tp′C = TqR2.

Thus C∞
(p,p′)(C × C,R2) defined by (x, x′) 7→ f(x) + f(x′) is locally a homeomorphism.
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Table 2.8: Classification of plane curve singularities.

Type Codim. Representative germ See:

S[0] 0 f ∗y1 = x

f ∗y2 = 0

Theorem 2.2.5

S[0]|[0] 1|1 f ∗
p y1 = x f ∗

p′y1 = 0

f ∗
p y2 = 0 f ∗

p′y2 = x′
Lemma 2.3.1

Table 2.9: Classification of plane curve Cerf singularities.

Type Codim. Representative germ See: Suspends

S[ 00 ] 0 f ∗y1 = x

f ∗y2 = 0

Lemma 2.3.7 S[0]

S[ 10 ][1][0] 2 f ∗y1 = xt+ x3

f ∗y2 = x2
Lemma 2.3.6

S[ 00 ]|[ 00 ];[0 0] 1|1 f ∗
p y1 = x f ∗

p′y1 = 0

f ∗
p y2 = 0 f ∗

p′y2 = x′
Lemma 2.3.8 S[0]|[0]

S[ 00 ]|[ 00 ];[1 0][0] 2|2 f ∗
p y1 = x f ∗

p′y1 = x′

f ∗
p y2 = 0 f ∗

p′y2 = (x′)2 + t+O(x′, t)3
Lemma 2.3.9

S[ 00 ]|[ 00 ]|[ 00 ] a 2|2|2 f ∗
p y1 = x f ∗

p′y1 = 0 f ∗
p′′y1 = x′′

f ∗
p y2 = 0 f ∗

p′y2 = x′ f ∗
p′′y2 = x′′ + t

Lemma 2.3.10

a Representative germ is to first order.

Like usual, we define a generic map in C∞(C,R2) to be one in the dense subset from
applying Theorems 1.2.9 and 1.2.12 with all the S[r] types for all r ∈ N and the multijet
types S[0]|[0] and S[0]|[0]|[0]. We summarize this in the following theorem:

Theorem 2.3.2. Let f ∈ C∞(C,R2) be generic. Then

1. f is an immersion;

2. no triple points occur (that is, |f−1(y)| ≤ 2 for all y ∈ R2); and

3. double points are locally modeled as transversely intersecting lines.



CHAPTER 2. CLASSIFICATION OF SINGULARITIES 102

Cerf singularities for curves

Now we consider Cerf singularities like in Section 2.1.2. We are considering C∞
p (C × R,R2)

where C ×R has the product foliation, and we use erf equivalence (Definition 2.1.4). Recall
that the Cerf equivalence class of f ∈ C∞

p (C×R,R2) corresponds to the equivalence class of
the map F : C ×R→ R2 ×R defined by F (x, t) = (f(x, t), t) with respect to the codomain
foliation.

The type S[ r0 ] ⊆ J1(C × R,R2) denotes when the restriction of the differential to TC
has dropped rank equal to r, with r ∈ {0, 1}. For j1fp ∈ S[ 00 ], since ker dfp = 0, the second
intrinsic derivative is zero so there are no subtypes. For j1fp ∈ S[ 10 ], the second intrinsic
derivative is a function

d2fp : Tp(C × R)→ Hom(K[ 10 ]p, L[
1
0 ]p)

with K[ 10 ]p = TpC and L[ 10 ]p = Tf(p)R2, hence S[ 10 ](f) has codimension 2 in C × R. There
are no more subtypes by continuing in this way.

At this point, it is not clear that the S[ 10 ] type is not sufficient — there do exist germs
of this type that are not locally stable. We will now calculate a 2-jet normal form for this
type, using the p = 0 ∈ R× R convention.

Lemma 2.3.3. Suppose f ∈ C∞
p (R × R,R2) is such that j1f is transverse to S[ 10 ] at p.

There exists some r1, r2 ∈ m3
p such that f is Cerf equivalent to

f(x, t) = (xt+ r1(x, t), x
2 + r2(x, t)).

Proof. After a Cerf equivalence, we may assume f(0, t) = 0, and after a linear change of
domain coordinates we may assume that

dfp =

[
0 0
0 0

]
.

Using the convention that ∂ijφ = ∂i+jφ(x1,x2)

∂xi1∂x
j
2

, the second intrinsic derivative is, in coordinates,

d2fp : R× R→ Hom(R,R2)

v 7→
[
∂20f1(p) ∂11f1(p)
∂20f2(p) ∂11f2(p)

]
v

where we identify Hom(R,R2) with R2. Since d2fp is surjective by the transversality hypoth-
esis, this matrix has rank 2. After a linear change of coordinates in the codomain, we may
assume that ∂20f2(p) = 2 and ∂20f1(p) = 0. There is then a linear change of coordinates in
the domain such that [

∂20f1(p) ∂11f1(p)
∂20f2(p) ∂11f2(p)

]
=

[
0 1
2 0

]
.

Since we assumed ∂02f1(p) = 0 and ∂02f2(p) = 0, we have shown that f is Cerf equivalent to
a function with the desired 2-jet.
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If we look at the behavior of the second-order approximation f(x, t) = (xt, x2) as t varies,
we see that there is a problem:

The top part of the figure is showing the image of R×R in R2 ×R, and the bottom part is
showing ft for a handful of values of t. This qualitatively cannot be locally stable — how can
all the double points happen all at once at t = 0? The Thom–Boardman stratification does
not promise local stability, so it is not surprising that this might happen, but it is somewhat
surprising that it fails in such low dimensions.

There a few ways we might solve this. A first is to appeal to the fact that, after we apply
the multijet transversality theorem, we can assume the locus of double points away from this
singularity will be transverse to the leaves of R2 × R at all but finitely many points, so we
can locally correct the problem after the fact since we know how it supposed to look. This is
not satisfactory, however, since a purpose of this toy example is to show that we can derive
singularities in a systematic way.

A second is to characterize the locus of the nearby double points. Forgetting the foliation
on the domain, since this is a Morin S[1][0] singularity (Table 2.6) it is locally stable, hence
the topology of the double points is determined by just the 2-jet. With the parameterization
immediately above, we see the double point locus is (0, u) for u ∈ R \ 0, and thus the closure
is a smooth submanifold containing the pinch point (0, 0) itself. With this, we can justify
speaking of the double point locus at the pinch point. Then we can try to construct a jet
submanifold whose transversality condition ensures the double point locus is suitably generic
(one should think about wanting to have it be generic with respect to the R × R foliation,
being tangent to the leaf R × {0} at a single point). The complication here is that this
requires being able to calculate such a solution and determining how it varies with r1 and
r2, and then finding a coordinate-invariant characterization of the transversality condition.
To demonstrate the first half, we have the following lemma, which suggests that generically
a function of the given form has ∂30r1(0, 0) ̸= 0:

Lemma 2.3.4. Let f ∈ C∞
p (R × R,R2) be defined by f(x, t) = (xt + r1(x, t), x

2 + r2(x, t))
for some r1, r2 ∈ m3

p. Define F ∈ C∞
p (R × R,R2 × R) by F (x, t) = (f(x, t), t) Then if

[γ]0 ∈ C∞
0 (R,R× R)p satisfies F (γ(u)) = F (γ(−u)) for all u ∈ dom γ and Jγ0 = [ 10 ], then

F (γ(u)) = u2

 0
1

−1
6
∂30r1(0, 0)

+O(u)3.
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Proof. Calculate using third-order Taylor polynomials.

A third (and related) method is to consider some kind of “probe,” like in [Por83] (and
explored further in [K1̋0]). Porteous considered ideas that we will recount here for motivation,
but we do not use them directly. The first is that for germs f ∈ C∞

0 (R2,R)0, one can take a
probe φ ∈ C∞

0 (R,R2)0, compose this probe with derivatives of f ,

R φ−→ R2 dm−→ Hom((R2)⊙m,R),

and then take derivatives dn+1(dmf ◦ φ)0 of this composition evaluated at zero. For a given
probe, one gets a set of all pairs (m,n) for which dn+1(dmf ◦ φ)0 = 0, and then one can
consider the set of all sets of these pairs for all probes.

Remark 2.3.5. An invariant of germs up to equivalence is the collection of all these sets of
pairs, and Porteous worked out “the best” sets to characterize many different singularity
types, including the Thom–Boardman types (not just the generic ones, of which there are
only two for maps R2 → R). Through this, Porteous discovered another description for the
Thom–Boardman singularity types.

A Boardman index is a sequence (r1, . . . , rk) of non-increasing natural numbers, and these
sequences are ordered lexicographically. For a germ f ∈ C∞

0 (Rm,Rn), a probe associated to
the Boardman index consists of a family of germs φi ∈ C∞

0 (Rri ,Rri−1) with d(φi)0 injective for
all 1 ≤ i ≤ k (setting r0 = n) such that d(fφ1)0 = 0, d(d(fφ1)φ2)0 = 0, d(d(d(fφ1)φ2)φ3) =
0, and so on. If such a probe exists and there exists no probe for a greater Boardman index
with the same length k, then f is said to have type S[r1] . . . [rk]. An interesting property
about probes of both types is that, for a fixed probe, the conditions (except for maximality)
are linear in the germ f . ■

For exploratory purposes, let us see what the above Lemma 2.3.4 might give us. The
foliation-respecting projection onto (R2 × R)/R2 gives the map u 7→ −1

6
u2∂30r1(0, 0), which

generically ought to be nonzero. If we then look at f(x, t) = (xt+ x3, x2) through time, we
see that the problem is indeed resolved:

If we look at the map (x, t) 7→ (xt+x3, x2, t) projected onto the (y1, y3) plane, this turns out
to be a cusp singularity (S[1][1][0] in Table 2.5), which we illustrate with a bit of perspective
here by looking at the previous illustration “from above”:
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The rough idea for to proceed is that we want to find an invariant way to define such a
projection (a “coprobe”) from a germ with a S[ 10 ] singularity and then show that we can
make the germ be generic with respect to this projection.

Consider f ∈ C∞
p (C × R,R2)q generic of type S[ 10 ], and recall that the second intrinsic

derivative is a surjective function

d2fp : Tp(C × R)→ Hom(TpC, TqR2)

that is nonzero when restricted to TpC. Thinking of d2fp|TpC as a function TpC⊙TpC → TqR2,
then we have a one-dimensional subspace im d2fp|TpC ⊆ TqR2. Let φ ∈ C∞

q (R2,R)0 be any
function such that we have a short exact sequence

0→ im d2fp|TpC ↪→ TqR2 dφq−−→ T0R→ 0.

This φ serves as a projection R2 → R near q, locally defining a codimension-1 foliation. We
claim we can ask for f to be generic with respect to φ in a way that has no dependence on the
choice of φ. Supposing we have chosen coordinates to put f into the form of Lemma 2.3.3,
then, using only the assumptions that φ(q) = 0, ∂1,0φ(q) = 1, and ∂0,1φ(q) = 0, one can
calculate that

(φ ◦ f)(x, t) = xt+ 1
6
∂3,0r1(p)x

3 + 1
2
∂2,1r1(p)x

2t+ 1
2
∂1,2r1(p)xt

2 + 1
6
∂0,3r1(p)t

3 +O(x, t)4.

(In fact, the dependence on the choice of φ only begins to appear in the fourth-order terms.)
We temporarily let Sφ

[
a1
a2
0

]
(f) ⊆ C×R denote points for singularity types with respect to φ,

where p′ ∈ Sφ
[
a1
a2
0

]
(f) means that a1 = drk dfp′|Tp′C and a2 = drk d(φ ◦ f)p′|Tp′C . We can see

that, up to second-order, d(φ ◦ f)|TC is t and df |TC is [ tx ], so it follows that p ∈ Sφ
[
1
1
0

]
(f) is

the unique point of that type in a small enough neighborhood of p and, using “∗” to denote
“no constraint,” that Sφ

[
1
∗
0

]
(f) is a 1-dimensional submanifold germ of C × R such that

TpSφ

[
1
∗
0

]
(f) = TpC.

The second intrinsic derivatives with respect to φ for Sφ
[
1
∗
0

]
-type points form a bundle over

Sφ

[
1
∗
0

]
(f), where for p′ ∈ Sφ

[
1
∗
0

]
(f) it is a map

d2fp′ : Tp′(C × R)→ Hom(Tp′C, Tf(p′)R2/ im(d(φ ◦ f)p′)).
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We define Sφ

[
1
∗
0

]
[b](f) to be those points p′ ∈ Sφ

[
1
∗
0

]
(f) such that drk(d2fp′|Tp′C) = b.

Evidently, Sφ
[
1
∗
0

]
[1](f) = S[ 10 ](f). Thus, we can extract a third intrinsic derivative for f as

a S[ 10 ] singularity by using the fact that p ∈ Sφ
[
1
∗
0

]
[1](f). Using the fact that TpSφ

[
1
∗
0

]
(f) =

TpC, the third intrinsic derivative is a linear map

d3fp : TpC → Hom(TpC,Hom(TpC, TqR2/ im d2fp|TpC)).

Both the domain and codomain of this function are 1-dimensional, and with some identifi-
cation of the spaces with R, we have d3fp = ∂3,0r1(p), which does not depend on φ. The
transversality condition for this singularity is that ∂3,0r1(p) ̸= 0, matching up with expecta-
tions from the prior exploration.

How do we construct this jet submanifold? We start by lifting S[ 10 ] to S[ 10 ]
′ ⊆ J3(C ×

R,R2). The second intrinsic derivatives define a bundle map

d2 : S[ 10 ]
′ → Hom(T (C × R),Hom(TC, TR2))

of bundles over S[ 10 ]. We let S[ 10 ]
′′ ⊆ S[ 10 ]

′ be those germs for which d2 is surjective, which
defines an open submanifold. Each j2fp ∈ S[ 10 ][1] has a corresponding one-dimensional
subspace im (d2fp|TpC), and by considering TR2 as a bundle over S[ 10 ][1] (via the pullback
over β : S[ 10 ][1] → R2), these subspaces assemble into a subbundle B of TR2. For each
jet in j3fp ∈ S[ 10 ]

′′, for each j3fp ∈ S[ 10 ][1]
′, as we saw there is a well-defined map d3fp :

TpC → Hom(TpC,Hom(TpC, TqR2/ im d2fp|TpC)) where φ ∈ C∞
f(p)(R2,R), and by using B

these assemble into a bundle map from S[ 10 ]
′′. Then define S[ 10 ][1][r] for 0 ≤ r ≤ 1 is those

jets j3fp ∈ S[ 10 ][1]′′ for which drk d3fp = r, where the “ [1]” in the name comes from thinking
of d2fp|TpC as having dropped rank equal to one. For codimension reasons, only the r = 0
occurs for generic functions.

Lemma 2.3.6. If f ∈ C∞
p (R × R,R2) is a generic germ that is an S[ 10 ][1][0] singularity,

then, up to Cerf equivalence, it is given by

f ∗y1 = xt+ x3

f ∗y2 = x2

Proof. Continuing from where we left off in Lemma 2.3.3, we found the second intrinsic
derivative could be put into the form

d2fp : R× R→ Hom(R,R2)

v 7→
[
0 1
2 0

]
v.

Then the third intrinsic derivative, justified above, is

d3fp : R→ Hom(R,Hom(R,R2/0× R))
v 7→ ∂30f1(p)v
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This does not need to be surjective, but since S[ 10 ] has codimension-2 already, we can con-
clude ∂30f1(p) ̸= 0.

Using techniques from the parameterized version of the Morse Lemma (Lemma 2.1.9), we
can reparameterize x such that f ∗y2 = x2 exactly, and this does not change the above anal-
ysis. After scaling x, t, and y2, we may assume that ∂30f1(p) = 6, and by reparameterizing
(as a Cerf equivalence) with

y1 = y1 − 1
2
∂21h(p)y2y3 − 1

2
∂12h(p)y1y3 − 1

6
∂03h(p)y

3
3 y2 = y2 y3 = y3

we may assume that we have, for some h ∈ m4
p,

f ∗y1 = xt+ x3 + h(x, t)

f ∗y2 = x2.

Continuing in this way (using the lower order terms of f ∗y1, f ∗y2, and f ∗y3), we can apply
another Cerf reparameterization to let us assume that h ∈ m5

p, and again to let us assume
that h ∈ (x5)+m6

p, where we cannot eliminate the x5 by a Cerf reparameterization. We will
show that for all k ∈ N we are able to reparameterize the germ to put it into the form

f ∗y1 = xt+ x3 + cx5+2k + h(x, t)

f ∗y2 = x2.

with c ∈ R and h ∈ m6+2k
p , where we have already shown the base case. We see that

f ∗y1 = xt+ x3(1 + cx2+2k)). Consider the reparameterization

x =
x

1 + cx2+2k
t = t

y1 =
y1

1 + cy1+k2

y2 =
y2

(1 + cy1+k2 )2
y3 = y3.

Since x
1+cx2+2k = x− cx3+2k + . . . , we have that x = x+ g(x) for some g ∈ m0(R)3+2k. Then,

f ∗y1 =
1

1 + cx2+2k
(xt+ x3(1 + cx2+2k)) = xt+ x3 = xt+ x3 + h′(x, t)

f ∗y2 =
x2

(1 + c(x2)1+k)2
= x2

f ∗y3 = t.

for some h′ ∈ m5+2k
p . We can then clear the degree-(5 + 2k) terms from h′ by a Cerf

reparameterization like before, letting us assume that h′ ∈ m6+2k
p , and then we can clear

every degree-(6 + 2k) term expect for, possibly, x6+2k, which lets us assume that f ∗y1 =
xt+ x3 + cx7+2k + h(x, t) for some c ∈ R and h ∈ m8+2k

p , as desired.
Having proved this, we have a sequence of equivalent germs for all k that converge in the

Whitney C∞ topology to the germ given by (x, t) 7→ (xt+x3, x2), so it suffices to prove that
this germ is locally stable. Suppose f is this germ, thought of as a germ in C∞

p (R×R,R3)0.
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We use Corollary 1.4.13. Letting I = (f1, f2)
2 + (f3) be an ideal of C∞

p (R × R), we
calculate that I = (x4, t). It suffices to show that the quotient

A = C∞
p (f ∗R3)/(f∗C

∞
p (T (R× R)) + IC∞

p (f ∗TR3) +mp(M)6C∞
p (f ∗TR3))

is a vector space generated by the set

S =
{

∂
∂y1
, ∂
∂y2
, ∂
∂y3
, f1

∂
∂y1
, f1

∂
∂y2
, f2

∂
∂y1
, f2

∂
∂y2

}
.

We calculate that

f∗
∂
∂x1

= (t+ 3x2) ∂
∂y1

+ 2x ∂
∂y2
≡A 3x2 ∂

∂y1
+ 2x ∂

∂y2

f∗
∂
∂x2

= x ∂
∂y1

+ ∂
∂y3
.

Thus, for all k ∈ N we have the reduction rules

xk+1 ∂
∂y2
≡A −3

2
xk+2 ∂

∂y1

xk ∂
∂y3
≡A −xk+1 ∂

∂y1
,

and so we can see that A is generated as a vector space by the set { ∂
∂y1
, x ∂

∂y1
, x2 ∂

∂y1
, x3 ∂

∂y1
, ∂
∂y2
}.

We calculate

∂
∂y1

= ∂
∂y1

f1
∂
∂y1
≡A x3 ∂

∂y1
∂
∂y2

= ∂
∂y2

f1
∂
∂y2
≡A x3 ∂

∂y2
≡A −3

2
x4 ∂

∂y1
≡A 0

∂
∂y3
≡A −x ∂

∂y1
f2

∂
∂y1

= x2 ∂
∂y1

f2
∂
∂y2
≡A −3

2
x4 ∂

∂y1
≡A 0.

Therefore A is indeed generated as a vector space by the set S.

Multijet Cerf singularities for curves

Now that we have placed our Whitney umbrellas in the umbrella stand, let us return to the
general analysis. We found all the germ Cerf singularities (which we list in Table 2.9), so
next are multijet singularities. The process is similar to Section 2.1.2, but we are looking at
intersections with the submanifold

β−1(∆k
R2) ∩ (π×k

t ◦ α)−1(∆k
R) ⊆ Jk(C × R,R2),

where k ∈ Nk is a multiindex. The codimension of this submanifold is 3k−3. Since the codi-
mensions of S[ 00 ] and S[ 10 ][1][0] are respectively 0 and 2, we get the following codimensions
for multijet singularities between two singularity types:
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Type S[ 00 ]|[ 00 ] S[ 00 ]|[ 10 ][1][0] S[ 10 ][1][0]|[ 10 ][1][0]

Codim. 3 5 7

Since the domain for the multijet transversality theorem is (C × R)2 \ ∆2
C×R, which has

dimension 4, only S[ 00 ]|[ 00 ] can generically occur. For the next table, we look at codimensions
for more combinations of the S[ 00 ] singularity:

Type S[ 00 ]|[ 00 ] S[ 00 ]|[ 00 ]|[ 00 ] S[ 00 ]|[ 00 ]|[ 00 ]|[ 00 ]

Codim. 3 6 9
Ambient dim. 4 6 8

Thus, the only additional possibility is triple intersections.
An additional wrinkle compared to the analysis of double points earlier in Lemma 2.3.1 is

that curves are now allowed to become momentarily tangent, which requires higher multijet
singularity types.

We start with f ∈ C∞
{(p,t0),(p′,t0)}(C × R,R2)q with p ̸= p′, which we assume is a generic

multigerm of type S[ 00 ]|[ 00 ]. To deal with transversality for β−1(∆2
R2), we immediately pass to

the quotient space (TR2)2/T∆2
R2 by subtracting corresponding codomain coordinates. And

for transversality to (π×2 ◦ α)−1(∆2
R) we identify t coordinates. The function we thus need

to consider is F (x, x′, t) = f(x, t)− f(x′, t), whose differential is

dF(p,t0),(p′,t0) : TpC ⊕ Tp′C ⊕ Tt0R→ TqR2

v 7→
[
∂10f1(p) −∂10f1(p′) ∂01f1(p)− ∂01f1(p′)
∂10f2(p) −∂10f2(p′) ∂01f2(p)− ∂01f2(p′)

]
v.

Since both germs are S[ 00 ] singularities, restricted to TC they are both nonzero. After a
change of coordinates, we may assume the differential has a matrix of the form[

1 −1 0
0 −a b

]
for some constants a and b. For subtypes, we have the subspaces T(p,t0)C, T(p′,t0)C, their
direct sum, and TpC ⊕ Tp′C ⊕ Tt0R. The differential is injective when restricted to either
TC individually, so we define S[ 00 ]|[ 00 ];[r1 r2] to be the type where the dropped rank on
T(p,t0)C ⊕ T(p′,t0)C is r1 and the dropped rank on TpC ⊕ Tp′C ⊕ Tt0R is r2. If r2 > 0, then
its second intrinsic derivative brings the total codimension to 5, which does not generically
occur. The type S[ 00 ]|[ 00 ];[0 0] has no subtypes, so we look toward S[ 00 ]|[ 00 ];[1 0]. We get a
second intrinsic derivative

d2F(p,p′,t0) : TpC ⊕ Tp′C ⊕ Tt0R→ Hom(K[ 00 ]|[ 00 ];[1 0], L[ 00 ]|[ 00 ];[1 0])

where K[ 00 ]|[ 00 ];[1 0] is spanned by (1, 1, 0) and L[ 00 ]|[ 00 ];[1 0] is TqR2/TqR, so the total
codimension for this singularity type is 4, and thus still generically possible. Remembering
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that there are two spatial variables, so derivatives of one function with respect to the other
spatial variable is zero, as a matrix we can write d2F as

v 7→
[
∂20f2(p, t0) −∂20f2(p′, t0) ∂11f2(p, t0)− ∂11f2(p′, t0)

]
v

We can restrict to K[ 00 ]|[ 00 ];[1 0] to get further subtypes, and for codimension reasons generi-
cally we need the function to not be zero, hence ∂20f2(p, t0) ̸= ∂20f2(p

′, t0). We call this type
S[ 00 ]|[ 00 ];[1 0][0].

Lemma 2.3.7. If f ∈ C∞
p (R × R,R2) is a generic germ that is an S[ 00 ] singularity, then,

up to Cerf equivalence, it is given by

f ∗y1 = x

f ∗y2 = 0

Proof. This is essentially the same as Lemma 2.1.8.

Lemma 2.3.8. If f ∈ C∞
{(p,0),(q,0)}(C × R,R2)q defines a generic multigerm that is an

S[ 00 ]|[ 00 ];[0 0] multisingularity, then, up to Cerf equivalence, the multigerm is given by

f ∗
(p,0)y1 = x f ∗

(p′,0)y1 = 0

f ∗
(p,0)y2 = 0 f ∗

(p′,0)y2 = x′

Proof. This is similar to Lemma 2.3.1, but we use the local homeomorphism (x, x′, t) 7→
(f(x, t) + f(x′, t), t) to reparameterize.

Lemma 2.3.9. If f ∈ C∞
{(p,0),(q,0)}(C × R,R2)q defines a generic multigerm that is an

S[ 00 ]|[ 00 ];[1 0][0] multisingularity, then, up to Cerf equivalence, the multigerm is given by

f ∗
(p,0)y1 = x f ∗

(p′,0)y1 = x′

f ∗
(p,0)y2 = 0 f ∗

(p′,0)y2 = (x′)2 +O(x′, t)3

Proof. There is a reparameterization of the codomain to get f1(x, t) = x and f2(x, t) = 0,
and by the inverse function theorem we may assume f1(x′, t) = x′. By assumption about the
multisingularity type, then f2(x′, t) = a(x′)2+bx′t+ct+dt2+h(x, t) for some constants with
a ̸= 0 and c ̸= 0 and h ∈ m3

(p′,0). Using the inverse function theorem, we can reparameterize
t so that c = 1 and d = 0, and we may reparameterize such that a = 1. Then we can
complete the square for x′ to eliminate the x′t term, which introduces a t term in f1(x

′, t),
which we can cancel out using a Cerf reparameterization, but this introduces a t term in
f1(x, t), which we can cancel out by reparameterizing x. Hence, we have

f ∗
(p,0)y1 = x f ∗

(p′,0)y1 = x′

f ∗
(p,0)y2 = 0 f ∗

(p′,0)y2 = (x′)2 + t+ h(x, t)

for some h ∈ m3
(p′,0).
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Lemma 2.3.10. If f ∈ C∞(C × R,R2) is such that for three distinct points p, q, r ∈ R that
f(p, 0) = f(q, 0) = f(r, 0) and the germs of f at these three points define a generic multigerm
of type S[ 00 ]|[ 00 ]|[ 00 ], then, up to Cerf equivalence, the multigerm is, to first order, given by

f ∗
p y1 = x f ∗

q y1 = 0 f ∗
r y1 = x′′

f ∗
p y2 = 0 f ∗

q y2 = x′ f ∗
r y2 = x′′ + t

Proof. To avoid tedium, we appeal to the fact that the codimension begins at 6 for triple sin-
gularities, so nontrivial higher intrinsic derivatives to not occur generically. Hence restricted
to each germ we have immersions through time, and restricted to pairs they intersect trans-
versely. Also, this can be given as a zeroth-order type, so everything must be expressable as
linear functions.

While we handled multijet singularities for germs that map to the same point, we still need
to consider multijet singularities for when germs are projected to be maps C ×R→ R2/R2.
Such functions are trivial still (and it will get more interesting once the codomain has a
foliation) but there is still a consequence, which is that none of the following singularities
generically occur at the same time: S[ 10 ][1][0], S[ 00 ]|[ 00 ];[1 0][0], and S[ 00 ]|[ 00 ]|[ 00 ]. This handles
multijet singularities.

2.3.2 2D Morse and Cerf theory for curves

For a monoidal category decomposition of 1-manifolds, we can consider generic maps C → R2

where R2 is given the product foliation (or in other words, generic cascades C → R2 ↠ R).
These are 2D Morse functions. The result of this analysis is well known (see Figure 2.3
for illustrations of the singularities), but it serves as another example for using the refined
Thom–Boardman classification to derive normal forms for singularities.

This is not going to be too much different from Table 2.8 and Table 2.9, and the main
difference is that the projection of generic 1-manifolds to R2/R must be a Morse function
as well, so we will see local minima and maxima as well as the 2D version of the 1D Cerf
singularity. The results are listed in Table 2.10 and Table 2.9. Once we later have all the
singularities for curves on surfaces, we can see that this is a complete set of singularities for
the shadows of those curves.

Let C be a 1-manifold. A germ f ∈ C∞
p (C,R2)q has type S[ r1r2 ] if the dropped rank of

dfp is r1 and if the dropped rank of dfp when projected to R2/R is r2. These must satisfy
0 ≤ r1 ≤ r2 ≤ 1, and the following are all the types along with their codimensions and
simplified normal bundles:

Type K[ r1r2 ] L[ r1r2 ] Hom(K[ r1r2 ], L[
r1
r2 ]) Codim.

S[ 00 ] 0 ↪→ 0 0 0 0
S[ 01 ] 0 ↪→ TpC TqR2/TqR ↠ TqR2/TqR Hom(TpC, TqR2/TqR) 1
S[ 11 ] TpC ↪→ TpC TqR2 ↠ TqR2/TqR Hom(TpC, TqR2) 2
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Table 2.10: Classification of plane curve 2D Morse singularities.

Type Codim. Representative germ See:

S[ 00 ] 0 f ∗y1 = 0

f ∗y2 = x

Lemma 2.3.11

S[ 01 ] 1 f ∗y1 = x

f ∗y2 = x2
Lemma 2.3.12

S[ 00 ]|[ 00 ] 1|1 f ∗
p y1 = 0 f ∗

p′y1 = x′

f ∗
p y2 = x f ∗

p′y2 = x′
Lemma 2.3.13

Table 2.11: Classification of plane curve 2D Cerf singularities.

Type Codim. Representative germ See: Suspends

S
[
0
0
0

]
0 f ∗y1 = 0

f ∗y2 = x

Lemma 2.3.14 S[ 00 ]

S
[
0
1
0

]
[0] 1 f ∗y1 = x

f ∗y2 = x2
Lemma 2.3.15 S[ 01 ]

S
[
0
1
0

]
[1] 2 f ∗y1 = x

f ∗y2 = xt+ x3
Lemma 2.3.16

S
[
1
1
0

]
[ 01 ][0] 2 f ∗y1 = xt+ x3

f ∗y2 = x2
Lemma 2.3.17

S
[
0
0
0

]
|
[
0
0
0

]
;[0 0] 1|1 f ∗

p y1 = 0 f ∗
p′y1 = x′

f ∗
p y2 = x f ∗

p′y2 = x′
Lemma 2.3.18 S[0]|[0]

S
[
0
0
0

]
|
[
0
0
0

]
;[1 0][0] 2|2 f ∗

p y1 = 0 f ∗
p′y1 = (x′)2 + t+O(x′, t)3

f ∗
p y2 = x f ∗

p′y2 = x′
Lemma 2.3.19

S
[
0
0
0

]
|
[
0
1
0

]
[0];[0] 2|2 f ∗

p y1 = t+O(x, t)2 f ∗
p′y1 = x′

f ∗
p y2 = x f ∗

p′y2 = (x′)2
Lemma 2.3.20

S
[
0
0
0

]
|
[
0
0
0

]
|
[
0
0
0

]
a 2|2|2 f ∗

p y1 = x f ∗
p′y1 = −x′ f ∗

p′′y1 = t

f ∗
p y2 = x f ∗

p′y2 = x′ f ∗
p′′y2 = x′′

Lemma 2.3.21

a Representative germ is to first order.
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S[ 00 ] S[ 01 ] S[ 00 ]|[ 00 ]

Figure 2.3: Illustrations of the 2D Morse singularities from Table 2.10.

S
[
0
1
0

]
[1] S

[
1
1
0

]
[ 01 ][0]

S
[
0
0
0

]
|
[
0
0
0

]
;[1 0][0] S

[
0
1
0

]
[0]

S
[
0
0
0

]
|
[
0
0
0

]
|
[
0
0
0

]
Figure 2.4: Illustrations of the 2D Cerf singularities from Table 2.11 except for suspensions.
Each set of three diagrams is showing the t = −1, t = 0, and t = 1 frames of a movie.
Interchange moves are in Figure 2.6.
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Only the first two types occur generically. The first has no subtypes, and neither does
the second due to codimension. Like usual, let p = 0 ∈ R and q = 0 ∈ R2, and let x the
coordinate for R centered at p and (y1, y2) be coordinates for R2 centered at q.

Lemma 2.3.11. If f ∈ C∞
p (R,R2)q is a generic S[ 00 ] singularity, then up to equivalence it

is given by

f ∗y1 = 0

f ∗y2 = x

Proof. For this type, dfp = [ ab ] for a, b ∈ R and b ̸= 0. Using the coordinate change x = f2(x)
(which is valid by the inverse function theorem), we may assume f ∗y2 = x. The following is
a foliation-respecting coordinate change:

y1 = y1 − f1(y2)
y2 = y2

and f ∗y1 = f ∗y1 − f ∗f1(y2) = f1(x)− f1(x) = 0. This gives the desired form.

Lemma 2.3.12. If ∈ C∞
p (R,R2)q is a generic S[ 10 ] singularity, then up to equivalence it is

given by

f ∗y1 = x

f ∗y2 = x2

Proof. For this type, after scaling y1 we may assume that dfp = [ 10 ]. The second intrinsic
derivative is

d2fp : TpR→ Hom(TpR, TqR2/TqR)
v 7→

[
∂2f2(p)

]
v,

which for codimension reasons means ∂2f2(p) ̸= 0. Thus, f2(x) = h(x)x2 for some h ∈ C∞
p (R)

such that h(x) ̸= 0. With the coordinate change x =
√
|h(x)|x, we may assume that

f2(x) = ±x2. By the inverse function theorem, y1 = y1 ◦ f1 and y2 = y2 is a valid coordinate
change, and f ∗y1 = y1(f1(x)) = x. This gives the desired form.

The analysis of multijet singularities from Section 2.3.1 carries over to imply that only
S[ 0∗ ]|[ 0∗ ] singularities occur, where the {∗} signifies “no rank condition.” Since S[ 0∗ ]|[ 0∗ ]
already has codimension 2, by further consideration of codimensions only S[ 00 ]|[ 00 ] generically
occurs.

Lemma 2.3.13. If f ∈ C∞
{p,p′}(C,R2) is a generic S[ 00 ]|[ 00 ] multisingularity, then up to

equivalence it is given by

f ∗
p y1 = 0 f ∗

p′y1 = x′

f ∗
p y2 = x f ∗

p′y2 = x′
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Proof. Both germs have a nonzero differential in the y2 direction, so we can use the inverse
function theorem to reparameterize x and x′ such that f ∗

p y2 = x and f ∗
p′y2 = x′. Then we

can cancel out f ∗
p y1 like in Lemma 2.3.11. Next, let h ∈ C∞

0 (R,R)0 be the germ such that
f ∗
p′y1 = h(x′). Note that we can extend x 7→ x/h(x) to be a smooth function at 0 since
∂1h(0) ̸= 0. We reparameterize with y1 = y1y2/h(y2) and y2 = y2, which gives

f ∗
p y1 = 0x/h(x) = 0 f ∗

p′y1 = h(x′)x′/h(x′) = x′

This is gives the desired form.

We now have to consider multijet singularities for germs that map to the same point
after they are composed with the projection R2 → R2/R. The analysis here is simple due to
codimensions: the S[ 01 ] and S[ 00 ]|[ 00 ] singularities cannot occur with the same R2/R value.
This is in accordance with the fact that R2 → R2/R must be a Morse function, which is a
weaker statement since we also have a condition on S[ 00 ]|[ 00 ] singularities.

The results of the analysis of singularities of maps C → R2 are in Table 2.10 and are
illustrated in Figure 2.3.

2D Cerf singularities for curves

Now we consider Cerf singularities, which will be a refinement of the Cerf singularities we
found in Section 2.3.1.

We are considering germs in C∞
p (C × R,R2) where C × R has the product foliation as

does R2, up to Cerf equivalence. Let π : R2 → R2/R be the foliation-preserving projection
onto leaf space. The type S

[
r1
r2
0

]
⊆ J1(C × R,R2) denotes those jets of germs f such that

drk dfp|TpC = r1 and drk d(π ◦ f)p|TpC = r2. The table of simplified normal bundles and
codimensions from the beginning of this section still applies, which we reproduce here to
with minor changes to specialize the singularity symbols:

Type K
[
r1
r2
0

]
L
[
r1
r2
0

]
Hom(K

[
r1
r2
0

]
, L
[
r1
r2
0

]
) Codim.

S
[
0
0
0

]
0 ↪→ 0 0 0 0

S
[
0
1
0

]
0 ↪→ TpC TqR2/TqR ↠ TqR2/TqR Hom(TpC, TqR2/TqR) 1

S
[
1
1
0

]
TpC ↪→ TpC TqR2 ↠ TqR2/TqR Hom(TpC, TqR2) 2

This time, all three are generically possible since the domain is two-dimensional. The first
has no subtypes.

The S
[
0
1
0

]
type has subtypes S

[
0
1
0

]
[r] where r = drk d2fp|TpC . None of these have sub-

types themselves, and S
[
0
1
0

]
[0] and S

[
0
1
0

]
[1] are the generic possibilities, respectively having

codimensions 1 and 2.
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Figure 2.5: The S
[
1
1
0

]
[ 11 ] singularity type has codimension 3, so it does not generically occur

since the domain of a Cerf function is two-dimensional. The singularity is unstable, and with
a slight perturbation it decomposes into a collection of other Cerf singularities.

The S
[
1
1
0

]
type is a refinement of the Whitney umbrella singularity S[ 10 ] from the previous

section. Like before, we are justified in using im d2fp|TpC as an additional subspace. The
subtypes are S

[
1
1
0

]
[ r1 ] where r is the dropped rank when the germ is considered as a S[ 10 ]

singularity, — that is to say, it is the dropped rank of the projection of d2fp to a map
Tp(R× R)→ Hom(TpC, TqR2/TqR):

Tp(R× R) Hom(TpC, TqR2)

Tp(R× R) Hom(TpC, TqR2/TqR)

d2fp

d2fp

The 1 in the symbol is there to remind us that we have an additional subspace, and it denotes
the fact that when projected to im d2fp|TpC the dropped rank is 1. Only S

[
1
1
0

]
[ 01 ] generically

occurs since S
[
1
1
0

]
[ 11 ] has codimension 3. Then S

[
1
1
0

]
[ 01 ][0] is the only subtype of S

[
1
1
0

]
[ 01 ]

that generically occurs. (See Figure 2.5 for a way to perturb S
[
1
1
0

]
[ 11 ].)

Lemma 2.3.14. If f ∈ C∞
p (R × R,R2)q is a generic S

[
0
0
0

]
singularity, then up to Cerf

equivalence it is given by

f ∗y1 = 0

f ∗y2 = x

Proof. The argument from Lemma 2.1.8 works to let us assume f ∗y2 = x. Then the idea
from Lemma 2.3.11 works to clear out f ∗y1.

Lemma 2.3.15. If f ∈ C∞
p (R × R,R2)q is a generic S

[
0
1
0

]
[0] singularity, then up to Cerf

equivalence it is given by

f ∗y1 = x

f ∗y2 = x2
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Proof. After Cerf equivalence, we may assume that S
[
0
1
0

]
[0](f) is locally 0×R and further-

more that the differential vanishes on this submanifold. Then we can do a parameterized
version of Lemma 2.3.12.

Lemma 2.3.16. If f ∈ C∞
p (R × R,R2)q is a generic S

[
0
1
0

]
[1] singularity, then up to Cerf

equivalence it is given by

f ∗y1 = x

f ∗y2 = xt+ x3

Proof. After a reparameterization, we may assume that dfp = [ 1 0
0 0 ]. The second intrinsic

derivative is a map

d2fp : Tp(R× R)→ Hom(TpR, TqR2/TqR)
v 7→

[
∂20f2(p) ∂11f2(p)

]
v,

where we identify the codomain with Hom(R,R). Since drk d2fp|TpR = 1, then we have that
∂20f2(p) = 0 and ∂11f2(p) ̸= 0. After a reparameterization we may assume that ∂11f2(p) = 1,
and also ∂02f2(p) = 0. The third intrinsic derivative is

d3fp : TpR→ Hom(TpR,Hom(TpR, TqR2/TqR))
v 7→

[
∂30f2(p)

]
v,

and hence ∂30f2(p) ̸= 0 since d3fp is generically surjective. With another reparameterization,
we may additionally assume that ∂30f2(p) = 6. Thus, we have that

f ∗y1 = x+ r1(x, t)

f ∗y2 = xt+ x3 + r2(x, t)

with r1 ∈ m2
p and r2 ∈ m3

p with ∂30r2(p) = 0. Note that the lowest-order term of f ∗(yi1y
j
3) is

xiyj, so by doing reparameterizations with y1 = y1 + cyi1y
j
3 for suitable c and with i+ j ≥ 2

we may assume that r1 ∈ mk
p for any k ≥ 2 we wish, and this does not affect r2. Write

r2(x, t) =
∑

i+j=3 sij(x, t)x
itj using the Hadamard lemma for some functions sij, with s30 ∈

mp. We may assume s03 ∈ mp as well after a Cerf reparameterization. Then,

f ∗y2 = xt(1 + s21(x, t)x+ s12(x, t)t) + x3 + s30(x, t)x
3 + s03(x, t)t

3

We can substitute x = x(1+s21(x, t)x+s12(x, t)t) and t = t, which introduces terms of order
≥ 4 into f ∗y2 and terms of order ≥ 2 into f ∗y1. We are still able to assume that r1 ∈ mk

p for
any k ≥ 2 we wish, and now we may additionally assume that r2 ∈ m4

p.
We can eliminate the t4 term from r2, and then we can eliminate the xitj terms 1 ≤ i, j ≤ 3

and i+j = 4 using the same idea as above, but this time it introduces terms of order ≥ 5 into
f ∗y2. We still possibly have a x4 term in r2 after this. Supposing f ∗y2 = xt+x3+cx4+r1(x, t)
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with r1 ∈ m5
p, then we can write f ∗y2 = xt + x3(1 + cx) + r1(x, t) and then substitute

x = x(1 + cx)1/3, which introduces x2+it terms to f ∗y2. Substituting x = x+ c2x
2 + c3x

3 for
suitable c2 and c3 cancels out these terms through the fourth order. Hence, we may assume
f ∗y2 = xt + x3 + r1(x, t) with r1 ∈ m5

p. Everything here adapts to being able to clear out
terms to allow us to suppose that r1 ∈ mk

p to any k we wish.
Thus, we have a sequence of equivalent germs that converges to the germ (x, t) 7→ (x, xt+

x3, t) in the Whitney C∞ topology. Hence, it suffices to show that this germ is locally stable.
We will use Lemma 1.4.14. We calculate the ideal I = (t) + (xt + x3, t)2 = (x6, t), and let
A = f∗C

∞
p (T (R× R)) + IC∞

p (f ∗TR3). It suffices to show that

C∞
p (f ∗TR3) = A+ f ∗C∞

0 (R3) ∂
∂y1

+ f ∗C∞
0 (R3/R) ∂

∂y2
+ f ∗C∞

0 (R3/R2) ∂
∂y3
.

We first calculate that

f∗
∂
∂x1

= ∂
∂y1

+ (t+ 3x2) ∂
∂y2
≡A ∂

∂y1
+ 3x2 ∂

∂y2

f∗
∂
∂x2

= x ∂
∂y1

+ ∂
∂y3
.

Thus, for all k ∈ N we have the reduction rules

xk ∂
∂y1
≡A −3xk+2 ∂

∂y2

xk ∂
∂y3
≡A −xk+1 ∂

∂y2
,

and hence we just need to check that we have ∂
∂y2
, . . . , x5 ∂

∂y2
in the right-hand side of what

we need to show. We have xk ∂
∂y1

in the right-hand side for all k ∈ N, thus we have
x2 ∂

∂y2
, . . . , x5 ∂

∂y2
. Since we have ∂

∂y3
in the right-hand side we have x ∂

∂y2
. We also have

∂
∂y2

. We have therefore established the equality.

Lemma 2.3.17. If f ∈ C∞
p (R×R,R2)q is a generic S

[
1
1
0

]
[ 01 ][0] singularity, then up to Cerf

equivalence it is given by

f ∗y1 = xt+ x3

f ∗y2 = x2

Proof. The analysis and reparameterizations from Lemma 2.3.6 are all valid with a foliated
codomain as well. Hence, given any such f we can create a sequence of germs that converge
to the desired germ in the Whitney C∞ topology. What remains is to use Lemma 1.4.14 to
show that the desired germ is locally stable.

This time the ideal we have is I = (t) + (x2)2 = (x4, t), which is exactly the same as
before. Letting A = f∗C

∞
p (T (R× R)) + IC∞

p (f ∗TR3), it suffices to show that

C∞
p (f ∗TR3) = A+ f ∗C∞

0 (R3) ∂
∂y1

+ f ∗C∞
0 (R3/R) ∂

∂y2
+ f ∗C∞

0 (R3/R2) ∂
∂y3
.

One can check that the rest of the proof of Lemma 2.3.6 applies.
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2D multijet Cerf singularities for curves

Now that we have found these singularities, we continue on to classify the multijet singular-
ities. The codimension analysis for multijet singularities from Section 2.3.1 still applies, and
these are the only possibilities due to codimensions:

Type S
[
0
0
0

]
|
[
0
0
0

]
S
[
0
0
0

]
|
[
0
1
0

]
[0] S

[
0
0
0

]
|
[
0
0
0

]
|
[
0
0
0

]
Codim. 3 4 6
Ambient dim. 4 4 6

Suppose f ∈ C∞
{(p,t0),(p′,t0)}(C × R,R2)q with p ̸= p′. Like before, to handle the β−1(∆2

R2)

and (π×2 ◦ α)−1(∆2
R) transversality conditions the relevant function is F (x, x′, t) = f(x, t)−

f(x′, t) whose differential is

dF(p,t0),(p′,t0) : TpC ⊕ Tp′C ⊕ Tt0R→ TqR2

v 7→
[
∂10f1(p) −∂10f1(p′) ∂01f1(p)− ∂01f1(p′)
∂10f2(p) −∂10f2(p′) ∂01f2(p)− ∂01f2(p′)

]
v.

A S
[

0
r1
0

]
|
[

0
r2
0

]
type is that, for the projection to TqR2/TqR, the restriction to TpC has dropped

rank r1 and the restriction to Tp′C has dropped rank r2.
The analysis of S[ 00 ]|[ 00 ] carries over to S

[
0
0
0

]
|
[
0
0
0

]
, though we have to take care that we

only do foliation-respecting changes of coordinates. We may assume that the differential has
a matrix of the form [

0 −a b
1 −1 0

]
for some constants a and b. We define subtypes S

[
0
0
0

]
|
[
0
0
0

]
;[r1 r2] where r1 is the dropped rank

when restricted to TpC⊕Tp′C and r2 is the dropped rank on all of TpC⊕Tp′C⊕Tt0R. If r2 > 0

then the codimension would be too high, so generically r2 = 0. The type S
[
0
0
0

]
|
[
0
0
0

]
;[0 0] has

no subtypes, and we next look at S
[
0
0
0

]
|
[
0
0
0

]
;[1 0]. We get a second intrinsic derivative

d2F(p,p′,t0) : TpC ⊕ Tp′C ⊕ Tt0R→ Hom(K
[
0
0
0

]
|
[
0
0
0

]
;[1 0], L

[
0
0
0

]
|
[
0
0
0

]
;[1 0])

where K
[
0
0
0

]
|
[
0
0
0

]
;[1 0] is spanned by (1, 1, 0) and L

[
0
0
0

]
|
[
0
0
0

]
;[1 0] is TqR2/Tq(0 × R), so the

total codimension for this singularity type is 4, and thus still generically possible. As a
matrix we can write d2F as

v 7→
[
∂20f1(p, t0) −∂20f1(p′, t0) ∂11f1(p, t0)− ∂11f1(p′, t0)

]
v
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We can restrict to K
[
0
0
0

]
|
[
0
0
0

]
;[1 0] to get further subtypes, and for codimension reasons we

generically need the restriction to be nonzero, hence ∂20f1(p, t0) ̸= ∂20f1(p
′, t0). Thus, we

obtain the two types S
[
0
0
0

]
|
[
0
0
0

]
;[0 0] and S

[
0
0
0

]
|
[
0
0
0

]
;[1 0][0] from S

[
0
0
0

]
|
[
0
0
0

]
.

Next we move to type S
[
0
0
0

]
|
[
0
1
0

]
. There are a few singularity types involved here: the

type S
[
0
∗
0

]
|
[
0
∗
0

]
where we disregard the foliation of the domain, the type S

[
0
1
0

]
for the point

p′, and the type S
[
0
0
0

]
|
[
0
1
0

]
itself. In a neighborhood of p′, both S

[
0
∗
0

]
|
[
0
∗
0

]
(f) and S

[
0
1
0

]
(f)

are one-dimensional submanifolds intersecting at a point S
[
0
0
0

]
|
[
0
1
0

]
(f). The purpose of the

next subtypes are to (1) ensure the second singularity is S
[
0
1
0

]
[0] and (2) ensure that these

two submanifolds intersect transversely. We may assume that the differential has a matrix
of the form [

0 1 ∂01f1(p)− ∂01f1(p′)
1 0 ∂01f2(p)− ∂01f2(p′)

]
The kernel of this is (∂01f2(p)− ∂01f2(p′), ∂01f1(p)− ∂01f1(p′),−1), which indicates that the
tangent space at p′ of S

[
0
0
0

]
|
[
0
∗
0

]
(f) is spanned by (∂01f1(p) − ∂01f1(p

′),−1). As a S
[
0
1
0

]
point, we have a differential

df(p′,t0) : T(p′,t0)(C × R)→ TqR2

v 7→
[
1 ∂01f1(p

′, t0)
0 ∂01f2(p

′, t0)

]
v

with a second intrinsic derivative

d2f(p′,t0) : T(p′,t0)(C × R)→ Hom(T(p′,t0)C, TqR2/TqR)
v 7→

[
∂20f2(p

′, t0) ∂11f2(p
′, t0)

]
v

Hence T(p′,t0)S
[
0
1
0

]
(f) = ker d2f(p′,t0) is spanned by (∂11f2(p

′, t0),−∂20f2(p′, t0)). By surjectiv-
ity, ∂20f2(p′, t0) ̸= 0, for the two tangent spaces to be unequal, the condition we are looking
for is ∂20f2(p′, t0)(∂01f1(p′) − ∂01f1(p)) ̸= ∂11f2(p

′, t0). To implement this, we have a rank
condition for d2f(p′,t0) restricted to the subspace spanned by (∂01f1(p) − ∂01f1(p′),−1). By
codimension considerations, the generic possibility is for the dropped rank to be 0. We
denote this subtype by S

[
0
0
0

]
|
[
0
1
0

]
[0];[0].

Lemma 2.3.18. If f ∈ C∞
{(p,0),(p′,0)}(C × R,R2)q defines a generic multigerm that is an

S
[
0
0
0

]
|
[
0
0
0

]
;[0 0] multisingularity, then, up to Cerf equivalence, the multigerm is given by

f ∗
(p,0)y1 = 0 f ∗

(p′,0)y1 = x′

f ∗
(p,0)y2 = x f ∗

(p′,0)y2 = x′
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Proof. We may reparameterize such that the differential has the matrix[
0 −1 0
1 −1 0

]
We can reparameterize such that S

[
0
0
0

]
|
[
0
0
0

]
;[0 0](f) is contained in {p, q}×R near (p, 0) and

(q, 0). Then we can reparameterize such that f ∗
(p,0)y1 = 0 and f ∗

(p,0)y2 = x, and then we can
do a similar sort of reparameterization as in Lemma 2.3.13.

Lemma 2.3.19. If f ∈ C∞
{(p,0),(p′,0)}(C × R,R2)q defines a generic multigerm that is an

S
[
0
0
0

]
|
[
0
0
0

]
;[1 0][0] multisingularity, then, up to Cerf equivalence, the multigerm is given by

f ∗
(p,0)y1 = 0 f ∗

(p′,0)y1 = (x′)2 + t+O(x′, t)3

f ∗
(p,0)y2 = x f ∗

(p′,0)y2 = x′

Proof. The argument from Lemma 2.3.9 applies.

Lemma 2.3.20. If f ∈ C∞
{(p,0),(p′,0)}(C × R,R2)q defines a generic multigerm that is an

S
[
0
0
0

]
|
[
0
1
0

]
[0];[0] multisingularity, then, up to Cerf equivalence, the multigerm is given by

f ∗
(p,0)y1 = t+O(x, t)2 f ∗

(p′,0)y1 = (x′)2

f ∗
(p,0)y2 = x f ∗

(p′,0)y2 = x′

Proof. There is a S
[
0
1
0

]
[0] singularity at (p′, 0), so we can first apply the all the reparame-

terizations from Lemma 2.3.15 to let us assume that

f ∗
(p′,0)y1 = x′

f ∗
(p′,0)y2 = (x′)2.

We may also assume that f ∗
(p,0)y2 = x. In consideration of ∂20f2(p′, t0)(∂01f1(p′)−∂01f1(p)) ̸=

∂11f2(p
′, t0), we have the condition ∂01f1(p) ̸= 0, and we can assume it is 1. We can repa-

rameterize the codomain to cancel any x term from f ∗
(p,0)y1, leading to

f ∗
(p,0)y1 = t+ h(x, t) f ∗

(p′,0)y1 = x′ + c(x′)2

f ∗
(p,0)y2 = x f ∗

(p′,0)y2 = (x′)2

for some h(x, t) ∈ m2
p and c ∈ R. There is an invertible function germ g : R → R such that

g(x′ + c(x′)2) = x′, and by substituting with y1) = g(y1) we have f ∗
(p′,0)y1 = x′. This does

not change the form of f ∗
(p,0)y1.
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Figure 2.6: The four types of interchange moves, which are multijet Cerf singularities for
the composition with the R2 → R2/R projection. Each diagram shows the t = −1 and t = 1
frames of a movie, with the break indicating arbitrary horizotal separation in space.

Lemma 2.3.21. If f ∈ C∞(C × R,R2) is such that for three distinct points p, q, r ∈ R that
f(p, 0) = f(q, 0) = f(r, 0) and the germs of f at these three points define a generic multigerm
of type S

[
0
0
0

]
|
[
0
0
0

]
|
[
0
0
0

]
, then, up to Cerf equivalence, the multigerm is, to first order, given

by

f ∗
p y1 = x f ∗

q y1 = −x′ f ∗
r y1 = t

f ∗
p y2 = x f ∗

q y2 = x′ f ∗
r y2 = x′′

Proof. The considerations are similar as before, but we need to be sure each germ is an S
[
0
0
0

]
singularity, which means ∂10f2 is nonzero at each point.

We have found all the multijet singularities for germs that map to the same point, but
we have not yet considered multijet singularities for germs that map to the same point when
projected to be maps C × R→ R2/R or C × R→ R2/R2.

We start with C ×R→ R2/R. Observe that none of the singularities listed in Figure 2.4
when projected can occur at the same time since they all have codimension-3. The next
observation is that the suspensions of the S[ 01 ] and S[ 00 ]|[ 00 ] singularities listed in Figure 2.3
when projected cannot occur at the same time and map to the same point as projections
of the Figure 2.4 singularities, also due to codimension. What remains is considering pairs
of projections of suspensions of the S[ 01 ] and S[ 00 ]|[ 00 ] singularities. Each of these defines
a 1-dimensional singularity manifold in C × R, and the next multijet singularity types are
for these manifolds mapping to R2R transversely — these end up being interchange moves .
We do not do the analysis here, but the result is that the images of the projections of
these (multi-)singularity types can coincide at single points in time, and it is similar to the
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analysis of interchanges of Morse critical points (the type S[ 10 ][0]|[ 10 ][0] multisingularities).
We illustrate the possibilities in Figure 2.6 and we do not attempt to construct a naming
convention for the types.

Lastly, we consider C × R → R2/R for all the types considered to this point, and the
only thing this does is allow us to say that, generically, the interchange moves do not occur
at the same point in time. This completes the classification of the multijet singularities.
Except for the interchange moves, the results are summarized in Table 2.11 and illustrated
in Figure 2.4.

2.3.3 Graphs

We briefly mention how to modify the theory of singularities to handle 2D Morse and Cerf
theory for diagrams of graphs in the plane. A graph Γ is a finite 1-dimensional CW complex
with V (Γ) its 0-cells (the vertices) and E(Γ) its 1-cells (the edges). Graphs aren’t manifolds.
However, each 1-cell of a graph can be given a smooth manifold structure by regarding
them as being diffeomorphic to the standard unit interval [0, 1] ⊂ R (and, if we wish, we
may use the smooth manifold germ N ([0, 1]) so that it comes with an extention to some
neighborhood).

We can regard Γ as a colimit over its cells in the usual way, which we describe here. Let
E and V be a finite sets and let s, t : E → V be functions. For each e ∈ E we have a
map fe{0, 1} → V sending 0 to s(e) and 1 to t(e). Then Γ is the pushout in the following
diagram: ⊔

e∈E

{0, 1}
⊔
e∈E

[0, 1]

V Γ

⊔
e∈E fe

Given this, we can give Γ something akin to a smooth structure, where C∞(Γ) is a defined
as a limit using the following pullback diagram from applying the C∞ functor to the above
diagram: ⊔

e∈E

C∞({0, 1})
⊔
e∈E

C∞([0, 1])

C∞(V ) C∞(Γ)

This is all to say that C∞(Γ) consists of functions Γ→ R that, for all edges, its restriction to
that edge is smooth. We regard C∞(Γ) as a subring of C∞(

⊔
e∈E[0, 1]) when Γ has no isolated

vertices — if there are isolated vertices, then each isolated vertex contributes an additional
R direct summand. Similarly, for M a manifold we can define C∞(Γ,M) by applying the
C∞(−,M) functor instead.
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For M a manifold, we define Jk(Γ,M) to be Jk(
⊔
e∈E[0, 1],M). There is an additional

projection α′ : Jk(Γ,M) → Γ using the map
⊔
e∈E[0, 1] → Γ. For f ∈ C∞(Γ), its jet

extension is a map jkf :
⊔
e∈E[0, 1]→ Jk(Γ,M). This handles the fact that at a vertex there

is one jet per incident edge.
We can adapt the Thom Transversality Theorem to the case of Jk(Γ,M) and its jet ex-

tensions. Given a submanifold W ⊆ Jk(Γ,M), we can break it up into one piece We per edge
e for the part lying over the e copy of [0, 1]. Then we can see that TWe = {f ∈ C∞(Γ,M) |
jkf −⋔ We} is a residual subset of C∞(Γ,M) by modifying the proof of Theorem 1.2.9 to
take care at the endpoints of e, where we argue that perturbations of f |e can be extended
into perturbations of f in an arbitrary C∞ neighborhood of f . Then, TW =

⋂
e∈E TWe is a

residual subset. Hence, by the following lemma, the set of functions in C∞(Γ,M) whose jet
extensions are transverse to any given countable collection of jet submanifolds is dense.

Lemma 2.3.22. Suppose Γ is a finite graph. Then C∞(Γ) is a Baire space.

Proof. We may suppose that Γ has no isolated vertices since we can add isolated vertices
to a graph without changing whether C∞(Γ) is a Baire space. By Lemma 1.2.5, we need
only show that C∞(Γ) is closed with respect to the weak topology. Given an arbitrary
f ∈ C∞(

⊔
e∈E C

∞([0, 1]))\C∞(Γ), then there is a vertex v and two edges e and e′ incident to
it with conflicting values at their corresponding endpoints x and y. There exist disjoint open
neighborhoods Ux of f(x) and Uy of f(y), and {g ∈ C∞(

⊔
e∈E[0, 1]) | g(x) ∈ Ux and g(y) ∈

Uy} is an open neighborhood of f in the weak topology.

There is also a multijet transversality theorem, but in the definition of the multijet bundle
we have to make sure to that our definition of fat diagonal is with respect to α′, i.e., the jets
have to be above distinct points of Γ.

Let us consider functions f ∈ C∞(Γ,R2) where R2 has the product foliation. There is
still a notion of germs for graphs and we can study and classify the singularities of f . The
new thing is germs of diffeomorphisms at vertices — vertices must map to vertices since Γ
is not smooth at them (so degree-2 vertices are indeed distinguished from interior points of
edges) and also the degree of a vertex is a diffeomorphism invariant.

The analysis of singularities for non-vertex points has already been done in Section 2.3.2.
What remains is the understanding the behavior of vertices and how vertices interact with
other singularity types.

Let v ∈ V (Γ) be a vertex. For each edge e incident to v, letting x ∈ e be the corresponding
endpoint, we can define Sv[r] at x for whether drk d(Γ → R2/R)x = r. If r > 0, then the
codimension of the singularity type is 2, so it does not generically occur. Thus, we can
assume that, in the image of f , edges always meet vertices transverse to the foliation. We
can see that the classification of singularity types at v is then indexed by pairs (n,m) with
n+m the degree of v, where n is the number of edges incident from below and m the number
of edges incident from above — this is as expected.

Furthermore, we can define multijet singularity types for whether vertices coincide with
each other or with interiors of edges, or whether vertices have the same value in R2/R as other
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vertices or codimension-1 singularities. The upshot is that, due to their high codimension,
none of these coincidences occur.

We could pursue the 2D Cerf theory of maps from graphs to the plane, which involves
defining smooth functions on 2D CW complexes, but we will not pursue it here.

2.4 Classification of 1-dimensional singularities
Over the next few sections, we classify singularities of maps Rn → Rn for 1 ≤ n ≤ 3, with Rn

given the standard foliation. For the n = 3 case, we will only consider Cerf singularities since
our main application is presenting 2D cobordism categories. This work is a recapitulation
of the analysis in [SP09] but with special emphasis obtaining exact normal forms — i.e., on
classifying the open orbits of C∞

0 (Rn,Rn)0 under the Diff(Rn)×Diff(R ⊆ · · · ⊆ Rn) action.
Section 2.7 picks up with the classifications of maps of manifolds with a codimension-1
submanifold.

The n = 1 case is the simplest case: we consider smooth map germs f : R → R up
to the action of Diffp(R) × Diffq(R), with the germ centers p = 0 ∈ R for the domain and
q = f(p) = 0 ∈ R for the codomain. This is a special case of Section 2.1, and we have it
here for completeness. The results are summarized in Table 2.12.

Table 2.12: Classification of germs of 1-dimensional singularities.

Type Codim. Representative germ See:

S[0] 0 f ∗y1 = x1 Lemma 2.4.1

S[1] 1 f ∗y1 = x21 Lemma 2.4.2

Table 2.13: Classification of germs of 2-dimensional singularities.

Type Codim. Representative germ See: Suspends

S[ 00 ] 0 f ∗y1 = x1

f ∗y2 = x2

Lemma 2.5.1 S[0]

S[ 10 ][0] 1 f ∗y1 = x21
f ∗y2 = x2

Lemma 2.5.2 S[1]

S[ 10 ][1] 2 f ∗y1 = x1x2 + x31
f ∗y2 = x2

Lemma 2.5.3

S[ 11 ][0] 2 f ∗y1 = x1

f ∗y2 = ±x21 + x22

Lemma 2.5.4
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Table 2.14: First-order types of 2-dimensional singularities. We use a compact notation for
subspaces of TpR2 or quotients of TqR2. For example, R2 is both Tp(0×R) and TqR2/Tq(R×0).

Type Repres. dfp K[ r1r2 ] L[ r1r2 ] Hom(K[ r1r2 ], L[
r1
r2 ]) Codim. Generic

S[ 00 ] [ 1 0
0 1 ] 0 ↪→ R1 0 ↠ 0 0 0 ✓

S[ 10 ] [ 0 0
0 1 ] R1 ↪→ R1 R1 ↠ 0 Hom(R1,R1) 1 ✓

S[ 11 ] [ 1 0
0 0 ] R2 ↪→ R12 R2 ↠ R2 Hom(R12,R2) 2 ✓

S[ 21 ] [ 0 0
0 0 ] R12 ↪→ R12 R12 ↠ R12 Hom(R12,R12) 4

Let S[r] ⊆ J1(R,R) denote those jets with dropped-rank r, and clearly only r = 0 and
r = 1 occur.

Lemma 2.4.1. If f is a S[0] singularity, then f is equivalent to f(x) = x.

Proof. Since dfp ̸= 0, dfp is an isomorphism, so the inverse function theorem applies.

Lemma 2.4.2. If f is a S[1] singularity, then f is equivalent to f(x) = x2.

Proof. Since dfp =
[
0
]
, the second intrinsic derivative at p is

d2fp : R→ Hom(R,R)
v 7→

(
w 7→ w

[
∂2f(p)

]
v
)

where we identify TpR = TqR = R. For this to be surjective, ∂2f(p) ̸= 0. Hence by
Lemma 1.1.69, we have f(x) = h(x)x2 for some smooth h : R → R with h(p) ̸= 0. With
a = h(p)

|h(p)| = ±1, the following is a valid coordinate change:

y = ay x =
√
|h(x)|x

and we see f ∗y = x2.

2.5 Classification of 2-dimensional singularities
We now consider smooth map germs f : R2 → (R ⊆ R2) up to the action of Diffp(R2) ×
Diffq(R ⊆ R2), with the germ centers p = 0 ∈ R2 for the domain and q = f(p) = 0 ∈ R2 for
the codomain. The results are summarized in Table 2.13 and illustrated in Figure 2.7. This
classification, in terms of stable cascades R2 → R2 → R, appears in [Arn76, Theorem 5.1].
The classification, up to a weaker form of equivalence, also appears in [SP09].

The first-order classification of singularities is given by symbols S[ ab ], where a is the
dropped rank of dfp itself and b is the dropped rank of π ◦ dfP , where π : TR2 → TR2/TR.
These are summarized in Table 2.14. The representative dfp is obtained by applying some
(foliation-preserving) diffeomorphisms that are linear transformations to the domain and



CHAPTER 2. CLASSIFICATION OF SINGULARITIES 127

S[ 00 ] S[ 10 ][0]

S[ 11 ][0] S[ 11 ][0]

S[ 10 ][1]

Figure 2.7: Illustrations of the 2D singularities from Table 2.13. Each set of three diagrams
is showing (1) the domain, with singularity submanifolds in blue, (2) the domain “in flight,”
(3) the image in the foliated codomain. The S[ 11 ][0] singularity has two variants from the
choice of sign.

Figure 2.8: Illustrations of the 2D multigerm singularities, both variants of S[ 10 ][0]|S[ 10 ][0].
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codomain. The calculation of the normal bundle for the type uses a compact notation for
kernels and cokernels — we give the correspondence in the following table rather than try
to explain the rule:

TpR2 TqR2

R1 Tp(R× 0) TqR2/Tq(0× R)
R2 Tp(0× R) TqR2/Tq(R× 0)
R12 TpR2 TqR2

Lemma 2.5.1. If f ∈ C∞
p (R2,R2)q is a generic S[ 00 ] singularity, then it is equivalent to

f(x) = x.

Proof. Using a reparameterization that makes dfp the identity matrix like in Table 2.14, then
the inverse function theorem gives an element φ : Diff(R2) such that f ◦ φ = id.

2.5.1 Type S[1; 0]

Let us consider the S[ 10 ] type. Using a reparameterization that puts dfp into the form in
Table 2.14, then by the implicit function theorem there is a function ψ : R2 → R such that
f2(x1, ψ(x1, x2)) = x2. The change of variables x1 = x1 and x2 = ψ(x1, x2) gives

f ∗y2 = f2(x1, x2) = f2(x1, ψ(x1, x2)) = x2

and hence we may assume that f2(x) = x2.
The dfp matrix has ker dfp = R1 and coker dfp = R1, using the convention from the table.

The second intrinsic derivative is then

d2fp : R2 → Hom(R1,R1)

v 7→
[
∂20f1(p) ∂11f1(p)

]
v,

where we identify Hom(R1,R1) with R for the purpose of this formula. We define the type
S[ 10 ][r] for drk d2fp|R1 = r. These are summarized in Table 2.15.

Lemma 2.5.2. If f ∈ C∞
p (R2,R2)q is a S[ 10 ][0] singularity, then there exist coordinates such

that

f ∗y1 = x21
f ∗y2 = x2

Table 2.15: Second-order types for S[ 10 ].

Type Representative d2fp Addl. Codim. Codim. Generic

S[ 10 ][0] [ 2 0 ] 0 1 ✓
S[ 10 ][1] [ 0 1 ] 1 2 ✓
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Proof. By Lemma 1.1.69 there are functions hij : R2 → R such that f ∗y1 = h20(x)x
2
1 +

h11(x)x1x2 + h02(x)x
2
2, and h20(p) ̸= 0 since ∂20f1(p) ̸= 0. After a Morse Lemma style

reparameterization, we may assume that h20(x) = ±1 and h11(x) = 0, and by possibly
negating y1 we fix h20(x) = 1. From this, we calculate the local ring of the singularity:

C∞
p (R2)/C∞

p (R2)f ∗(y1, y2) = C∞
p (R2)/(x21 + h02(x)x

2
2, x2)

∼= R[x1]/(x21).

By the Malgrange Preparation Theorem (Theorem 1.1.73), 1 and x generate C∞
p (R2) as a

C∞
q (R2)-module. Hence there exist α, β ∈ C∞

q (R2) such that h02(x) = f ∗α+xf ∗β, and thus

x21 + h02(x) = x21 + (f ∗α + xf ∗β)x22 = (x1 +
1
2
x22f

∗β)2 + x22f
∗α− 1

4
x42f

∗β2.

Applying the change of variables

x1 = x1 +
1
2
x22f

∗β x2 = x2

y1 = y1 − y22α + 1
4
y42β

2 y2 = y2

then f ∗y1 = x21 and f ∗y2 = x2, as desired.

Lemma 2.5.3. If f ∈ C∞
p (R2,R2)q is a S[ 10 ][1] singularity, then there exist coordinates such

that

f ∗y1 = x1x2 + x31
f ∗y2 = x2

Proof. Since ∂20f1(p) = 0 and d2fp is surjective, we have ∂11f1(p) ̸= 0. Rescaling y1
we may assume ∂11f1(p) = 1, giving the “representative d2fp” in the table. The kernel
of d2fp gives TpS[ 10 ](f) = R1, and the third intrinsic derivative is a map d3fp : R1 →
Hom(R1,Hom(R1,R1)). To simplify notation, identify Hom(R1,Hom(R1,R1)) with R:

d3fp : R1 → R
v 7→ ∂30f1(p)v

Surjectivity implies ∂30 ̸= 0. This germ is precisely the m = 1 case of Lemma 2.1.10, hence
there exists a Cerf change of coordinates to put f into the desired form (and moreover f is
3-determined).

2.5.2 Type S[1; 1]

Using the dfp from Table 2.14 for S[ 11 ], then, using the convention from the table, the
normal bundle for the second intrinsic derivative is isomorphic to the two-dimensional space
Hom(R2 ↪→ R2,R2 ↠ R2), where recall R2 denotes both 0 × R and R2/(R × 0). This is
isomorphic to Hom(R2,R2), hence the second intrinsic derivative is given by

d2fp : R2 → Hom(R2,R2)

v 7→
(
w 7→ wT

[
∂20f2(p) ∂11f2(p)
∂11f2(p) ∂02f2(p)

]
v

)
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Define subtypes S[ 11 ][r] by the dropped rank of the restriction to d2fP : R2 → Hom(R2,R2).
We do not consider restrictions such as R2 → Hom(R2,R2) since they all have full rank due
to d2fp being generically surjective. Note that even though d2fp is affected by symmetry of
partial derivatives, since we are projecting to R2 → Hom(R2,R2) the usual normal bundle
calculations still apply for the third intrinsic derivative.

For S[ 11 ][1], then ∂20f2(p) = 0, so the third intrinsic derivative with respect to this
subtype is

d3f3 : R2 → R
v 7→ ∂03f2(p)v

This subtype has codimension equal to 3, so it does not generically occur.

Lemma 2.5.4. If f ∈ C∞
p (R2,R2)q is a S[ 11 ][0] singularity, then there exist coordinates such

that

f ∗y1 = x1

f ∗y2 = ax21 + x22

where a ∈ {−1, 1}.

Proof. We have that ∂02f2(p) ̸= 0 and that the matrix for d2fp is non-singular. Thus, we
may apply a reparameterization in the style of the Morse Lemma using the variable order
x2, x1 to let us assume that f ∗y2 = ±x21 ± x22. Negating y2 if needed, then there exists some
a ∈ {−1, 1} such that f ∗y2 = ax21 + x22. The effect of these reparameterizations is that
f ∗y1 = x1 + h(x) for some h ∈ m2

p.
Consider for >̧0 the substitution x1 = cx1, x2 = cx2, y1 = cy1, and y2 = c2y2. Then

f ∗y1 = x1 + c−1h(cx1, cx2)

f ∗y2 = ax21 + x22.

Since h ∈ m2
p, as c → 0 then c−1h(cx1, cx2) converges to 0 in the C∞ topology. Hence

it suffices to show that the limiting case is locally stable, for which we will use We use
Corollary 1.4.11.

Consider the germ with f ∗y1 = x1 and f ∗y2 = ax21 + x22. We calculate the ideal I =
(f ∗y21, f

∗y2) = (x21, ax
2
1 + x22) = (x21, x

2
2). Furthermore,

f∗
∂
∂x1

= ∂
∂y1

+ 2ax1
∂
∂y2

f∗
∂
∂x2

= 2x2
∂
∂y2
.

Let A = f∗C
∞
p (R2) + IC∞

p (f ∗TR2). It suffices to show that

C∞
p (f ∗TR2) = A+ R ∂

∂y1
+ Rx1 ∂

∂y1
+ R ∂

∂y2
.
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We see that every xi1x
j
2
∂
∂yk

is equivalent modulo IC∞
p (f ∗TR2) such a term with 0 ≤ i, j ≤ 1.

Using f∗ ∂
∂x1

, then modulo A we may assume that k = 2, and then f∗ ∂
∂x1

gives us that if j > 0

the term is in A. By this reasoning, such terms that might not be in A are ∂
∂y2

and x1
∂
∂y2

.
The latter is equivalent modulo A to − 1

2a
∂
∂y1

, so we are done.

2.5.3 Multijet singularities

We will mention the multigerm singularities that can occur, but we will not formally derive
normal forms. Like usual, for codimension reasons generically the codimension-2 singularities
cannot coincide with any other singularity type other than S[ 00 ]. The interesting type is
S[ 10 ][0]|[ 10 ][0], which is a multijet singularity where two S[ 10 ][0] types map to the same point
(this is illustrated in Figure 2.8). The S[ 10 ][0] type gives a curve of singularities, and the
images of these curves can meet — generically, they must meet transversely.

2.6 Classification of 3-dimensional Cerf singularities
Our goal is to classify the 3-dimensional singularities that will help us determine the relations
for an extended 2D TQFT. For this end, we do not need to consider all germs f : R3 → (R ⊆
R2 ⊆ R3), but rather those from maps Σ × I 7→ Σ × I that commute with the projection
to I. Hence, we will instead consider smooth map germs f : R3 → (R ⊆ R2 ⊆ R3), up to
the action of Diffp(R3) × Diffq(R ⊆ R2 ⊆ R3), with the germ centers p and q like before,
and where f3(x) = x3. We call these Cerf singularities, which we hope does not cause
confusion in context — these 3-dimensional Cerf singularities are the Cerf singularities for
the 2-dimensional singularities classified in Section 2.5.

We analyze such germs as germs f ′ ∈ C∞
p (R2×R,R2) up to Cerf equivalence, where R2×R

is given the product foliation R2 ⊆ R3 and R2 is given the standard R ⊆ R2 foliation. Recall
that Cerf equivalence means that we consider such germs up to equivalence as R3 → R3 maps
with foliated codomain. The results are summarized in Table 2.16, with germs represented
in this f ′ form, and illustrated in Figure 2.9.

The first-order classification of maps (R2 ⊆ R3) → (R ⊆ R2) up to Cerf equivalence is
given in Table 2.17. The singularity types are denoted by S

[
r1
r2
0

]
, where r1 = drk dfp and

r2 = drk d(π ◦ f)p, where π : R2 → R2/R is the foliation-respecting projection. Like usual,
the additional 0 in the symbol is a reminder that these maps are implicitly extended with
f3(x) = x3 and a R ⊆ R2 ⊆ R3 foliated codomain.

Lemma 2.6.1. If f ∈ C∞
p (R3,R2)q is a S

[
0
0
0

]
[0] singularity, then there exist coordinates

such that

f ∗y1 = x1 f ∗y2 = x2

Proof. This is essentially the same as Lemma 2.5.1.
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2.6.1 Type S[1; 0; 0]

After a reparameterization by linear maps in Diffp(R2 ⊆ R3) and Diffq(R ⊆ R2 ⊆ R3), the
differential of a S

[
1
0
0

]
singularity can be put into the form as in Table 2.17:

dfp =

[
0 0 0
0 1 0

]
Using the implicit function theorem, we may reparameterize further so that f2(x) = x2.
The normal bundle for this type is isomorphic to Hom(R1,R1) where, continuing with the
convention from before, R1 denotes both R × 0 × 0 and R2/(0 × R). Hence, identifying R
with this normal bundle, the second intrinsic derivative is

d2fp : R3 → R
v 7→

[
∂200f1(p) ∂110f1(p) ∂101f1(p)

]
v

Table 2.16: Classification of germs of 3-dimensional Cerf singularities.

Type Codim. Representative germ See: Suspendsa

S
[
0
0
0

]
0 f ∗y1 = x1

f ∗y2 = x2

Lemma 2.6.1 S[0], S[ 00 ]

S
[
1
0
0

]
[ 0 0 ] 1 f ∗y1 = x21

f ∗y2 = x2

Lemma 2.6.2 S[1], S[ 10 ][0]

S
[
1
0
0

]
[ 1 0 ][0] 2 f ∗y1 = x1x2 + x31

f ∗y2 = x2

Lemma 2.6.3 S[ 10 ][1]

S
[
1
0
0

]
[ 1 0 ][1] 3 f ∗y1 = x1x2 + x21x3 + x41 +O(x)5

f ∗y2 = (1 +O(x)2)x2

Lemma 2.6.4

S
[
1
0
0

]
[ 1 1 ][ 0 0

0 0 ] 3 f ∗y1 = x1x3 + x1x
2
2 + ax31 +O(x)4

f ∗y2 = x2

Lemma 2.6.5

S
[
1
1
0

]
[ 0 0
0 0 ] 2 f ∗y1 = x1

f ∗y2 = ax21 + x22 +O(x)3
Lemma 2.6.6 S[ 11 ][0]

S
[
1
1
0

]
[ 0 0
0 1 ] 3 f ∗y1 = (1 +O(x))x1

f ∗y2 = x1x3 + x22 + x31 +O(x)4
Lemma 2.6.7

S
[
1
1
0

]
[ 1 0
0 0 ] 3 f ∗y1 = (1 +O(x))x1

f ∗y2 = x1x2 + x22x3 + x32 +O(x)4
Lemma 2.6.8

a See Tables 2.12 and 2.13.
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S
[
1
0
0

]
[1 0][1] S

[
1
1
0

]
[ 0 0
0 1 ]

S
[
1
0
0

]
[1 1][ 0 0

0 0 ] S
[
1
0
0

]
[1 1][ 0 0

0 0 ]

S
[
1
1
0

]
[ 1 0
0 0 ]

Figure 2.9: Illustrations of the 3D Cerf singularities from Table 2.16. Each set of three
diagrams is showing the t = −1, t = 0, and t = 1 movie frames. Suspensions of 2D
singularities are not shown.

Table 2.17: First-order types of 3-dimensional Cerf singularities.

Type Repres. dfp Codim. Generic

S
[
0
0
0

]
[ 1 0 0
0 1 0 ] 0 ✓

S
[
1
0
0

]
[ 0 0 0
0 1 0 ] 1 ✓

S
[
1
1
0

]
[ 1 0 0
0 0 0 ] 2 ✓

S
[
2
1
0

]
[ 0 0 0
0 0 0 ] 4
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We define subtypes S
[
1
0
0

]
[ r s ] where r is the dropped rank when d2fp is restricted to R1, and

s is the same when restricted to R12. The possibilities are enumerated in Table 2.18. For
the “representative d2fp” column, we perform the usual kinds of changes-of-variables to put
the matrix into the given form.

Lemma 2.6.2. If f ∈ C∞
p (R3,R2)q is a S

[
1
0
0

]
[ 0 0 ] singularity, then there exist coordinates

such that

f ∗y1 = x21
f ∗y2 = x2

Proof. The proof is essentially the same as Lemma 2.5.2, but we make use of f3 = x3 to help
clear out more partial derivatives of f1.

Type S[1; 0; 0][1 0]

The second intrinsic derivative for type S
[
1
0
0

]
[1 0] can be put in the form represented in

Table 2.18:

d2fp : R3 → R
v 7→

[
0 1 0

]
v

The kernel of this map is TpS
[
1
0
0

]
, and the normal bundle for S

[
1
0
0

]
[ 1 0 ] is isomorphic to

Hom(R1,R) ≈ R, where as usual R1 = R× 0× 0. The third intrinsic derivative is given by

d3fp : R× 0× R→ R
v 7→

[
∂300f1(p) ∂201f1(p)

]
v

We define subtypes S
[
1
0
0

]
[ 1 0 ][r] based on the dropped rank of d3fp when restricted to R1.

These are summarized in Table 2.19 and will be analyzed in the following lemmas.

Table 2.18: Second-order types for S
[
1
0
0

]
.

Type Representative d2fp Addl. Codim. Codim. Generic

S
[
1
0
0

]
[ 0 0 ] [ 2 0 0 ] 0 1 ✓

S
[
1
0
0

]
[ 1 0 ] [ 0 1 0 ] 1 2 ✓

S
[
1
0
0

]
[ 1 1 ] [ 0 0 1 ] 2 3 ✓
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Lemma 2.6.3. If f ∈ C∞
p (R3,R2)q is a S

[
1
0
0

]
[ 1 0 ][0] singularity, then there exist coordinates

such that

f ∗y1 = x1x2 + x31
f ∗y2 = x2

Proof. This is similar to Lemma 2.5.3 (and by extension the m = 1 case of Lemma 2.1.10),
but we can make use of f3(x) = x3 to clear out more terms, and so there exists coordinates
such that

f ∗y1 = x1x2 + x31 + r(x)

f ∗y2 = x2

for some r ∈ m4
p. The argument in Lemma 2.1.10 carries over for why the closure of the orbit

of this singularity type contains the germ with r = 0, so it suffices to show that the germ
with r = 0 is locally stable.

We use Lemma 1.4.14 with the germ as a map R3 → R3. We have

f∗
∂
∂x1

= (x2 + 3x21)
∂
∂y1

f∗
∂
∂x2

= x1
∂
∂y1

+ ∂
∂y2

f∗
∂
∂x3

= ∂
∂y3

and we calculate the ideal I = C∞
p (R3)f ∗(mq(R3/R2) + mq(R3/R)2) = (x22, x3). Letting

A = f∗C
∞
p (TR3) + IC∞

p (f ∗TR3), then it suffices to show that

C∞
p (f ∗TR3) = A+ f ∗C∞(R3) ∂

∂y1
+ f ∗C∞(R3/R) ∂

∂y2
+ f ∗C∞(R3/R2) ∂

∂y3
.

We see that f∗C∞
p (TR3) gives ∂

∂y2
≡A −x1 ∂

∂y1
and ∂

∂y3
≡A 0. We also have x22

∂
∂y1
≡A 9x41

∂
∂y1

,
hence A contains (x41, x

2
2, x3)

∂
∂y1

.
Using f ∗C∞(R3) ∂

∂y1
, we can get ∂

∂y1
, x2 ∂

∂y1
, and x21

∂
∂y1

. Using f ∗C∞(R3/R) ∂
∂y2

, we can
get x1 ∂

∂y1
and x31

∂
∂y1

. This completes the proof.

Table 2.19: Third-order types for S
[
1
0
0

]
[ 1 0 ].

Type Representative d3fp Addl. Codim. Codim. Generic

S
[
1
0
0

]
[ 1 0 ][0] [ 6 0 ] 0 2 ✓

S
[
1
0
0

]
[ 1 0 ][1] [ 0 2 ] 1 3 ✓
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Lemma 2.6.4. If f ∈ C∞
p (R3,R2)q is a S

[
1
0
0

]
[ 1 0 ][1] singularity, then there exist coordinates

such that

f ∗y1 = x1x2 + x21x3 + x41 +O(x)5

f ∗y2 = (1 + g(x))x2

where g ∈ m2
p.

Proof. In this case, ∂300f1(p) = 0, so ∂201f1(p) ̸= 0 by surjectivity of d3fp. Hence by rescaling
y1 we obtain the d3fp listed in Table 2.19.

Consider now the fourth intrinsic derivative. We have ker d3fp = TpS
[
1
0
0

]
[ 1 0 ], and the

normal bundle for S
[
1
0
0

]
[ 1 0 ][1] is isomorphic to R, hence d4fp is given by

d4fp : R1 → R
v 7→ ∂400f1(p)v

By surjectivity, ∂400f1(p) ̸= 0.
After a reparameterization of the form y1 = y1 + ay22 + by1y2 + cy22, we may assume all

partial derivatives through the second vanish for f1(x)− x1x2. By Lemma 1.1.69, there are
functions hijk such that

f1(x) = x1x2 +
∑

i+j+k=3

hijk(x)x
i
1x

j
2x

k
3

with h300(p) = 0 and h201(p) = 1. Reparameterizing with x1 = x1 − 1
2
h102(p)x3 and then

reparameterizing y1 to cancel out the new x2x3 quadratic term, we may assume h102(p) = 0.
Additionally, we may assume h003(p) = 0 by a reparameterization of the form y1 = y1 + ay33.
Thus, by reparameterizing

x1 = x1 +
∑

i+j+k=3
j≥1

hijk(x)x
i
1x

j−1
2 xk3

x2 = x2

x3 = x3

we may assume

f1(x) = x1x2 + h300(x)x
3
1 + h201(x)x

2
1x3 + h102(x)x1x

2
3 + h003(x)x

3
3 +O(x)5

with h201(p) = 1 and h300(p) = h102(p) = h003(p) = 0. In particular, all partial derivatives
through the third vanish for f1(x)− x1x2 − x21x3.

A substitution of the form x1 = x1, x2 = x2 + ax23, x3 = x3 along with y1 = y1,
y2 = y2 − ay23, y3 = y3 lets us assume ∂001h102(p) = 0. Additionally, by rescaling all the
variables, we may assume ∂100h300(p) = 1.
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by Lemma 1.1.69 again, there are functions hijk with h400(p) = 1 such that

f1(x) = x1x2 + x21x3 + h400(x)x
4
1 + h310(x)x

3
1x2 + h301(x)x

3
1x3

+ h211(x)x
2
1x2x3 + h202(x)x

2
1x

2
3 + h112(x)x1x2x

2
3 + h103(x)x1x

3
3

+ h013(x)x2x
3
3 + h004(x)x

4
3 +O(x)5

= (1 + h310(x)x
2
1 + h211(x)x1x3 + h112(x)x

2
3)x1x2

+ (1 + h301(x)x1 + h202(x)x3)x
2
1x3

+ h103(x)x1x
2
3 + h400(x)x

4
1 + h013(x)x2x

3
3 + h004(x)x

4
3 +O(x)5.

By a reparameterization of the y variables, we can assume h013(p) = 0 and h004(p) = 0. By
virtue of Lemma 1.1.69, h103, h013 and h004 are in mp and so their corresponding terms are
in m5

p. Similarly, h400(x)x41 ∈ x41 +m5
p. Together, these let us simplify the expression:

f1(x) = (1 + h310(x)x
2
1 + h211(x)x1x3 + h112(x)x

2
3)x1x2

+ (1 + h301(x)x1 + h202(x)x3)x
2
1x3

+ x41 +O(x)5.

The substitution x1 =
√
|1 + h301(x)x1 + h202(x)x3|x1 lets us write

f1(x) = g(x)x1x2 + ax21x3 + x41 +O(x)5

with g : R3 → R such that g(p) = 1 and g − 1 ∈ m2
p and with a ∈ {−1, 1}. Lastly, by

x2 = g(x)x2 and potentially negating y3 we get the result.

Type S[1; 0; 0][1 1]

In this case, as represented in Table 2.18, the second intrinsic derivative is

d2fp : R3 → R
v 7→

[
0 0 1

]
v

The kernel of this map is TpS
[
1
0
0

]
, and the normal bundle for S

[
1
0
0

]
[ 1 1 ] is isomorphic to

Hom(R12,R), where R12 = R2 × 0. The third intrinsic derivative is given by

d3fp : R12 → Hom(R12,R)

v 7→
(
w 7→ wT

[
∂300f1(p) ∂210f1(p)
∂210f1(p) ∂120f1(p)

]
v

)
We define the subtypes S

[
1
0
0

]
[ 1 1 ][ a bb c ] by the dropped ranks for the restrictions d3fp : V →

Hom(W,R) with V,W ∈ {R1, R12}. By reason of codimension, a = b = c = 0 is the only
possibility.
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Lemma 2.6.5. If f is a S
[
1
0
0

]
[ 1 1 ][ 0 0

0 0 ] singularity, then it is equivalent to a germ with

f ∗y1 = x1x3 + x1x
2
2 + ax31 +O(x)4

f ∗y2 = x2

where a ∈ {±1}.

Proof. After a reparameterization, the Hessian for f1 is

Hf1(p) =

0 0 1
0 0 0
1 0 0


After another reparameterization, the matrix for d3fp is[

∂300f1(p) ∂210f1(p)
∂210f1(p) ∂120f1(p)

]
=

[
6a 0
0 2b

]
with a, b ∈ {−1, 1}. After yet more tedious reparameterizations, we can get

f1(x) = x1x3 + ax31 + bx1x
2
2 +O(x)4.

Changing signs of variables yields the result.

2.6.2 Type S[1; 1; 0]

After a reparameterization by a linear map in Diffq(R ⊆ R2 ⊆ R3), the differential of a S
[
1
1
0

]
singularity can be put into the form as in Table 2.17:

dfp =

[
1 0 0
0 0 0

]
Using the implicit function theorem, we may reparameterize further so that f1(x) = x1. The
normal bundle for this type is isomorphic to Hom(R2 ↪→ R12,R2 ↠ R2) where R2 denotes
both 0×R×0 and R2/(R×0). This is isomorphic to the two-dimensional space Hom(R12,R2).
Hence, the second intrinsic derivative is

d2fp : R3 → Hom(R12,R2)

v 7→
(
w 7→ wT

[
∂200f2(p) ∂110f2(p) ∂101f2(p)
∂110f2(p) ∂020f2(p) ∂011f2(p)

]
v

)
We define subtypes S

[
1
1
0

]
[ r ss t ] where r, s, and t are dropped ranks according to the following

scheme:
R2 R12[ ]

Hom(R2,R2) ∗ ∗
Hom(R12,R2) ∗ ∗

for coranks of
[
∂020h(p) ∂110h(p)
∂110h(p) ∂200h(p)

]
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For example, s is the dropped rank for both d2fp : R2 → Hom(R2,R2) and d2fp : R2 →
Hom(R12,R2). The cases where the second intrinsic derivative are surjective are listed in
Table 2.20, and as usual we reparameterize to get a “representative d2fp” — both a and b
are −1 or 1.

Lemma 2.6.6. If f is a S
[
1
1
0

]
[ 0 0
0 0 ] singularity, then it is equivalent to a germ with

f ∗y1 = x1

f ∗y2 = ax21 + x22 +O(x)3

where a ∈ {−1, 1}.

Proof. This is essentially the same as Lemma 2.5.4, where we can use a reparameterization
with y2 = y2 + cy23 for some c to remove a x23 term.

Lemma 2.6.7. If f is a S
[
1
1
0

]
[ 0 0
0 1 ] singularity, then it is equivalent to a germ with

f ∗y1 = (1 + g(x))x1

f ∗y2 = x1x3 + x22 + x31 +O(x)4

where g ∈ mp.

Proof. By usual sorts of parameter changes, the d2fp can be put into the form as show in
Table 2.20. We can furthermore put the Hessian of f2 at p into the form

Hf2(p) =

0 0 1
0 2a 0
1 0 0


with a ∈ {−1, 1}. Using Morse-lemma-like reparameterizations and Lemma 1.1.69, there are
functions hijk : R3 → R such that

f2(x) = h200(x)x
2
1 + ax22 + h002(x)x

2
3 + h101(x)x1x3

Table 2.20: Second-order types for S
[
1
1
0

]
.

Type Representative d2fp Addl. Codim. Codim. Generic

S
[
1
1
0

]
[ 0 0
0 0 ] [ 2a 0 0

0 2b 0 ] 0 2 ✓

S
[
1
1
0

]
[ 0 0
0 1 ] [ 0 0 b

0 2a 0 ] 1 3 ✓

S
[
1
1
0

]
[ 1 0
0 0 ] [ 0 a 0

a 0 0 ] 1 3 ✓

S
[
1
1
0

]
[ 1 1
1 1 ] [ 2a 0 0

0 0 b ] 2 4
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where h002(p) = 0 and h101(p) = 1.
The kernel of d2fp is TPS

[
1
1
0

]
, which is R, and the normal bundle for the subtype at p is

isomorphic to Hom(ker d2fp|R2 , coker d2fp|R2). We have ker d2fp|R2 = R and coker d2fp|R2 ≈
Hom(R,R2), so it is 1-dimensional. Hence, we can write the third intrinsic derivative as

d3fp : R→ R
v 7→ ∂300f2(p)v

and thus ∂300f2(p) ̸= 0, and by rescaling variables we may assume ∂300f2(p) = 6. By
Lemma 1.1.69, there are functions hijk : R3 → R such that

f2(x) = x1x3 + ax22 + h300(x)x
3
1 + h210(x)x

2
1x2 + h201(x)x

2
1x3

+ h102(x)x1x
2
3 + h012(x)x2x

2
3 + h003(x)x

3
3

+ h111(x)x1x2x3

and h300(p) = 1. Using another Morse-lemma-like reparameterization, we may assume h210 =
h021 = h111 = 0, and we may also assume h003(p) = 0 and h300(p) = 0.

f2(x) = x1x3 + ax22 + x31 + h201(x)x
2
1x3 + h102(x)x1x

2
3 +O(x)4

= (1 + h201(x)x1 + h102(x)x3)x1x3 + ax22 + x31 +O(x)4

Reparameterizing x1 = (1 + h201(x)x1 + h102(x)x3)x1 yields the result.

Lemma 2.6.8. If f is a S
[
1
1
0

]
[ 1 0
0 0 ] singularity, then it is equivalent to a germ with

f ∗y1 = (1 + g(x))x1

f ∗y2 = x1x2 + x22x3 + x32 +O(x)4

where g ∈ mp.

Proof. By usual sorts of parameter changes, the d2fp can be put into the form as show in
Table 2.20. With a ∈ {−1, 1}, we can furthermore put the Hessian of f2 at p into the form

Hf2(p) =

0 a 0
a 0 0
0 0 0


Identifying the normal bundle at p with R, the third intrinsic derivative is

d3fp : R3 → R
v 7→ ∂021f2(p)v
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and thus ∂021f2(p) ̸= 0. Restricting d2fp to R2 in the codomain, we get a map

d2fp : R3 → Hom(R2,R2)

v 7→
(
w 7→ wT

[
∂110f2(p) ∂020f2(p) ∂011f2(p)

]
v
)

and we have already established that this matrix is [ a 0 0 ]. The third intrinsic derivative of
f with respect to this is

d3fp : R23 → R
v 7→

[
∂030f2(p) ∂021f2(p)

]
v

There are subtypes based on the dropped rank when restricted to R2. Since S
[
1
1
0

]
[ 1 0
0 0 ] is a

codimension-3 singularity, by reason of codimension, we may assume ∂030f2(p) ̸= 0.
By Morse-lemma-like reparameterizations and Lemma 1.1.69, there are functions hijk :

R3 → R such that

f2(x) = ax1x2 + h020(x)x
2
2 + h011(x)x2x3 + h002(x)x

2
3

and h020(p) = h011(p) = h002(p) = 0. Further application of Lemma 1.1.69 gives

f2(x) = ax1x2 + h120(x)x1x
2
2 + h030(x)x

3
2 + h021(x)x

2
2x3

+ h111(x)x1x2x3 + h012(x)x2x
2
3

+ h102(x)x1x
2
3 + h003(x)x

3
3

with h030(p) = b and h021(p) = c where b, c ̸= 0. Reparameterizing, we may assume h003(p) =
0, hence

f2(x) = (a+ h120(x)x2 + h111(x)x3)x1x2 + bx32 + cx22x3

+ h012(x)x2x
2
3 + h102(x)x1x

2
3 +O(x)4

A substitution with x1 = x1 + kx23 for some k (followed by a reparameterization of the
y variables to clear out the resulting x23 in f ∗y1) lets us assume h012(p) = 0. Similarly,
one with x2 = x2 + kx23 for some k lets us assume h102(p) = 0. Hence, substituting x1 =
(a+ h120(x)x2 + h111(x)x3)x1 gives

f1(x) = (a−1 + g(x))x1

f2(x) = x1x2 + bx32 + cx22x3 +O(x)4

with g ∈ mp. Scaling variables gives the result.
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2.6.3 Multijet singularities

There are some important multijet singularities that occur now at this higher dimension.
The codimension-3 singularities of course do not generically map to the same point or occur
at the same point in time. More interestingly, the S[ 10 ][0]|[ 10 ][0] singularities (see Figure 2.8
themselves have multijet singularities similar to those moves from Figure 2.4 that are like the
Reidemeister II and Reidemeister III moves — the images of the singularity submanifolds may
become momentarily tangent, and three may coincide for a single moment in time. Another
interesting move is that the suspensions of the codimension-2 two-dimensional singularities
can momentarily intersect suspensions of S[ 10 ][0], which is when these singularity points
move past a fold. There are also many interchange moves to change the temporal ordering
of codimension-2 singularities. We do not enumerate them here.

2.7 Classification of (0 + 1)-dimensional singularities
We now extend the work from Sections 2.4 to 2.6 to the case of singularities of manifolds
containing a codimension-1 submanifold, which we will pursue for the remainder of the
chapter. It should be said that the way we add rank conditions for a submanifold is to take
a submanifold in the jet bundle that lies over the given submanifold — a consequence to
this is that the codimension of a first-order singularity is normal bundle dimension plus the

Table 2.21: Classification of germs of (0 + 1)-dimensional singularities.

Type Codim.a Representative germ See:

S[ 0 0 ] 1 f ∗y1 = x1 Lemma 2.7.1
a The convention is that the codimension is with respect to the

manifold, not the submanifold.

Table 2.22: Classification of germs of (1 + 1)-dimensional singularities.

Type Codim. Representative germb See: Suspends

S[ 0 0
0 0 ] 1 f ∗y1 = x2

f ∗y2 = x1

Lemma 2.8.1 S[ 0 0 ]

S[ 0 0
1 0 ] 2 f ∗y1 = x1

f ∗y2 = x21 + x2

Lemma 2.8.2

S[ 0 1
0 0 ][ 0 0 ] 2 f ∗y1 = x1x2 + x22 +O(x)3

f ∗y2 = x1

Lemma 2.8.3

b The submanifold is parameterized by x1.
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S[ 0 0
0 0 ] S[ 0 1

0 0 ][0 0]

S[ 0 0
1 0 ]

Figure 2.10: Illustrations of the (1 + 1)-dimensional singularities from Table 2.22. This is
using the same convention as Figure 2.7, but the 1-dimensional submanifold is depicted in
green.

codimension of the submanifold.
In this section, we consider 0-dimensional submanifolds in a 1-manifold. In particular,

we consider generic germs f : R → R with a fixed 0-dimensional submanifold R0 ⊆ R in
the domain. As usual, let p = 0 ∈ R be the center of the germ, where p ∈ R0, and let
q = f(p) = 0. The classification is done up to Diffp(R) × Diffq(R) where the Diffp(R)
component leaves the submanifold invariant (which is trivially satisfied in the 0-dimensional
case).

The classification is easy. In general, we let S[ a b ] be the submanifold of J1(R,R) when
pulled back along the inclusion R0 ↪→ R, where a denotes the dropped rank of the differential
when restricted to R0 (only 0 is nontrivial) and b denotes the usual dropped rank; hence
S[ 0 b ] ⊆ S[b]. In particular, S[ 0 0 ] = α−1(R0)∩ S[0] and S[ 0 1 ] = α−1(R0)∩ S[1]. These are
submanifolds of codimensions 1 and 2, and the latter does not generically occur.

Lemma 2.7.1. If f is a S[ 0 0 ] singularity, then it is equivalent to a germ with

f ∗y1 = x1

Proof. The proof in Lemma 2.4.1 goes through; every element of Diffp(R) fixes R0.

2.8 Classification of (1 + 1)-dimensional singularities
In this section, we consider germs f : (R ⊆ R2)→ (R ⊆ R2) where R in the domain is con-
sidered to be a submanifold (and not a leaf of the product foliation). Let p = 0 ∈ R ⊆ R2 in
the domain and q = f(p) = 0. The classification is done up to Diffp(R2;R)×Diffq(R ⊆ R2)
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where Diffp(R2;R) indicates those elements of Diffp(R) that leave the submanifold R invari-
ant. While Diffp(R ⊆ R2) ⊆ Diffp(R2;R), this is a strict inclusion since diffeomorphisms do
not need to preserve any foliation of the submanifold’s tubular neighborhood. The classifi-
cation of germs is summarized in Table 2.22 and illustrated in Figure 2.10.

To define the first-order singularity types, let C = R and Σ = R2 in the domain to help
distinguish them from the codomain. The differential dfp is an element of Hom(TpΣ, TqR2),
and we consider the four images of dfp in the following diagram of hom sets:

Hom(TpC, TqR2) Hom(TpΣ, TqR2)

Hom(TpC, TqR2/TqR) Hom(TpΣ, TqR2/TqR)

The type S[ a cb d ] ⊆ S[ cd ] indicates that the images of dfp lie in the following submanifolds:

Homa(TpC, TqR2) Homc(TpΣ, TqR2)

Homb(TpC, TqR2/TqR) Homd(TpΣ, TqR2/TqR)

We think of the first column as coming from fiber bundles over C rather than over Σ. The
subset of those elements of Hom(TpΣ, TqR2) whose images lie in the above submanifolds
is a submanifold as well, and they assemble to form a submanifold of J1(Σ,R2) over C.
For jet transversality, we automatically have transversality in the horizontal direction, and
what remains is transversality in the vertical direction. Let Ka, Kb, Kc, Kd and La, Lb, Lc, Ld
respectively be the kernels and cokernels of the images of dfp, where the indices suggest
which images they correspond to. The second intrinsic derivative in this situation is a map

d2fp : TpC → Hom


Ka Kc

Kb Kd

,

La Lc

Lb Ld


Restricting a S[ cd ] submanifold to C yields a submanifold of one higher codimension, hence
only S[ 00 ] and S[ 10 ] (see Table 2.14) generically occur over the submanifold. For example, if
a = 1 (and thus b = 1), then the normal bundle would contain Hom(TpC,R2), so it would
be at least a codimension-3 phenomenon and generically not occur.

The generic first-order singular types are listed in Table 2.23. The codimensions are with
respect to Σ = R2, and the “representative dfp” column is from applying linear coordinate
changes that leave C = R invariant.

Lemma 2.8.1. If f is a singularity of type S[ 0 0
0 0 ], then it is equivalent to a germ with

f ∗y1 = x2

f ∗y2 = x1



CHAPTER 2. CLASSIFICATION OF SINGULARITIES 145

Proof. By the implicit function theorem, there is a function ψ : R2 → R such that, for all x1
and x2 in a neighborhood of 0, f2(ψ(x1, x2), x2) = x1. The change of variables

x1 = ψ(x1, x2)

x2 = x2

corresponds to an element of Diffp(R2;R), and hence we may assume f2(x) = x1. The map
x 7→ (f1(x2, x1), x2) is an element of Diffq(R ⊆ R2), and using its inverse to reparameterize
the codomain lets us assume f(x1, 0) = (0, x1) for all x1 in the domain. Hence, f itself is a
valid coordinate change for the domain, the inverse of which gives the result.

2.8.1 Type S[0 0; 1 0]

Following Table 2.23, we reparameterize such that the differential is

dfp : R2 → R2

v 7→
[
1 0
0 1

]
v

The normal bundle for the second intrinsic derivative over C is then

Hom


0 0

R1 R1

,

R2 0

R2 0

 = Hom(R1,R2)

Hence the second intrinsic derivative is

d2fp : R1 → Hom(R1,R2)

v 7→
(
w 7→ wT

[
∂20f2(p)

]
v
)

Surjectivity implies ∂20f2(p) ̸= 0.

Table 2.23: First-order types of (1 + 1)-dimensional singularities.

Type Representative dfp Codim.a Generic

S[ 0 0
0 0 ] [ 0 1

1 0 ] 1 ✓
S[ 0 0

1 0 ] [ 1 0
0 1 ] 2 ✓

S[ 0 1
0 0 ] [ 0 0

1 0 ] 2 ✓
S[ 1 1

1 0 ] [ 0 0
0 1 ] 3

a We give the codimension with respect to the manifold,
not the submanifold.
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Lemma 2.8.2. If f is a singularity of type S[ 0 0
1 0 ], then it is equivalent to a germ with

f ∗y1 = x1

f ∗y2 = x21 + x2

Proof. By Lemma 1.1.69, there are functions hij : R2 → R such that f2(x) = x2+h20(x)x
2
1+

h11(x)x1x2 + h02(x)x
2
2 with h20(p) ̸= 0. After a reparameterization, we may assume f2(x) =

x2+x
2
1+h02(x)x

2
2. Furthermore, the reparameterization with x1 = x1 and x2 = x2+h02(x)x

2
2

fixes R, and with it we may further assume f2(x) = x2 + x21. Note that the ideal (f1, f2) is
(x1, x2), hence by the Malgrange Preparation Theorem there exists some smooth function α
such that x1 = α(f1, f2). The reparameterization with y1 = α(y1, y2) and y2 = y2 gives the
desired form.

2.8.2 Type S[0 1; 0 0]

Using the parameterization like in Table 2.23, assume

dfp : R2 → R2

v 7→
[
0 0
1 0

]
v

The component of the normal bundle corresponding to the submanifold in this case is trivial,
so instead we start with this as a S[ 10 ] singularity. The normal bundle at p in this case is
Hom(R2,R1), hence the second intrinsic derivative is

d2fp : R2 → Hom(R2,R1)

v 7→
(
w 7→ wT

[
∂11f1(p) ∂02f1(p)

]
v
)

We have both R (from the submanifold’s tangent bundle) and R2 available for restriction,
hence we have a natural splitting for R2. Let S[ 0 1

0 0 ][ a b ] denote the subtypes where a is the
dropped rank from restricting to R and b is the dropped rank from restricting to R2. Since
S[ 0 1

0 0 ][ a b ] ⊆ α−1(R) ∩ S[ 10 ][b], by consulting Table 2.15 only b = 0 generically occurs, and
S[ 0 1

0 0 ][ a 0 ] has codimension at least 2 in J2(R2,R2).
If a = 1, then ∂11f1(p) = 0 implies the third intrinsic derivative would have a 1-

dimensional codomain, giving a total codimension of 3. This does not generically occur,
hence we may assume a = b = 0.

Lemma 2.8.3. If f is a singularity of type S[ 0 1
0 0 ][ 0 0 ], then it is equivalent to a germ with

f ∗y1 = x1x2 + x22 +O(x)3

f ∗y2 = x1
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S
[
0 0
1 0
0 0

]
[1] S

[
0 1
0 0
0 0

]
[ 0 0; 0 ]

S
[
0 1
0 0
0 0

]
[ 0 0; 1 ] S

[
1 1
1 0
0 0

]
[ 00 ]

S
[
0 1
1 1
0 0

]
[0] S

[
0 1
1 1
0 0

]
[0]

Figure 2.11: Illustrations of the (2 + 1)-dimensional singularities from Table 2.24. This is
using the same convention as Figure 2.10, and each group of three diagrams depicts the
t = −1, t = 0, and t = 1 movie frames.

Proof. By the implicit function theorem, we may assume f2(x) = x1. The above considera-
tions, and further reparameterizations, let us assume the Hessian of f1 is of the form

Hf1(p) =

[
0 1
1 2a

]
with a ∈ {−1, 1}. After negating variables as needed, this yields

f ∗y1 = x1x2 + x22 + h(x1, x2)

f ∗y2 = x1

for some h ∈ m4
p.

2.9 Classification of (2+ 1)-dimensional Cerf singularities
In this section, we now consider germs of a two-dimensional submanifold in R3 with codomain
(R ⊆ R2 ⊆ R3) for a three-dimensional decomposition. Like in Section 2.6, since we are
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wanting to derive relations between surfaces, what we are actually considering are curves C
in a two-manifold Σ and then studying generic germs (C ⊆ Σ) × I → (R ⊆ R) × I that
commute with the projection to I.

We again work with germs up to Cerf equivalence. Thinking of the curve as R ⊆ R2,
then we are considering germs f : (R× 0× R ⊆ R3) → (R ⊆ R2), implicitly extended with
f3(x) = x3. These are classified up to the action of Diffp(R2 ⊆ R3;R × 0 × R) × Diffq(R ⊆
R2 ⊆ R3), with p and q as usual. The results are summarized in Table 2.24 and Figure 2.11.

Valid reparameterizations need much more care: we need to ensure that we preserve the
R2 ⊆ R3 product foliation in the domain while also sending R×0×R to itself. In particular,

Table 2.24: Classification of germs of (2 + 1)-dimensional Cerf singularities.

Type Codim. Representative germa See: Suspendsb

S
[
0 0
0 0
0 0

]
1 f ∗y1 = x2

f ∗y2 = x1

Lemma 2.9.1 S[ 0 0 ], S[ 0 0
0 0 ]

S
[
0 0
1 0
0 0

]
[0] 2 f ∗y1 = x1

f ∗y2 = x21 + x2

Lemma 2.9.2 S[ 0 0
1 0 ]

S
[
0 0
1 0
0 0

]
[1] 3 f ∗y1 = x1

f ∗y2 = x2 + x1x3 + x31 +O(x)4
Lemma 2.9.3

S
[
0 1
0 0
0 0

]
[ 0 0; 0 ] 2 f ∗y1 = x1x2 + x22 +O(x)3

f ∗y2 = x1

Lemma 2.9.4 S[ 0 1
0 0 ][ 0 0 ]

S
[
0 1
0 0
0 0

]
[ 1 0; 0 ] 3 f ∗y1 = x1x2 + x22x3 + x32 +O(x)4

f ∗y2 = x1

Lemma 2.9.5

S
[
0 1
0 0
0 0

]
[ 0 0; 1 ] 3 f ∗y1 = x2x3 + x22 + x21x2 +O(x)4

f ∗y2 = x1

Lemma 2.9.6

S
[
1 1
1 0
0 0

]
[ 00 ] 3 f ∗y1 = x21 +O(x)4

f ∗y2 = x2 + x1x3 + x21 + x31

Lemma 2.9.7

S
[
0 1
1 1
0 0

]
[0] 3 f ∗y1 = x1 +O(x)3

f ∗y2 = x21 + x1x2 + ax22 + x1x3 +O(x)3
Lemma 2.9.8

a The submanifold is parameterized by x1, and the “time” parameter is x3. Recall we assume f∗y3 = x3.
b See Tables 2.21 and 2.22.
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if φ ∈ Diffp(R2 ⊆ R3;R× 0× R), then there are functions ψ1, φ2, ψ3 such that

φ1(x1, x2, x3) = ψ1(x1, x2, x3)

φ2(x1, x2, x3) = ψ2(x1, x2, x3)

φ3(x1, x2, x3) = ψ3(x3)

and with ψ2(x1, 0, x3) = 0 for all x1 and x3 in the domain.
The first-order singularity types are defined like they were in Section 2.8. We define

S
[
a c
b d
0 0

]
for the dropped ranks of f , where a, b, c, and d play a similar role as they did in

S[ a cb d ], where the first column is for restrictions to submanifold C, but now the second is for
restrictions to the leaf Σ of the product foliation of Σ × I. In particular, we consider the
images of the restriction of dfp to TpΣ in

Hom(TpC, TqR2) Hom(TpΣ, TqR2)

Hom(TpC, TqR2/TqR) Hom(TpΣ, TqR2/TqR)

This is defined so that S
[
a c
b d
0 0

]
⊆ S

[
c
d
0

]
. As we have been doing for Cerf singularities, the

final row of 0’s is to distinguish these from the (1 + 1)-dimensional singularities.
The first-order singularity types are summarized in Table 2.25. We start the enumeration

by using the generic types from Table 2.17, none of which can be excluded by codimension
when intersected with α−1(C×R). Codimensions in the table are one more than the dimen-
sions of the normal bundles for the second intrinsic derivatives over C × R.

Lemma 2.9.1. If f is a singularity of type S
[
0 0
0 0
0 0

]
, then it is equivalent to a germ with

f ∗y1 = x2

f ∗y2 = x1

Proof. An argument similar to the one in Lemma 2.8.1 applies: we apply a coordinate change
to the codomain so we may assume that f(x1, 0, x3) = (0, x1, x3), and then use f itself as a
coordinate change for the domain.

2.9.1 Type S[0 0; 1 0; 0 0]

As in Table 2.25, for a S
[
0 0
1 0
0 0

]
singularity there is a linear change of coordinates such that

the differential has the matrix [
1 0 0
0 1 0

]
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The normal bundle in this case is Hom(R1,R2), hence the second intrinsic derivative is

d2f : R× 0× R→ Hom(R1,R2)

v 7→
(
w 7→ wT

[
∂200f2(p) ∂101f2(p)

]
v
)

Define the subtypes S
[
0 0
1 0
0 0

]
[r] where r is the dropped rank when restricted to R1.

Lemma 2.9.2. If f is a singularity of type S
[
0 0
1 0
0 0

]
[0], then it is equivalent to a germ with

f ∗y1 = x1

f ∗y2 = x21 + x2

Proof. For this subtype, there is a change of coordinates such that the matrix for d2fp is [ 2 0 ].
The kernel of d2fp is TpS

[
0 0
1 0
0 0

]
and is equal to 0× 0× R, thus S

[
0 0
1 0
0 0

]
(f) is a 1-dimensional

submanifold of R× 0×R. Let γ : R→ R× 0×R be a parameterization of this submanifold
with γ3(t) = t for all t. Reparameterizing with x1 = x1 + γ1(x3), x2 = x2, and x3 = x3, we
may assume the singularity submanifold is 0×0×R exactly. Furthermore, reparameterizing
with

y1 = y1 − f1(0, 0, y3)
y2 = y2 − f2(0, 0, y3)
y3 = y3

we may assume that f(0, 0, x3) = (0, 0, x3) for all x3 in the domain. Rescaling x1 using
a function of x3, we may assume d2f(0,0,x3) has the matrix [ 2 0 ] for all x3 in the domain.

Table 2.25: First-order types of (2 + 1)-dimensional singularities.

Type Representative dfp Codim.a Generic

S
[
0 0
0 0
0 0

]
[ 0 1 0
1 0 0 ] 1 ✓

S
[
0 0
1 0
0 0

]
[ 1 0 0
0 1 0 ] 2 ✓

S
[
0 1
0 0
0 0

]
[ 0 0 0
1 0 0 ] 2 ✓

S
[
1 1
1 0
0 0

]
[ 0 0 0
0 1 0 ] 3 ✓

S
[
0 1
1 1
0 0

]
[ 1 0 0
0 0 0 ] 3 ✓

S
[
1 1
1 1
0 0

]
[ 0 1 0
0 0 0 ] 4

a We give the codimension with respect to Σ× I.
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Applying Lemma 1.1.69 to f2 as a function of just x1 and x2, then since f2(0, 0, x3) = 0,
there are functions hij : R3 → R such that f2(x) = x2+h20(x)x

2
1+h11(x)x1x2+h02(x)x

2
2. By

a coordinate change, we may assume f2(x) = x2+x
2
1+h02(x)x

2
2. The result is from adapting

the rest of the argument from Lemma 2.8.2.

Lemma 2.9.3. If f is a singularity of type S
[
0 0
1 0
0 0

]
[1], then it is equivalent to a germ with

f ∗y1 = x1

f ∗y2 = x2 + x1x3 + x31 +O(x)4

Proof. For this subtype, we may assume the matrix for d2fp is [ 0 1 ]. We now consider the
third intrinsic derivative. Restricted to R1, the kernel is R1 and the cokernel is Hom(R1,R2) ≈
R, so we get

d3fp : R1 → R
v 7→ ∂300f2(p)v

Hence, since this is surjective we may assume ∂300f2(p) ̸= 0, and by a reparameterization
that ∂300f2(p) = 6.

By Lemma 1.1.69 there are functions hijk : R3 → R such that

f2(x) = x2 +
∑

i+j+k=2

hijk(x)x
i
1x

j
2x

k
3

such that h200(p) = 0 and h101(p) = 1. Reparameterizing with

x1 = h101(x)x1 x2 =

1 +
∑

i+j+k=2
j>0

hijk(x)x
i
1x

j−1
2 xk3

x2 x3 = x3

then we may assume

f2(x) = x2 + h200(x)x
2
1 + x1x3 + h002(x)x

2
3.

Like usual, we may assume h002(p) = 0 by a coordinate change with y2 = y2 − h002(p)y
2
3.

Thus, there are functions hijk : R3 → R such that

f2(x) = x2 + x1x3 + h300(x)x
3
1 + h210(x)x

2
1x2 + h201(x)x

2
1x3

+ h102(x)x1x
2
3 + h012(x)x2x

2
3 + h003(x)x

3
3

Again, we may reparameterize to eliminate terms with a factor of x2 or x1x3 beyond the first
two, and we may assume h003(p) = 0. We obtain

f2(x) = x2 + x1x3 + h300(x)x
3
1 + h003(x)x

3
3.

Since h300(p) = 1, this is f2(x) = x2 + x1x3 + x31 +O(x)4.
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2.9.2 Type S[0 1; 0 0; 0 0]

As in Table 2.25, for a S
[
0 1
0 0
0 0

]
singularity there is a linear change of coordinates such that

the differential has the matrix [
0 0 0
1 0 0

]
Since f is locally an immersion when restricted to the submanifold (like in Section 2.8.2),
we may as well consider this first as a S

[
1
0
0

]
singularity. The normal bundle is Hom(R2,R1),

hence the second intrinsic derivative is

d2fp : R3 → Hom(R2,R1)

v 7→
(
w 7→ wT

[
∂110f1(p) ∂020f1(p) ∂011f1(p)

]
v
)

Define subtypes S
[
0 1
0 0
0 0

]
[ r s; t ] where r = drk d2fp|R2 , s = drk d2fp|R12 , and t = drk d2fp|R1 .

This notation is designed so that S
[
0 1
0 0
0 0

]
[ r s; t ] ⊆ S

[
1
0
0

]
[ r s ]. Since R1 = TpC and R2 split

R12 = TpΣ, the s value is determined by r and t. The possibilities are listed in Table 2.26.
Using the implicit function theorem like before, we may reparameterize x1 to let us

assume f2(x) = x1.

Lemma 2.9.4. If f is a singularity of type S
[
0 1
0 0
0 0

]
[ 0 0; 0 ], then it is equivalent to a germ

with

f ∗y1 = x1x2 + x22 +O(x)3

f ∗y2 = x1

Proof. There is a linear reparameterization such that, for some constants aijk ∈ R,

f1(x) = a200x
2
1 + x1x2 + a101x1x3 + x22 + a011x2x3 + a002x

2
3 +O(x)2.

Table 2.26: Second-order types for S
[
0 1
0 0
0 0

]
.

Type Representative d2fp Addl. Codim. Codim.a Generic

S
[
0 1
0 0
0 0

]
[ 0 0; 0 ] [ 1 2 0 ] 0 2 ✓

S
[
0 1
0 0
0 0

]
[ 1 0; 0 ] [ 1 0 0 ] 1 3 ✓

S
[
0 1
0 0
0 0

]
[ 0 0; 1 ] [ 0 2 ∗ ] 1 3 ✓

S
[
0 1
0 0
0 0

]
[ 1 1; 1 ] [ 0 0 1 ] 2 4

a We give the codimension with respect to Σ× I.
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Reparameterizing with y1 = y1 − a200y22 − a101y2y3 − a002y23 lets us assume

f1(x) = x1x2 + x22 + a011x2x3 +O(x)2.

The coordinate change with x1 = x1 + a011x3 and y1 = y1 − a011y3 gives the result.

Lemma 2.9.5. If f is a singularity of type S
[
0 1
0 0
0 0

]
[ 1 0; 0 ], then it is equivalent to a germ

with

f ∗y1 = x1x2 + x22x3 + x32 +O(x)4

f ∗y2 = x1

Proof. Restricted to R2, the kernel of d2fp is R2 and the cokernel is Hom(R2,R1), and
restricted to R1 both of these are trivial. Hence, the normal bundle for calculating d3fp is
Hom(R2,Hom(R2,R1)) ∼= R. We have

d3fp : R3 → R
v 7→ ∂021f1(p)v

hence ∂021f1(p) ̸= 0.
We may also consider f as a S

[
1
0
0

]
[ 1 0 ] singularity. Consulting Table 2.19, by considera-

tion of codimension it must be a S
[
1
0
0

]
[ 1 0 ][0] singularity. To make use of this, we calculate

d3fp for this type. The normal bundle is the same, but now

d3fp : 0× R2 → R
v 7→

[
∂030f1(p) ∂021f1(p)

]
v

The subtype S
[
1
0
0

]
[ 1 0 ][0] corresponds to the dropped rank of the restriction of this to R2,

thus ∂030f1(p) ̸= 0. By scaling the coordinate variables, we may assume ∂021f1(p) = 4 and
∂030f1(p) = 6.

Using reparameterizations similar to Lemma 2.9.4, then by Lemma 1.1.69 there are con-
stants aijk : R3 → R such that

f1(p) = x1x2 + x22x3 + x32 +
∑

i+j+k=3

aijkx
i
1x

j
2x

k
3 +O(x)4

where a021 = 0 and a030 = 0. A reparameterization with y1 = y1 −
∑

i+k=3 ai0ky
i
2x

k
3 lets us

assume that

f1(p) = x1x2 + x22x3 + x32 +
∑

i+j+k=3
j>0

aijkx
i
1x

j
2x

k
3 +O(x)4.
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Using the change of coordinates

x1 = x1 x2 = x2

1 +
∑

i+j+k=3
i>0,j>0

aijkx
i−1
1 xj−1

2 xk3

 x3 = x3

we may furthermore assume that

f1(p) = x1x2 + x22x3 + x32 + a012x2x
2
3 +O(x)4.

Lastly, the coordinate change

x1 = x1 − a012x23 x2 = x2 x3 = x3

y1 = y1 y2 = y2 + a012y
2
3 y3 = y3

gives the desired result.

Lemma 2.9.6. If f is a singularity of type S
[
0 1
0 0
0 0

]
[ 0 0; 1 ], then it is equivalent to a germ

with

f ∗y1 = x2x3 + x22 + x21x2 +O(x)4

f ∗y2 = x1

Proof. In this type, the second intrinsic derivative gives ∂110f1(p) = 0 and ∂020f1(p) ̸= 0.
The second intrinsic derivative also needs to be surjective restricted to C × R, which gives
∂011f1(p) ̸= 0. Passing to the third intrinsic derivative, we have a map

d3fp : TpC → Hom(ker d2fp|TpC , coker d2fp|TpC)

which computes ∂210f1(p), and hence generically ∂210f1(p) ̸= 0. Rescaling variables, ∂020f1(p) =
2, ∂011f1(p) = 1, and ∂210f1(p) = 2. After the usual reparameterizations, the can see that
the 2-jet of f1 is

f1(p) = x2x3 + x22 +O(x)3.

There are constants aijk ∈ R with a210 = 0 such that, after a reparameterization like in
Lemma 2.9.5,

f1(p) = x2x3 + x22 + x21x2 +
∑

i+j+k=3
j>0

aijkx
i
1x

j
2x

k
3 +O(x)4.

The change of coordinates

y1 = y1 − a120y1y2 − a021y1y3 y2 = y2 y3 = y3
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lets us furthermore assume that

f1(p) = x2x3 + x22 + x21x2 + a030x
3
2 + a012x2x

2
3 + a111x1x2x3 +O(x)4,

and with x1 = x1 − 1
2
a111x3 and y2 = y2 +

1
2
a111y3, that

f1(p) = x2x3 + x22 + x21x2 + a030x
3
2 + a012x2x

2
3 +O(x)4.

Then, with x2 = x2(1 + a012x3), that

f1(p) = x2x3 + x22 + x21x2 + a030x
3
2 + a021x

2
2x3 +O(x)4.

Lastly, the change of coordinates

x1 = x1 x2 = x2(1− 1
2
a030(x2 − x3)− a021x3) x3 = x3

y1 = y1 + (a021 − 1
2
a030)y3 y2 = y2 y3 = y3

gives the desired form.

2.9.3 Type S[1 1; 1 0; 0 0]

As in Table 2.25, for an S
[
1 1
1 0
0 0

]
singularity there is a linear change of coordinates such that

the differential has the matrix [
0 0 0
0 1 0

]
The normal bundle at p for the second intrinsic derivative, is

Hom


R1 R1

R1 R1

,

R12 R1

R2 0

 = Hom(R1,R2) ≈ R2

so we write the second intrinsic derivative as

d2fp : R× 0× R→ R2

v 7→
[
∂200f1(p) ∂101f1(p)
∂200f2(p) ∂101f2(p)

]
v

The normal bundle at p canonically splits as Hom(R1,R2) ∼= Hom(R1,R1) ⊕ Hom(R1,R2),
and we define subtypes S

[
1 1
1 0
0 0

]
[ ab ] according to the following scheme:

R1[ ]
Hom(R1,R1) ∗
Hom(R1,R2) ∗
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Since S
[
1 1
1 0
0 0

]
is already codimension-3, the only subtype that generically occurs is S

[
1 1
1 0
0 0

]
[ 00 ].

Hence, ∂200f1(p) ̸= 0 and ∂200f2(p) ̸= 0. We may rescale variables so that ∂200f1(p) = 2 and
∂200f2(p) = 2. By the usual changes of coordinates, we may assume ∂110f1(p) = 0 and
∂101f1(p) = 0. Since d2fp is surjective, then ∂101f2(p) ̸= 0, which after rescaling variables we
may assume is 1.

Just like for Lemma 2.3.6, along R × 0 × R we have another third intrinsic derivative
from using the cokernel of d2fp|TpR. Projecting to the cokernel for this restriction can be
represented by v 7→ [∂200f1(p) − ∂200f2(p)]v, and then the third intrinsic derivative for this
is a map

Tp(R× 0× 0) 7→ R
v 7→

[
∂300f1(p)− ∂300f2(p)

]
v

and so for codimension reasons we need ∂300f1(p) ̸= ∂300f2(p).

Lemma 2.9.7. If f is a singularity of type S
[
1 1
1 0
0 0

]
[ 00 ], then it is equivalent to a germ with

f ∗y1 = x21 +O(x)4

f ∗y2 = x2 + x1x3 + x21 + x31 +O(x)4

Proof. This is a matter of clearing out terms to the fourth order, given what we have so far
deduced about the 3-jet.

2.9.4 Type S[0 1; 1 1; 0 0]

As in Table 2.25, for an S
[
0 1
1 1
0 0

]
singularity there is a linear change of coordinates such that

the differential has the matrix [
1 0 0
0 0 0

]
The normal bundle at p for the second intrinsic derivative, is

Hom


0 R2

R1 R12

,

R2 R2

R2 R2

 = Hom(R12,R2) ≈ R2

so we write the second intrinsic derivative as

d2(f |R×0×R)p : Tp(R× 0× R)→ Hom(R12,R2)

v 7→
[
∂200f2(p) ∂101f2(p)
∂110f2(p) ∂011f2(p)

]
v
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We can restrict this to R1 and Hom(R1,R2), and so ∂200f2(p) ̸= 0 due to codimensions. We
can clear out ∂101f2(p) using a Morse-like substitution — this may introduce some first-order
t terms in f1 but these can be eliminated by a Cerf reparameterization.

We also have a second intrinsic derivative for this as a S
[
1
1
0

]
singularity:

d2fp : TpR3 → Hom(R12,R2)

v 7→
(
w 7→ wT

[
∂200f2(p) ∂110f2(p) ∂101f2(p)
∂110f2(p) ∂020f2(p) ∂011f2(p)

]
v

)
For codimension reasons, this must be a S

[
1
1
0

]
[ 0 0
0 0 ], so ∂020f2(p) ̸= 0 and the matrix[

∂200f2(p) ∂110f2(p)
∂110f2(p) ∂020f2(p)

]
is non-singular. If it were the case that ∂110f2(p) = 0 or ∂011f2(p) = 0, then the tangent
space to S

[
1
1
0

]
(f), which is ker d2fp, would contain R1 or R3, and so we could take a third

intrinsic derivative for the R×0×R submanifold, which would exceed our codimension limit,
and so generically ∂110f2(p) ̸= 0 and ∂012f2(p) ̸= 0.

For sake of having a symbol, we will write S
[
0 1
1 1
0 0

]
[0] for this type.

Lemma 2.9.8. If f is a singularity of type S
[
0 1
1 1
0 0

]
[0], then it is equivalent to a germ with

f ∗y1 = x1 +O(x)3

f ∗y2 = x21 + x1x2 + ax22 + x1x3 +O(x)3

for some a ∈ {±1}.

Proof. This is a matter of clearing out terms to the third order, given what we have so far
deduced about the 2-jet.

2.9.5 Multijet singularities

The multijet singularities of surfaces with embedded curves have no surprises. We still have
all the multijet singularities for surfaces without embedded curves, of course, but now we
have moves for having codimension-2 singularities pass across images of the curves as well
as Reidemeister II and III moves for images of curves and between images of curves and the
fold curves.



158

Chapter 3

Presentations of cobordism categories

The goal of this chapter is to provide presentations of cobordism categories using the clas-
sifications of singularities we have carried out in Chapter 2. We first explain how to obtain
generators and relations for the cobordism 2-category of surfaces with embedded curves as
a monoidal 2-category. We then explain how to adapt the chambering graphs and foams
from [SP09] to give a presentation as a symmetric monoidal 2-category. In principal, one
could study 3D Morse functions of surfaces to obtain a presentation as a symmetric monoidal
2-category in a natural way, but a tradeoff is that we would need to work out the Cerf theory
of the multijet singularities — maps R2 → R3 can generically have curves of transverse dou-
ble points, and these have associated Roseman-like moves, but with the added complication
that these double point curves are generic with respect to the R3 foliation.

The focus on this chapter is merely to give a presentation of these categories. While we
will cover some theory to make special use of our strict adherence to classifing singularities
with respect to the relevant diffeomorphism groups, we do not include the theory of 2-
categories and their presentations, and instead we direct the reader to the account in [SP09]
for symmetric monoidal 2-categories. We also mention [Dor18] for the general principle of
decompositions using n-cubes with a “globularity condition” — globular sets by themselves
have a deficiency where, for example, horizontal composition of 2-cells is indistinguishable
from whiskering the 2-cells and then vertically composing. By working with such globular
cubes, we can be sure that, if needed for coherency arguments, explicit reassociation occurs
(such reassociation is the role of the interchange moves).

3.1 Globular sets
Part of the data of a category is a directed graph, and any generalization of categories to
higher categories needs a generalization of directed graphs to combinatorial structures with
cells of higher dimensions. Simplicial sets are one option, where an n-cell is an n-simplex.
Globular sets are another, where an n-cell is an n-globe, which is best thought of as being
the combinatorial model of a closed n-ball given a CW structure with two k-cells for all
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0 ≤ k < n and a single n-cell, but where for each pair of k-cells one is the “source” and the
other is the “target.” This structure naturally lends itself to composition operations. We
draw the following material from [Lei03].

Definition 3.1.1. The globe category G is the category whose objects are denoted by [n]
for all n ∈ N and whose morphisms are generated by σn : [n]→ [n+1] and τn : [n]→ [n+1]
for all n ∈ N, subject to the relations, for all n ∈ N,

σn+1 ◦ σn = τn+1 ◦ σn
σn+1 ◦ τn = τn+1 ◦ τn

That is, both σn and τn equalize the pair of maps σn+1 and τn+1. ♢

Definition 3.1.2. A globular set X is a functor Gop → Set. The category of globular sets
gSet is the category Fun(Gop, Set).

We write Xn for the set X([n]) of n-cells of X, and we write s = X(σ) and t = X(τ) for
the source and target maps, respectively:

s : Xn+1 → Xn

t : Xn+1 → Xn.

We say X is an n-globular set if Xi = ∅ for all i > n. ♢

Example 3.1.3. The standard n-globe Gn is the globular set defined by

Gn
0 = {e+0 , e−0 } . . . Gn

n−1 = {e+n−1, e
−
n−1} Gn

n = {en}
with s, t : Gn

i+1 → Gn
i defined by s(x) = e+i and t(x) = e−i for all 1 ≤ i < n and x ∈ Gn

i+1.
The cells in Gn are in correspondence with the cells in the closure an n-dimensional cell of
the n-fold suspension of S0 as a CW complex.

Another characterization of this globular set Gn is as the functor HomG(−, [n]). Mor-
phisms in G are uniquely represented in form id, σk, or τ k with k > 1, and so HomG([i], [n])
has two elements if i < n, one if i = n, and zero if i > n. This means that if X is a globular
set, then by the Yoneda lemma

Hom(Gn, X) ≈ Hom(HomG(−, [n]), X) ≈ Xn.

That is to say, n-cells of X are in one-to-one correspondence to maps from Gn to X. ♢

Example 3.1.4. Every globular set can be reconstructed by gluing together its contituent
globes. This is due to the sheaf version of Lemma 1.1.15. If X is a globular set, then its
category of elements el(X) has as objects pairs ([n], x) for x ∈ Xn, and as morphism sets

el(X)(([n], x), ([m], y)) = {f ∈ G([m], [n]) | X(f)x = y}.
Then

X ≈ colimgSet
([n],x)∈el(X)op G

n,

where Gn is the standard n-globe. One can also geometrically realize a globular set in this
way by replacing Gn in the colimit by, for example, a CW complex with the same cell
structure and taking the colimit in the category of CW complexes. ♢
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3.2 Manifolds with faces and halated manifolds
In foliated R2, a subset S ⊆ R2 is a 2-cube if there is some g ∈ Diff(R ⊆ R2) such that
S = g[0, 1]2. Our basic strategy for decomposing a generic function f : Σ → [0, 1]2 with
[0, 1]2 foliated is to find some decomposition of [0, 1]2 into 2-cubes such that each pre-image
is a manifold with corners that satisfy a “globularity condition,” where the {0, 1} × [0, 1]
sides could, in principal, be crushed to {0, 1} × {0}, which makes them well-suited for a
2-categorical (rather than a double categorical) decomposition. In this section we go into
detail about the version of manifolds with corners we use.

Let us review how manifolds with faces are defined in the literature. Recall that an
n-manifold with corners is a second-countable Hausdorff space M locally modeled on the
principal orthant Rn

≥0 ⊆ Rn such that transition maps are the restrictions of elements of
diff∞(Rn) to Rn

≥0 (that is, they are local homeomorphisms of Rn
≥0 that extend to diffeo-

morphisms on an open neighborhood in Rn). For each x ∈ M , we define c(x) ∈ N to be
the number of coordinates in φ(x) that are zero, where φ : M →◦ Rn

≥0 is any chart with
x ∈ domφ, and this number does not depend on φ. A connected face of M is the closure of
a connected component of {x ∈ X | c(x) = 1}, and a face is a union of disjoint connected
faces. The global structure of manifolds with corners is not generally well-behaved since a
connected face might be self-incident. Introduced in [J6̈8], a manifold with faces M is a
manifold with corners such that each x ∈M belongs to c(x) different connected faces. Every
face of a manifold with faces is itself a manifold with faces. Adding additional structure to
this definition, a ⟨k⟩-manifold for k ∈ N is a manifold with faces M along with an ordered
k-tuple (M0, . . . ,Mk−1) of faces such that M0 ∪ · · · ∪Mk−1 contains every face of M and for
all i ̸= j, Mi ∩Mj is a (possibly nonempty) face of both Mi and Mj. These were noticed to
be useful in [Lau00] for the cobordism theory of manifolds with corners, and they were put
to use in [LP08] and [Mor07] for extended bordism categories.

In our variant, we wish to (1) build horizontal and vertical faces into the definition and
(2) use manifold germs so that gluing along these faces do not require any arbitrary choices.
We now continue with definitions.

Let R≥0 = {x ∈ R | x ≥ 0} and n ∈ N. Each subset f ⊆ {1, . . . , n} defines a subspace
Hf = Span{ei | i ∈ f}, and the intersection Hf ∩Rn

≥0 is the f -face of Rn
≥0. Each x ∈ Rn

≥0 is
associated to the face fx = {i ∈ N | 1 ≤ i ≤ n and xi ̸= 0}.

Consider the pseudogroup Γn≥0 of Rn that is the sub-pseudogroup of diff∞(Rn) consisting
of those local diffeomorphisms φ : Rn →◦ Rn such that, for all x ∈ domφ,

1. x ∈ Rn
≥0 if and only if φ(x) ∈ Rn

≥0, and

2. for all f ⊆ {1, . . . , n}, if x ∈ Hf , then φ(x) ∈ Hf .

Suppose M is a manifold with Γn≥0 structure. Let core(M) ⊆ M consist of those points
x ∈ M for which there exists a chart φ : M →◦ Rn with x ∈ domφ such that φ(x) ∈ Rn

≥0,
a property that does not depend on the choice of φ. For x ∈ core(M), we let fx be fφ(x),
where φ is once again a chart with x ∈ domφ.
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Such manifolds have, for each f ⊆ {1, . . . , n}, a closed set Mf = {x ∈ core(M) | fx = f}.
The manifold with corners core(M) is a manifold with faces and furthermore an ⟨n⟩-manifold
when using the tuple of faces (M{1,...,n}−i})

n
i=1.

Definition 3.2.1. Let n ∈ N, and consider the category of manifolds with Γn≥0 structures.
For f ⊆ {0, . . . , n}, a halated (f, n)-manifold1 is a smooth manifold germ (M ′,N (M ′

f )) for
M ′ a manifold with Γn≥0 structure. When the ambient dimension is unambiguous, we call
this a halated f -manifold, or when f = {1, . . . , n} we call this a halated n-manifold.

If M is a halated f -manifold represented by (M ′,N (M ′
f )), for each f ′ ⊆ f let Mf ′ be the

halated f ′-manifold (M ′,N (M ′
f ′)), called the f ′-face of M . There is a canonical inclusion

Mf ′⊆f :Mf ′ ↪→Mf induced by the identity on M ′.
A diffeomorphism of halated f -manifolds is an isomorphism of the smooth manifold germs

that is representable by Γn≥0 diffeomorphisms. Put another way, (M,N (Mf )) is diffeomor-
phic to (N,N (Mg)) if there exist open neighborhoods U ⊇ Mf and V ⊇ Mg and a Γn≥0

diffeomorphism f : U → V such that f(Mf ) =Mg. ♢

Remark 3.2.2. Suppose f ⊆ {1, . . . , n} and M is a halated f -manifold. There is a well-
defined (n − |f |)-dimensional normal bundle to M by taking the smooth manifold germ
(M ′,N (M ′

f )) for M and computing the normal bundle to M ′
f in M ′. The normal bundle is

trivial, trivialized by the tangent spaces of each H{i} for i ̸∈ f at M ′
f . ■

Definition 3.2.3. For M a halated f -manifold represented by (M ′,N (M ′
f )), let core(M) =

M ′
f , which is the forgetful functor from halated manifolds to C∞ manifolds. ♢

This extra information in a halation is unique up to noncanonical diffeomorphism as the
following lemma shows:

Lemma 3.2.4. Suppose that f ⊂ {1, . . . , n}, that M and N are halated f -manifolds, and
that h : core(M) → core(M) is a diffeomorphism such that c(f(x)) = c(x) for all x ∈ M .
Then M and N are diffeomorphic.

Proof. Represent M as (M ′,N (M ′
f )) and N as (N ′,N (N ′

f )). Both core(M ′) and core(N ′)
are ⟨n⟩-manifolds, and by [Lau00] there exists a collar neighborhood in the following sense.
For each s ⊂ t ⊆ {1, . . . , n} there exists an embedding

cs⊂t : (Rn
≥0)sc ×M ′

s → (Rn
≥0)tc ×M ′

t

with the property that cs⊂t|(Rn
≥0)tc×M ′

s
is the inclusion map id×M ′

s⊆t, and furthermore the
family of all these embeddings is functorial. The vector field integration argument that
produces these can be extended to provide a bicollar neighborhood of core(M ′) in M ′. By
taking such a bicollar neighborhood for N ′ as well, we can extend the diffeomorphism h into
some neighborhoods of M ′

f and N ′
f .

1“Halated” as in “with a halo.”
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Definition 3.2.5. Suppose M is a halated (f,m)-manifold and N is a halated (g, n)-
manifold, with M represented by (M ′,N (M ′

f )) and N by (N ′,N (N ′
g)). Let f ⊔ g ⊆

{1, . . . ,m+n} denote the set f ∪{i+m | i ∈ g}. We define M ×N to be (M ′×N ′,N (M ′
f ×

N ′
g)), which is a halated (f ⊔ g,m+ n)-manifold. ♢

Example 3.2.6. We give the unit interval I = [0, 1] the structure of a halated 1-manifold.
The interval has the set {0, 1} as its ∅-face. Then, for n ∈ N, we have In as a halated
({1, . . . , n}, n)-manifold. For example, I2 is a halated 2-manifold with four faces (the top
face being I2 itself):

Each of these pictures should be regarded as being manifold germs in R2. ♢

Definition 3.2.7. A globular halated ({1, . . . , k}, n)-manifold is comprised of the following
inductively defined data:

• A halated ({1, . . . , k}, n)-manifold M and a family of halated (f, n − 1)-manifolds
M◦(f) for all f ⊊ {1, . . . , k − 1}.

• A decomposition of the faceM{1,...,k−1} into a disjoint union of globular halated ({1, . . . , k−
1}, n)-manifolds sM and tM , respectively called the source and target of M .

• For all f ′ ⊆ f ⊆ {1, . . . , k − 1} an embedding M◦(f ′) ↪→ M◦(f) of halated manifolds
such that the embeddings are functorial.

• For all f ⊊ {1, . . . , k−1} a diffeomorphism hf :M
◦(f)×I →Mf , such that hf (M◦(f)×

[0, 1/2)){1,...,k−1} is in sM and hf (M◦(f)× (1/2, 1]){1,...,k−1} is in tM , and furthermore
that for all f ′ ⊆ f ⊆ {1, . . . , k − 1} these maps fit into a commutative diagram

M◦(f ′)× I Mf ′∪{k}

M◦(f)× I Mf∪{k}

hf ′

hf
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We call each collapse face Mf∪{k} a suspension of M◦(f) and each M◦(f) a collapse of
Mf∪{k}.2 We call the maps hf the collapse diffeomorphisms. ♢

Example 3.2.8. The halated manifold In is globular, as illustrated in the following diagrams
for I2 and I3.

A sort of picture to keep in mind is a foliation-respecting singularity type:

This, more precisely, is a globular halated manifold with an embedded codimension-1 sub-
manifold. The submanifold itself is a globular halated manifold as well, whose faces are the
intersections with the faces of I3. ♢

Remark 3.2.9. Globular halated n-manifolds are like globes in that sources and targets satisfy
ssM = stM and tsM = ttM . The data also allows one to crush faces in the I direction of
each collapse diffeomorphisms. Crushed globes have been used for globular set description of
cobordisms, see for example pinched products in [MW12]. A benefit to not crushing cubes
into globes is that whiskering does not require dealing with singular manifolds. ■

Remark 3.2.10. Our definition of globular halated n-manifolds is roughly equivalent to the
definition of the haloed bordisms defined in [SP09]. The role of a series of co-oriented
halations is played by halated (f, n)-manifolds, where the Γn≥0 structure supplies all the
co-orientations. ■

2N.B. This terminology is meant to evoke the sense of suspensions of singularities rather than suspensions
of topological spaces.
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3.3 Cobordism bicategory
We give some details about the cobordism bicategory for surfaces, but we point the reader
toward [SP09] for more elaboration using a similar setup.

The collection of halated n-manifolds have n different directions for composition opera-
tions, one per (n−1)-dimensional face. In our definition of halated n-manifolds, we required
that charts preserve the entire subspacesHf = Span{ei | i ∈ f}, which gives us a well-defined
reflection operation:

Definition 3.3.1. Suppose M is a halated (f, n)-manifold. For every subset s ⊆ {1, . . . , n}\
f , there is halated (f, n)-manifold sM defined by taking all charts for M and flipping all the
coordinates contained in s. ♢

Suppose we have halated (f, n)-manifolds M and N , and furthermore suppose, for f ′ ⊂ f
with |s| = |f | − 1 that we have an (f ′, n) manifold A and embeddings fM : A ↪→ M and
fN : {i}A ↪→ N for some i ∈ f \ f ′ that respect the halation structure such that fM and fN
map onto a connected component of the f ′-faces. Then we claim we can form the pushout

A MM

N M ∪A N

fM

{i}fN

where {i}fN indicates the map from including A into {i}Nf rather than {i}A into Nf .
Furthermore, this pushout has the property that core(M ∪A N) = core(M)∪core(A) core(N),
which is a sense in which halations yield canonical gluings. It should be said, though, that
we still need to choose a representative for the resulting halated manifold.

The reason we can form this pushout is that we can represent M as a manifold germ
(M ′,N (M ′

f )) and N as (N ′,N (N ′
f )), then use the existence of a bicollar neighborhood for

M ′ and N ′ to glue M ′ and N ′ along some open neighborhood of the image of A contained
in this bicollar neighborhood. Writing M ′ ∪A N ′ for this glued manifold temporarily, then
M ∪A N is (M ′ ∪A N ′,N (M ′

f ∪ N ′
f )), where we identify M ′

f and N ′
f with their images in

M ′ ∪A N ′. One can check that this construction yields a halated (f, n)-manifold.
For each n ∈ N and k ≤ n, let Bordn,k be the set of compact globular halated ({1, . . . , k}, n)-

manifolds, where compact means the core of the underlying halated manifold is compact.
Then Bordn =

⊔n
k=0 Bordn,k is something like a quasicategory, in that compositions exist

but without any promise of associativity or other coherence. We mention these compositions
here.

For M,N ∈ Bordn,k, we have a subset Bordn,k+1(M,N) of all F ∈ Bordn,k+1 such that
sF = M and tF = {n}N . Then for L,M,N ∈ Bordn,k, there is a well-defined map
Bordn,k+1(M,N) × Bordn,k+1(L,M) → Bordn,k+1(L,N) defined on the underlying halated
manifolds by (F ′, F ) 7→ F ′ ∪M F . To extend this to a map of globular halated manifolds,
we glue the collapse diffeomorphisms end-to-end using some fixed identification I ∪p I ≡ I,
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where p is the one-point (∅, 1)-halated manifold that embeds into 0 in the first I and 1 in
the second — note that we can do this gluing since the diffeomorphisms are diffeomorphisms
of halated manifolds.

Remark 3.3.2. Of course, this composition operation is not associative. This is due to the
fact that gluing three copies of I two at a time is non-assocative. We could potentially
remedy this by having globular halated n-manifolds use arbitrary closed intervals [0, a] for
a > 0 rather than fixing a = 1, since then there is an associative way to compose such
intervals. ■

There is also, for each n ∈ N, a monoidal composition Bordn,k(M,N)×Bordn,k(M ′, N ′)→
Bordn,k(M⊔M ′, N⊔N ′) by taking disjoint unions. It is worth pointing out that this operation
is also not associative since disjoint unions require an encoding, for example X⊔Y = {(0, x) |
x ∈ X} ∪ {(1, x) | y ∈ Y }.

We have another operation, which is whiskering. For F ∈ Bordn,k+1(M,N) and L ∈
Bordn,k such that ssF = {k − 1}tL, then we can use the collapse diffeomorphism for F
to glue L × I along sF , yielding an element of Bordn,k+1(M ∪tL L,N ∪tL L). Note that
N ∪tL L uses the collapse isomorphism to do the gluing, since N and L might otherwise be
incompatible.

The essence of the cobordism n-category Cobn is that we take Bordn,k to be the k-
morphisms for all 0 ≤ k ≤ n, modulo the relation that n-morphisms are equivalent if they
are diffeomorphic, and with identity maps given by M × I ∈ Cobn(M,M). Then for each
M,N ∈ (Cobn)k, the set Cobn(M,N) has the structure of an (n − k)-category since we get
weak associativity of compositions.

This was a brief explanation of cobordism categories using globular halated manifolds,
and since our goal is to give a presentation of some concrete cobordism categories we will
stop here.

3.4 Gradient flows
Suppose f : Σ→ R2 is a generic 2D Morse function and let π : R2 → R2/R be the standard
projection. Like in 1D Morse theory, we can use gradient flows to decompose Σ into well-
understood pieces, which we describe how to do in this section. See Figures 3.2 to 3.4 for
illustrations of all the pieces that we found through our classification of singularities; this
includes singularities of surfaces with embedded curves.

Generic 2D Morse functions have a stratification of the domain into locally closed singu-
larity submanifolds. These singularity submanifolds have the property that f and π ◦ f are
immersions when restricted to them. Furthermore, there are multijet singularity subman-
ifolds associated to subsets of points that have the same image, and these have the same
properties.

Hence, a singularity has codimension 2 if and only if d(π ◦ f) restricted to its singularity
submanifold has rank 0.
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Definition 3.4.1. Suppose f : Σ → R2 is a generic 2D Morse function. A vector field
V ∈ C∞(TΣ) is subordinate to the singularities if for all singularity submanifolds S ⊆ Σ and
x ∈ S, we have Vx ∈ TxS. ♢

Lemma 3.4.2. Suppose f : Σ → R2 is a generic 2D Morse function. There exists a
Riemannian metric on Σ such that the gradient vector field ∇(π ◦ f) is subordinate to the
singularities and vanishes only at codimension-2 singularities.

Proof. For each p ∈ Σ, the germ [f ]p is equivalent to one of the singularities in our clas-
sification, and so there exists a chart neighborhood U of p such that f |U has coordinates
given by one of the normal forms. One can see that in each case there exists a Riemannian
metric such that the gradient vector field ∇(π ◦ f |U) is subordinate to the singularities in U .
Then we can get a Riemannian metric from these using the standard partition of unity and
paracompactness argument, and this Riemannian metric has the desired properties.

Lemma 3.4.3. Suppose f : Σ → R2 is a generic 2D Morse function. Let t0 < t1 be real
numbers such that (π◦f)−1([t0, t1]) intersects no codimension-2 singular submanifolds. Then
there exists a diffeomorphism h : f−1(t0) × I → f(π ◦ f)−1([t0, t1]) such that h restricts to
diffeomorphisms f−1(t0) × {0} → f(π ◦ f)−1({t0}) and f−1(t1) × {1} → f(π ◦ f)−1({t1}).
Furthermore, each singularity submanifold in (π ◦f)−1([t0, t1]) is a union of the h(x×I) sets
it intersects.

Proof. Give Σ a Riemannian metric such that ∇(π ◦ f) is subordinate to the singularities.
Since there are no codimension-2 singular submanifolds in (π ◦ f)−1([t0, t1]), the gradient
is non-vanishing in this region. We then take the flow of ∇(π ◦ f)/|∇(π ◦ f)|2, for time
in the interval [0, t1 − t0], which after identifying this interval with I yields the desired
diffeomorphism since this is the height-parameterized flow like in Morse theory. The last
claim of the lemma follows from the vector field being subordinate to the singularities.

Now we understand what occurs between codimension-2 singularities, and now we need a
description of what occurs at codimension-2 singularities. To do this, we develop structures
we use for the decomposition.

Definition 3.4.4. For n ∈ N, suppose Rn is given the standard R ⊆ · · · ⊆ Rn flag foliation.
An n-cube is a set of the form g[0, 1]n for some g ∈ Diff(R ⊆ · · · ⊆ Rn). We give n-cubes the
structure of a globular halated n-manifold through its identification with [0, 1]n as a subset
of Rn. ♢

Remark 3.4.5. In the following, we will be somewhat loose with terminology and speak of
“isomorphism.” What we mean is that we are constructing particular decompositions and
carrying around a combinatorial description of it. ■

Theorem 3.4.6. Suppose f : Σ → R2 is a generic 2D Morse function. For every p ∈ R2

and open neighborhood U ⊇ p there exists a 2-cube C ⊆ U such that the smooth manifold
germ (Σ, f−1(C)) and inherits the structure of globular halated 2-manifold, which is to say the
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Figure 3.1: When there is a codimension-2 singularity, there is a cube containing the value
q and a corresponding decomposition that gives the surface a description as a whiskering by
a 1-manifold in Cob2.

preimage of each f -face of C is an f -face of f−1(C) and the collapse diffeomorphisms for the
globular structure are pulled back to f−1(C). Furthermore, this globular halated 2-manifold
is isomorphic to one of the standard ones from Figure 3.2.

Proof. For each q ∈ R2, the preimage f−1(q) intersects one or more singularity submanifolds.
Shrink U until f−1(U) is a disjoint union of neighborhoods, one per point in f−1(q). If any
p ∈ f−1(p) is a codimension-2 singularity, then we can disregard it in the following analysis
since f−1(C) for any 2-cube C ⊆ U will lift to a diffeomorphic cube in a neighborhood of
p. Let S ⊆ f−1(q) be the set of non-codimension-2 singularities. We have analyzed all the
possibilities through our analysis of multigerms, and for each of theme one can find a 2-cube
C in U with the desired property. See Figure 3.2 for illustrations of the globular structure
of each singularity type and how it maps to a 2-cube in R2.

Remark 3.4.7. Given such a globular halated 2-manifold in Σ, note that the faces that are
collapsed are all in the codimension-0 singularity submanifold, which follows from the fact
that the collapse diffeomorphims are pulled back through f , so they yield diffeomorphisms
of those faces onto faces in R2, and importantly faces are halated, so this extends to a
diffeomorphism of an open neighborhood of those faces. ■

Lemma 3.4.8. Suppose f : Σ→ R2 is a generic 2D Morse function and that for real numbers
t0 < t1 there exists exactly one codimension-2 (multi)singularity p in (π◦f)−1([t0, t1]). Let C
be a cube in R×(t0, t1) containing f(p) of the type from Theorem 3.4.6, and let s0, s1 ∈ (t0, t1)
with s0 < s1 be the y2 coordinates of the sides of C. Using C, decompose R× [t0, t1] into five
regions as depicted in Figure 3.1. Then (1) f−1(C) is isomorphic to the disjoint union of
one of of the standard globular halated 2-manifolds associated to codimension-2 singularities
and some number of identity morphisms (call this disjoint union A) (2) f−1(R× [s0, s1]) is
isomorphic to a left- and right- whiskering of A (call this B), and (3) f−1(R × [t0, t1]) is
isomorphic to B.

Proof. Let C be as stated. When we construct a Riemannian metric such that ∇(π ◦ f) is
subordinate to the singularities, we may use the collapse faces of C as additional “singulari-
ties” for the gradient to be subordinate to (and in general, for other dimensions, we can ask
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for the gradient to lie in the I direction from the collapse diffeomorphisms). Have done so,
the resulting flows follow the collapse faces, so we can use the flow from Lemma 3.4.3 for the
two regions L and R of R × [s0, s1] outside C. Hence, f−1(R× [s0, s1]) is the whiskering of
f−1(C) by f−1(L ∩ (R × {s0}) and f−1(L ∩ (R × {s0}). Furthermore, since codimension-2
singularities do not occur simultaneously, we can “peel off” identity morphisms from f−1(C).
For the rest, note that in the R×[t0, s0] and R×[s1, t1] regions we can apply Lemma 3.4.3.

Warning 3.4.9. While we mention disjoint unions, we are not claiming to be decomposing
these pieces using the monoidal structure of the cobordism 2-category. There is still an issue
of separating the manifold into sheets, which the next section comments upon. ♢

This lemmas gives a way to decompose any surface into whiskerings of 1-manifolds com-
posed with one of the standard 2-manifolds associated to codimension-2 singularities. What
remains is to decompose 1-manifolds. For generic f , when t ∈ R is such that R × {0} con-
tains no codimension-2 singularities, then we can restrict to studying the restriction of f to
f−1(R × {0}) → R × {0}. This is itself generic, so we can continue the decomposition. In
this case, it is simply a Morse function of 1-manifolds, so we skip it here.

Hence, we have described a way to use gradient flows to decompose a surface Σ that has
a 2D Morse function f : Σ→ R2 into pieces from Figure 3.2. And of course, since 2D Morse
functions are dense, this means we can decompose every compact surface in such a way by
perturbing the constant-zero function.

For relations, we apply a similar process to 3D Morse functions Σ×I → R3. This time we
look for 3-cubes in R3 that contain a codimension-3 singularity and decompose Σ× I using
gradient flows. We have illustrations of all the codimension-3 singularities and a globular
halated 3-manifold structure that maps to a 3-cube in Figures 3.2 to 3.4.

We mention that decompositions for the case of surfaces with embedded curves is handled
in essentially the same way since we can treat the curves as if they were singular submanifolds.

3.5 Symmetric monoidal structure
One aspect we did not deal with in the previous section is decomposing manifolds using the
symmetric monoidal structure of the cobordism category. There is a fundamental problem
that needs solving. For f : Σ → R2 a 2D Morse function, let Σ◦ be the preimage of R2

minus any singular values. This open submanifold is a collection of connected components,
the sheets, that f embeds in R2. To yield a monoidal decomposition, a naive approach
would be to totally order the sheets, but the total ordering needs to be compatible with
the singularities in the sense that singularities cannot occur between sheets at points where
there is another sheet between them. This quickly leads to impossibilities.

What Schommer-Pries proposed is to cut apart the sheets into chambers with tools called
chambering graphs (for Σ) and chambering foams (for Σ × I). One way to conceptualize
these is that we want a function σ : Σ → R that is generic with respect to f , and then
we use the collection of double points (the chambering graph) to decompose Σ. This is
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Figure 3.2: Illustrations of singularities with choices of neighborhoods such that the codomain
is an n-cube and the domain is a manifold with faces. Suspensions are not shown, and not
all multigerm singularities are present. Continued in Figure 3.3.
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Figure 3.3: Continuation of Figure 3.2, and continued in Figure 3.4.
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Figure 3.4: Continuation of Figure 3.3.
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Figure 3.5: The 2-morphisms that are the symmetry generators for the 2D cobordism 2-
category, which are all from the analysis of Cerf functions of curves in the plane from Sec-
tion 2.3.2. The second and fourth are consequences of symmetric monoidal 2-categories.

Figure 3.6: The 3-morphism that the double point relation for surfaces with embedded
curves. We do not show the ones that are consequences of symmetric monoidal 2-categories.

equivalent to studying 3D Morse functions f : Σ → R3, where the projection onto R3/R
gives all the singularities we have found so far, and the additional (multi)singularities yield
all the symmetry generators. The component f1 is precisely the σ function.

We can deduce what the additional singularities and multigerm singularities must be,
since for codimension reasons a 3D Morse function cannot have double points occuring at
a codimension-3 singularity. This means that, away from such codimension-3 points the
3D Morse function is a Cerf function for curves in surfaces, which we already analyzed in
Section 2.3.2.

Hence, by cutting up sheets along these loci of double points we have a way to totally
order the remaining sheets and glue them back together using generators for the cobodism
2-category.

What remains is finding the relations between these types of singularities and the singu-
larities we have found so far. We refer to [SP09, Figure 3.8] for now for the relations, and
for embedded curves in surfaces one can deduce that there must be a move like Figure 3.6
and that all other relations on symmetry generators are consequences of symmetric monoidal
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Figure 3.7: Decomposition of a 2D Morse function for RP2. Each vertical slice (a 2-
morphism) has a single 2-morphism generator. The 1-morphisms between these slices are
shown, and then these are sliced horizontally, with a single 1-morphism generator per slice.
To the left, in blue, is a 2D Morse graphic showing the images of the singular points; many
intermediate moves are for bookkeeping in the symmetric monoidal 2-category.
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2-categories.

Remark 3.5.1. Although they are sufficent, from the perspective of Cerf theory of R2 → R3

functions, the relations in the lower-left corner of [SP09, Figure 3.8] are not generic since
with a slight perturbation the relation decomposes into a sequence of more obviously stable
relations:

This uses a relation that is not present in the figure, the double-point flip:

Taking horizontal slices through time, the knot theoretic interpretation of this move is that
doing a single Reidemeister I move is equivalent to do a Reidemeister II move and then a
Reidemeister I move. ■

Example 3.5.2. In Figure 3.7 we decompose RP2 as an element of the symmetric monoidal
2-category of 2D cobordisms. It is sliced into 2-morphisms, with one generating 2-morphism
per piece, and then the intervening 1-morphisms are sliced, with one generating 1-morphism
per piece. ♢
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Chapter 4

Applications

4.1 Black-white extended 2D TQFTs
This author’s original motivation for computing a presentation for the symmetric monoidal 2-
category of surfaces with embedded curves was to study a particular extended 2D TQFT with
defects, which we describe in this section. In this TQFT, oriented surfaces are decomposed
into a black and a white region, separated by a common 1-dimensional submanifold. We
extend this TQFT in Section 4.2 with an additional 0-dimensional defect type to encode
surface graph invariants as extended TQFTs.

These are a sort of “surface algebra” analogue of the planar algebras described in [Jon], in
that planar algebras come with a natural black/white checkerboard coloring, and so we ex-
tend this structure to diagrams on surfaces. Black-white 2D TQFTs, as surfaces constructed
from patchworks of planar algebra diagrams, were studied in [KPS], and also related are the
black-white “picture TFQTs” in [FNWW].

Consider the class of compact oriented surfaces with embedded 1-dimensional subman-
ifolds such that the complement of the submanifold is given a locally constant function
coloring each point either black or white. For surfaces with boundary, we require that the 1-
manifold intersects the boundary transversely. We call these black-white surfaces , the points
colored black or white the black region and the white region, respectively, and the 1-manifold
the strings. There is a cobordism 2-category for these.

Definition 4.1.1. Let BW2Cob denote the symmetric monoidal 2-category for cobordisms
of black-white surfaces, where a k-morphism is an globular halated ({1, . . . , k}, 2)-manifold
arising as a manifold germ of a black-white surface such that the defect meets each face
transversely. ♢

Remark 4.1.2. In [SP09], Schommer-Pries showed how to carry out a characterization of
extended oriented 2D cobordisms as an example of more sophisticated techniques that work
for more sophisticated structures on manifolds. Simplifying this, we say an orientation of a
surface Σ is a function µ that assigns to each x ∈ Σ a generator µx ∈ H2(Σ,Σ \ {x}) ≈ Z
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Figure 4.1: A 2-morphism in BW2Cob. Using the bottom-to-top convention, this is a mor-
phism from the disjoint union of an interval and a circle to an interval, where each interval
is separated into two white and one black regions and the circle is separated into two white
and two black regions. The 2-morphism has four strings.

such that for all x ∈ Σ there exists a neighborhood U ⊆ Σ homeomorphic to a disk such
that there exists a generator µU ∈ H2(Σ,Σ \ U) ≈ Z such that for all y, the natural map
H2(Σ,Σ \ U) → H2(Σ,Σ \ {y}) maps µU to µx. We use this notion of orientation for
BW2Cob, and there is no difficulty in gluing such functions together when doing the various
compositions the category provides.

Additionally, the black-white coloring can be represented as the additional structure of
a codimension-0 submanifold representing the black region. There is no difficulty in gluing
such data. ■

Example 4.1.3. For a representative example, see Figure 4.1. ♢

Theorem 4.1.4. The category BW2Cob is the symmetric monoidal 2-category presented by
the morphisms and relations illustrated in Figure 4.2.

Proof. The additional structure on the cobordisms (orientations and colorings) is simple
enough that in our 2D Morse functions and Cerf functions, we can simply ignore it, classify
singularity types, decompose, and then work out how the structure should be reattached to
the pieces, which can be done without any choices. We take the classification of singularities
for surfaces with embedded curves and then consider all possible 2-colorings and orientations.
We illustrate the results in Figure 4.2, modulo obvious symmetries.

Definition 4.1.5. Let C be a symmetric monoidal 2-category. A topological quantum field
theory (or TQFT) for BW2Cob is a symmetric monoidal homomorphism BW2Cob→ C.1 ♢

In the next sections we review the algebraic theory to make sense of some example
TQFTs, and we will continue in Section 4.1.2.

1Refer to [Sta13] for definitions, reproduced in [SP09, Appendix C].
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Figure 4.2: Generators of BW2Cob. For 2-morphisms and 3-morphisms, we gives representa-
tives up to vertical and horizontal reflection, orientation changes, and black-white reversals.
We do not include symmetry generators or identities, which come from the definition of a
symmetric monoidal 2-category.
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4.1.1 Morita category

Of particular interest for the target category for a TQFT is the Morita category k-Alg2
where, for k a commutative ring, objects are k-algebras, 1-morphisms are bimodules, and
2-morphisms are bimodule homomorphisms (intertwiners). Over the next few subsections
we review properties of this category as well as Frobenius algebras, which play a role in the
classification of k-Alg2-valued extended 2D TQFTs.

Given k-algebras A, B, and C and bimodules AMB and BNC , the composition of the
bimodules is given by tensor products over the intermediate algebra B:

A B CM N = A C.
M⊗BN

One can think of k-Alg2 as being a generalization of the category of algebras and their
homomorphisms, since if f : A→ B is an algebra homomorphism, then we have the bimodule
ABB with the A action given by ab = f(a)b for a ∈ A and b ∈ B.

Tensor products of k-algebras gives a monoidal structure to the category, where k is the
monoidal unit. This is compatible with the morphisms and 2-morphisms in the following way.
For AMB and CND bimodules, the tensor product of M⊠N =M⊗kN is a (A⊗kC,B⊗kD)
bimodule:

A⊗k C B ⊗k D.M⊠N

Furthermore, if f : AMB → AM
′
B and g : CND → CN

′
D are bimodule homomorphisms, then

f ⊠ g is a bimodule homomorphism of (A⊗k C,B ⊗k D)-modules:

A⊗k C B ⊗k D.

M⊠N

M ′⊠N ′

f⊠g

For k-algebras A and B, the twist τA,B, which gives k-Alg2 the structure of a symmetric
monoidal category, is A⊗k B as a (B ⊗k A,A⊗k B)-module.

Let k-Alg2(A,B) denote the morphism set of all (A,B)-modules. This forms a monoid
under direct sums, where the additive unit is the zero (A,B)-module. The monoid structure
is compatible with the 2-morphisms, which is to say that, for bimodule homomorphisms
f : AMB → AM

′
B and g : ANB → AN

′
B, there is a bimodule homomorphism f ⊕ g as follows:

A B

M⊕N

M ′⊕N ′

f⊕g

It should be noted that the monoid axioms are only true up to coherence, for example
M1 ⊕ (M2 ⊕M3) ≈ (M1 ⊕M2)⊕M3.
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Thinking of k-Alg2(A,B) as a symmetric monoidal category, the objects are (A,B)-
modules and the morphisms are bimodule homomorphisms. The hom sets of k-Alg2(A,B),
comprising of k-linear maps, are k-modules.

ForA a k-algebra, letAop be the same algebra but with opposite multiplication µop = µ◦τ .
For a (A,B)-moduleM , there is an opposite (Bop, Aop)-moduleMop with the opposite action:

A BM ⇒ Aop Bop.Mop

In general, ifM is a (A⊗kB,C)-module, we may treat it as a (A,Bop⊗kC)-module. A special
case is when M is an A-bimodule, where M can be thought of as a (k,Aop ⊗k A)-module,
with Aop ⊗k A being known as the enveloping algebra of A.

Let evA be A as a (k,Aop ⊗k A)-module and let coevA be A as a (A ⊗k Aop, k)-module.
These bimodules give A as a right dual of Aop in k-Alg2, and similarly Aop as a right dual of
A. Hiding some isomorphisms (such as A⊗kk ∼= A) this says that, up to some 2-isomorphism,
the compositions satisfy

A A⊗k Aop ⊗k A A
A⊠evA coevA ⊠A

= A AA

and

Aop Aop ⊗k A⊗k Aop AopevA ⊠Aop Aop⊠coevA = Aop Aop.Aop

This will be illuminated in Section 4.1.1, where we will also see, for instance, how Mop may
be formed from M through compositions with ev and coev.

Trace diagrams of bimodules

In this section, we recall trace diagrams (also known as tensor networks, Penrose notation,
string diagrams, etc.), but as applied to objects and 1-morphisms of k-Alg2, giving a conve-
nient notation for writing tensor products of bimodules. Our temporary convention in this
section is that tensor products over k are left-to-right and morphisms go bottom-to-top, to
match Appendix A.2, and when we work with 2-morphisms we will rotate these diagrams
90 degrees counterclockwise.

We write an (A,B)-module M as

M

A

B
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For bimodules over tensor products of algebras, we may use multiple arrows to indicate this.
For example, if M is a (A⊗B,Cop ⊗D)-module, we may write either

M

Cop⊗D

A⊗B

or M
C D

A B

where downward-oriented arrows correspond to the opposite algebra.
The ⊠ tensor product of bimodules is given by juxtaposition:

M N

A C

B D

= M ⊠N

A⊗kC

B⊗kD

Since for an (A,B)-module M we have A ⊗A M ⊗B B ∼= M (that is, A and B as
bimodules over themselves are the identities for k-Alg2), vertical lines without a bimodule
can be thought of as being the identity:

A = A

A

A

Connecting bimodules together corresponds to composition. For example, the relations that
the evA and coevA bimodules satisfy can be written as

evA

coevA
A

A

A

= A and
evA

coevA

A

A

A
= A

Seeing that this is a “topological” identity, we will henceforth omit evA and coevA on bends
in the arrows. For example, if M is an (A,B)-module, the opposite (Bop, Aop)-module Mop
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is given by

M
B

A = Mop

B

A

Arrows can cross, and the interpretation is to use the twist bimodules τA,B. The way in
which arrows are immersed ends up being immaterial: all that matters is what is connected
to what and with what orientation.

For an A-bimodule M , the evA and coevAop bimodules let one define a trace trA(M),
which is a k-module:

trA(M) = MA =M/(am ∼ ma : a ∈ A and m ∈M).

The trace trA(A) is also known as A/[A,A], where [A,A] is the k-module {ab−ba | a, b ∈ A}.
A trace f : A→ k for a k-algebra A is a k-linear map that factors through trA(A), which

is to say f(ab) = f(ba) for all a, b ∈ A. From the point of view of the double commutant
theorem for A as an (A,A)-module, a way to state the Artin–Weddernburn theorem is that if
A is semisimple, then A ∼=

⊕
λ V

′
λ⊗Dλ

Vλ where λ ranges over isomorphism classes of simple
A-modules (Vλ being a representative right A-module, V ′

λ = HomA(Vλ, A) the corresponding
left A-module, and Dλ = EndA(Vλ) a division ring). Each direct summand may be identified
with the matrix ring Mdim(Vλ)(Dλ). With this decomposition, we calculate

trA(A) =
⊕
λ

trA(V
′
λ ⊗Dλ

Vλ) =
⊕
λ

trDλ
(Vλ ⊗A V ′

λ) =
⊕
λ

trDλ
(Dλ) =

⊕
λ

Dλ.

Hence trA(A) may be identified with the center Z(A) when A is semisimple. For example,
every trace on Mn(k) must be of the form m 7→ c

∑
imii for some scalar c ∈ k.

We mention that if A and B are bialgebras, then the coinvariants of an (A,B)-module
M come from another trace diagram, using k as a trivial module (whose module structure
depends on a counit):

k

M

k

A

B

=M/(am ∼ ϵ(a)m and mb ∼ mϵ(b) : a ∈ A, b ∈ B, and m ∈M).
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Frobenius objects

In this section, we give the definition of a Frobenius object in a category. There are some
cases for which the ⊗ bimodules for a k-module A define a Frobenius object.

Definition 4.1.6. In a monoidal category C with monoidal unit I, a Frobenius object is an
object A with both a monoid structure (A, η : I → A, µ : A ⊗ A → A) and a comonoid
structure (A, ϵ : A→ I,∆ : A→ A⊗ A) that satisfy the Frobenius axiom:

µ

∆

=
∆

µ

=

µ

∆

If C is a symmetric monoidal category, we call the object symmetric if ϵ ◦ µτ = ϵ ◦ µ and
commutative if µ ◦ τ = µ. ♢

There are many consequences to the Frobenius axiom. For example, ϵ ◦ µ and ∆ ◦ η are
pairings that give A as a self-dual object. Another is that any planar tree-like composition of
ϵ, µ, η, and ∆ (in that the diagram contains neither loops nor crossings) is equal to any other
such composition with the same number of top and bottom arrows. This gives a well-defined
family of morphisms µmn : A⊗n → A⊗m for n,m ∈ Z≥0 that may be recursively defined by
the formulas

1. µ0
0 = ϵ ◦ η,

2. µ1
0 = η,

3. µ0
1 = ϵ,

4. µmn+1 = µmn ◦ (µ⊗ id⊗(n−1)) for n ≥ 1, and

5. µm+1
n = (∆⊗ id⊗(m−1)) ◦ µmn for m ≥ 1.

In particular, µ1
2 = µ and µ2

1 = ∆.
An invariant pairing σ : A⊗A→ I for a monoid A is a morphism satisfying σ◦(µ⊗idA) =

σ ◦ (idA⊗A). It is called nondegenerate if it has an inverse c : I → A⊗A satisfying the sort
of relation ev and coev satisfy, and in particular these give A as a self-dual object. For a
Frobenius object, the composition ϵ ◦ µ is a nondegenerate invariant pairing.
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Proposition 4.1.7. Suppose (A, η : I → A, µ : A ⊗ A → A) is a monoid in a monoidal
category C. If there exists a nondegenerate invariant pairing σ : A⊗ A → I or if there is a
morphism ϵ : A → I such that σ = ϵ ◦ µ is a nondegenerate pairing, then A is a Frobenius
object with ϵ = σ ◦ (η ⊗ idA) and ∆ = (µ ⊗ idA) ◦ (idA⊗c), with c : I → A ⊗ A being the
inverse for σ.

Frobenius algebras

A Frobenius k-algebra is a Frobenius object in the category of k-modules. A Frobenius
algebra is a kind of algebra but with additional structure.

Warning 4.1.8. A Frobenius algebra is an algebra with specific additional structure (the
choice of ∆ and ϵ). Algebras that admit a Frobenius algebra structure almost never do so
in a unique way. ♢

Warning 4.1.9. The comonoid structure of a Frobenius algebra A does not generally give
A a bialgebra structure. Many Frobenius algebras are simultaneously bialgebras (like the
group algebra of a finite group), but the comultiplications and counits do not coincide. ♢

Example 4.1.10. If k is a field, then for every element c ∈ k there is a commutative
Frobenius algebra defined by

µ(a⊗ b) = ab i(a) = a

∆(a) = c−1 ⊗ a ϵ(a) = ca. ♢

Example 4.1.11. The prototypical example of a noncommutative Frobenius algebra is the
matrix ring A = Matn×n(k) with k a field. Let Eij ∈ A denote the matrix with a 1 in the
(i, j) entry and zeros elsewhere, and let δij ∈ k denote the Kronecker delta, which is 1 if
i = j and otherwise 0. The Frobenius algebra is defined by

µ(Eij ⊗ Ekℓ) = δjkEiℓ i(1) = id =
n∑
i=1

Eii

∆(Eij) =
n∑
k=1

Eik ⊗ Ekj ϵ(Eij) = δij.

That is, the multiplication is the standard matrix multiplication µ(A ⊗ B) = AB, and
the counit is the trace ϵ(A) = trA. As the counit is the trace, this Frobenius algebra is
commutative. ♢

Example 4.1.12. A commutative Frobenius algebra that shows up in Khovanov homology
is A = R[x]/(x2) is defined by

µ(a⊗ b) = ab i(1) = 1

∆(1) = 1⊗ x+ x⊗ 1 ϵ(1) = 0

∆(x) = x⊗ x ϵ(x) = 1.
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This is a non-semisimple algebra, unlike the previous examples. ♢

Since we are discussing Frobenius algebras, we give some results on the structure of Frobe-
nius algebras over a field. Theorem 4.1.29 gives a decomposition of a Frobenius algebra into a
semisimple and a “radicular” part using an element, the distinguished element, that is simple
to define. We also characterize symmetric Frobenius algebras up to graphical equivalence,
which is whether Frobenius algebras give the same interpretation to trace diagrams with no
inputs or outputs, and in Theorem 4.1.35 we give a classification for symmetric Frobenius
algebras over algebraically closed fields up to graphical equivalence.

For the rest of the section, assume that k is a field. We let A be a k-algebra for the
following definitions.

For a left or right A-module M , the socle soc(M) is the sum of the simple submodules
of M , and it is the largest semisimple submodule. With A as an A-bimodule, if soc(AA) =
soc(AA), we will write soc(A) for the socle of A, which is a two-sided ideal in this case. The
Jacobson radical rad(A) is the intersection of all the maximal left (or right) ideals of A, which
is a two-sided ideal such that the cosocle cosoc(A) = A/ rad(A) is the largest semisimple
quotient algebra.

Given a subset S ⊆ A, let annL(S) = {x ∈ A : xS = 0} and annR(S) = {y ∈ A : Sy = 0}
be the left and right annihilators of S, respectively, and annL(S) is a left ideal and annR(S)
a right ideal. If I ⊆ A is a left ideal, then annL(I) is a right ideal, and if I ⊆ A is a right
ideal, then annR(I) is a left ideal.

If A is a Frobenius algebra, let (−,−) denote the nondegenerate bilinear form ϵ ◦ µ.
For a subset S ⊆ A, let ⊥S = {x ∈ A : (x, S) = 0} and S⊥ = {y ∈ A : (S, y) = 0}
and be the left and right orthogonal complements of S, respectively (where, for example,
(S, y) = {(x, y) : x ∈ S}). With V ⊆ A a subspace, ⊥(V ⊥) = V = (⊥V )⊥.

The Nakayama automorphism Φ : A→ A is defined by (x, y) = (y,Φ(x)) for all x, y ∈ A.
With V ⊆ A a subspace, (V ⊥)⊥ = Φ(V ). A symmetric Frobenius algebra is one whose
bilinear form is symmetric, in which case ⊥(−) = (−)⊥ and Φ = id.

Lemma 4.1.13. Let A be a Frobenius algebra. If I ⊆ A is a left ideal, then ⊥I is a right
ideal. If I ⊆ A is a right ideal, then I⊥ is a left ideal.

Proof. Suppose I ⊆ A is a left ideal, hence AI = I. Then (⊥IA)I = ⊥I(AI) = ⊥II = 0, so
⊥IA = ⊥I, thus ⊥I is a right ideal. The second statement is similar.

Lemma 4.1.14 ([Jan59, Lemma 4.1]). Let A be a Frobenius algebra. If I ⊆ A is a left ideal,
then I⊥ = annR(I) is a right ideal. If I ⊆ A is a right ideal, then ⊥I = annL(I) is a left
ideal.

Proof. For all y ∈ A, we have the following chain of equivalences:

Iy = 0 ⇔ (A, Iy) = 0 ⇔ (AI, y) = 0 ⇔ (I, y) = 0,

where the first equivalence is due to nondegeneracy, the second is due to associativity, and
the third is due to I being a left ideal. Therefore, annR(I) = I⊥.
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Lemma 4.1.15 ([Jan59, Theorem 6.4]). Let A be a Frobenius algebra. Then soc(AA) =
soc(AA) and soc(A) = rad(A)⊥ = ⊥ rad(A).

Proof. Right complementation bijectively carries minimal left ideals to maximal right ideals,
hence

soc(AA)
⊥ =

(∑
m

m

)⊥

=
⋂
m

m⊥ = rad(A),

where the sum and intersection range over minimal left ideals. Similarly, by considering
minimal right ideals, soc(AA)⊥ = rad(A), hence soc(AA) = soc(AA).

Definition 4.1.16. Let e1, . . . , en ∈ A be a basis for a Frobenius algebra A, and let
e1, . . . , en ∈ A be a dual basis, in the sense that (ei, e

j) = δji for all 1 ≤ i, j ≤ n. The
distinguished element is ω =

∑
i e
iei ∈ A. ♢

Remark 4.1.17. The distinguished element has numerous properties. It is nearly central
(Lemma 4.1.19), it is a sort of dual to the trace form (Lemma 4.1.21), and Aω2 is the largest
semisimple subalgebra that is a direct summand (Theorem 4.1.29). ■

Remark 4.1.18. Graphically, ω = = (µ ◦ τ ◦ ∆)(1), where τ : A⊗2 → A⊗2 is the trans-
position map defined by x ⊗ y 7→ y ⊗ x. This is because ∆(1) =

∑
i ei ⊗ ei. One can also

check that ω = (µ ◦ (id⊗Φ) ◦∆)(1). Equivalently, ω is either of the two partial traces of the
comultiplication.2

In [LP], they describe a projector that is ω times a suitable unit with the same diagram.
■

Lemma 4.1.19. If A is a Frobenius algebra and a ∈ A, then aω = ωΦ(a). Furthermore,
Φ(ω) = ω.

Proof. Using a diagram for µ ◦ (id⊗ω), one drags the id around ω, which yields a twist on
its string that is equal to an application of Φ.

Lemma 4.1.20 (Dickson’s criterion). Let A be a finite-dimensional algebra over a field k of
characteristic 0, and let trA : A → k denote the trace of the action of A on its left regular
representation. Then rad(A) = rad(trA), where rad(trA) = {r ∈ A : trA(rA) = 0} is the
radical of the symmetric bilinear form a⊗ b 7→ trA(ab).

Proof. Let r ∈ rad(A). Nakayama’s lemma implies rad(A) is a nilpotent ideal, hence for all
s ∈ A the element rs is nilpotent. Similarly, left multiplication by rs is a nilpotent linear
operator, thus trA(rs) = 0. Hence rad(A) ⊆ rad(trA).

2Given a linear map f : U ⊗ V → U ⊗W with U a finite-dimensional vector space, the partial trace
of f with respect to U is a map V → W defined by v 7→

∑
i⟨ui, f(ui, v)(1)⟩f(ui, v)(2) in sumless Sweedler

notation, where {ui}i is a basis of U with a corresponding dual basis {ui}i of U∗.
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Conversely, let r ∈ rad(trA). For all s ∈ A and n ≥ 1, trA((rs)n) = trA(r(s(rs)
n−1)) = 0.

Hence left multiplication by rs is nilpotent, so the right ideal rA is a nil ideal, and thus
nilpotent since A is artinian. Hence rad(trA) ⊆ rad(A).

Lemma 4.1.21. Let A be a Frobenius algebra over k. Then the function (−, ω) : A→ k is
equal to trA(−).

Proof. This is due to the fact that for x ∈ A, (x, ω) is the trace of (µ(x,−) ◦ (coev⊗ id) ◦
(id⊗ ev), which is equal to µ(x,−).

The following lemma appears in [Abr96] for the special case of A being a commutative
Frobenius algebra.

Lemma 4.1.22. If A is a Frobenius algebra over a field k of characteristic 0 then soc(A) =
Aω.

Proof. Using Lemma 4.1.21 for the characterization of trA, then by Lemma 4.1.20, rad(A)
is {r ∈ A : (rA, ω) = 0}. By associativity, this is {r ∈ A : (r, Aω) = 0} = (Aω)⊥. Hence, by
Lemma 4.1.15, soc(A) = rad(A)⊥ = Aω.

Lemma 4.1.23. Let A be a Frobenius algebra and m ⊆ A be a minimal left ideal. The
following are equivalent: (1) ωm = 0, (2) m ⊆ rad(A), and (3) m2 = 0.

Proof. The set ωm is a left ideal since ωm = ωAm = Aωm. Then,

ωm = 0 ⇔ Aωm = 0 ⇔ m ⊆ annR(Aω) = (Aω)⊥ = rad(A).

Since m is a minimal left ideal, m ⊆ soc(AA). If m ⊆ rad(A), then m2 = 0 since the radical
annihilates the socle. Conversely, for every simple A-module M , there is a descending chain
of modules M ⊇ mM ⊇ m2M = 0, hence mM = 0 by simplicity. Since this is true for all
such M , m ⊆ rad(A).

Corollary 4.1.24. Let A be a Frobenius algebra and I ⊆ A a minimal two-sided ideal. Then
either (1) ωI = 0 and I ⊆ rad(A) or (2) ωI = I and I ∩ rad(A) = 0.

Lemma 4.1.25. For A a Frobenius algebra and I ⊆ A a minimal two-sided ideal with
ωI = I, then I is a unital subalgebra of A.

Proof. Since ωI = I, there is an e ∈ I such that ωe = ω. For each x ∈ I, there is an x′ ∈ I
such that x = ωx′, so ex = eωx′ = Φ(ωe)x′ = Φ(ω)x′ = ωx′ = x. Similarly, for each x ∈ I,
there is an x′ ∈ I such that x = x′ω, so xe = x′ωe = x′ω = x. Therefore, e ∈ I is a unit.

Lemma 4.1.26 ([Nak41,Abr96]). Suppose A, A′, and A′′ are k-algebras with A = A′ ⊕A′′,
and let ϵ : A→ k, ϵ′ : A′ → k, and ϵ′′ : A′′ → k with ϵ = ϵ′+ ϵ′′. Then ϵ gives A the structure
of a Frobenius algebra iff ϵ′ and ϵ′′ respectively give A′ and A′′ the structures of Frobenius
algebras.
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Definition 4.1.27. A Frobenius algebra A is radicular if soc(A) ⊆ rad(A). ♢

Remark 4.1.28. In [Hal40], an algebra A is bound to its radical (or, is a bound algebra) if
annL(rad(A)) ∩ annR(rad(A)) ⊆ rad(A). In the case of a Frobenius algebra, this is ex-
actly that soc(A) ⊆ rad(A). This is equivalent to the definition in [Jan59], where a bound
Frobenius algebra is one where every minimal two-sided ideal squares to zero. ■

The following is largely [Jan59, Theorem 6.5], but strengthened to given an explicit
splitting, using the distinguished element. One can also view it to be a specialization and re-
finement of [Hal40, Theorem 2.2], which shows that every k-algebra is uniquely decomposable
as a semisimple algebra and a bound algebra.

Theorem 4.1.29. Let A be a Frobenius algebra. Then A = ω2A + (ω2A)⊥ is an algebra
direct sum decomposition, where ω2A is semisimple and (ω2A)⊥ is radicular.

Proof. The socle decomposes as a direct sum soc(A) = ω2A + soc(A) ∩ rad(A), with ω2A
being the sum of the minimal two-sided ideals I ⊆ A for which ωI = I.

The intersection ω2A ∩ (ω2A)⊥ is a two-sided ideal. Since (ω2A)⊥ = annR(ω2A), any
minimal two-sided ideal contained in the intersection squares to zero, but since ω2A is the
sum of minimal two-sided ideals that square to themselves, the intersection is trivial, and
hence A = ω2A+ (ω2A)⊥ is a direct sum as ideals.

Let e ∈ ω2A be the unit. Then since 1 − e annihilates ω2A, 1 − e ∈ (ω2A)⊥. Hence
(ω2A)⊥ is a unital subalgebra, so the direct sum is as a direct sum of algebras.

The subalgebra ω2A is semisimple since it is a sum of minimal left ideals. The subalgebra
(ω2A)⊥ is radicular since rad(A) = rad((ω2A)⊥) and, if there were a minimal left ideal
m ⊆ (ω2A)⊥, then m2 = 0 since ω2Am = 0.

Definition 4.1.30. A graphical element of A is an element composed out of µ, ∆, ϵ, 1, and
transpositions. In other words, graphical elements are elements obtained from Frobenius
algebra trace diagrams with zero inputs and one output. ♢

Lemma 4.1.31. Graphical elements of a symmetric Frobenius algebra A are in the center.
For example, the distinguished element ω ∈ A is central.

Definition 4.1.32. Two Frobenius k-algebras A1 and A2 are graphically equivalent if for
every Frobenius algebra trace diagram with no inputs or outputs, interpreting the diagram
with respect to A1 or A2 yields the same value. Equivalently, it is if for every graphical
element a1 ∈ A1, then, defining a2 ∈ A2 to be the element taking a trace diagram for a1 and
interpreting it to be a trace diagram with respect to A2, we have ϵ1(a1) = ϵ2(a2). ♢

Lemma 4.1.33. With τ : A⊗2 → A⊗2 being the transposition x ⊗ y 7→ y ⊗ x, the linear
map Φ = µ ◦ τ ◦ ∆ : A → A commutes with multiplication by graphical elements and has
φ(φ(x)) = φ(x)ω for all x ∈ A.
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Theorem 4.1.34. If A is a symmetric radicular Frobenius algebra, then it is graphically
equivalent to A′ = k[x]/(xn) with n = dim rad(A) and any functional ϵ′ : A′ → k with
ϵ′(1) = ϵ(1) and ϵ′(xn−1) = 1.

Proof. Given a Frobenius algebra trace diagram G with no inputs or outputs, let Z(G) ∈ A
denote its interpretation. We can put it into normal form where Z(G) = ϵ(ωaγb) where
a, b ≥ 0 and γ = µ ◦ (Φ ⊗ id) ◦ ∆ ◦ 1 ∈ A is the “genus element” (by thinking of a trace
diagram as a ribbon graph). If a > 1, then Z(G) = 0 since ω2 = 0. If a = 1, then
Z(G) = dim(A), and if a = 0, then Z(G) = ϵ(1).

Suppose g ∈ A is a graphical element, and let f(x) = Φ(gx) be a linear map N → N .
By the previous lemmas, f 3(x) = g3Φ(x)ω2 = 0 for all x ∈ N , hence f is nilpotent and has
trace 0. Since tr(f) = ϵ(gγ), we have that if b > 0, Z(G) = 0.

Thus, Z(G) depends only on dim(A) and ϵ(1). Therefore A is graphically equivalent to
A′ = k[x]/(xn) with any ϵ′ : A′ → k satisfying ϵ′(1) = ϵ(1) and ϵ′(xn−1) = 1.

Theorem 4.1.35. If A is a symmetric Frobenius algebra over an algebraically closed field,
then it is graphically equivalent to Matn1(k)⊕ · · · ⊕Matnm(k)⊕ k[x]/(xn) for m ≥ 0, ni ≥ 1
for all i, and n ≥ 0, with some choice of counit. The matrix rings are from the Artin–
Wedderburn decomposition of cosoc(A), and n = dim rad(A).

Proof. By Theorem 4.1.29, A = A′⊕N with A′ semisimple and N radicular. By the Artin–
Wedderburn theorem, A is a direct sum of matrix rings over division rings over k; since
k is algebraically closed, these division rings are just k. Applying Theorem 4.1.34, N is
graphically equivalent to k[x]/(xn).

Morita contexts

Suppose A and B are two k-algebras. If A and B are isomorphic in k-Alg2, then they are
said to be Morita equivalent . In particular, this is saying that exist bimodules AMB and
BNA such that AM ⊗B NA is isomorphic to AAA and BN ⊗AMB is isomorphic to BBB.

A refinement of this is a Morita context, which is an adjunction (AMB, BNA, η : BBB →
BN ⊗AMB, ϵ : AM ⊗B NA → AAA) where η and ϵ are invertible. We may depict the
equations for an adjunction in the following way using string diagrams, reading bottom-to-
top:

Since the morphisms are invertible, then the 180 degree rotation of these equations also holds.
Morita contexts are the adjoint 1-equivalences in k-Alg2. (Note Morita contexts are more
general, and we are stating the version in which the Morita theorems apply. See [Lam99, 18C–
D]. The present version appears in [SP09] and [HSV16].)
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A morphism of Morita contexts (AMB, BNA, η, ϵ) and (AM
′
B, BN

′
A, η

′, ϵ′) consists of a
morphism f : M → M ′ of (A,B)-modules and a morphism g : N → N ′ of (B,A)-modules
such that the following diagrams commute:

B AM ⊗B NA AM
′ ⊗B N ′

A

BN ⊗AMB BN
′ ⊗AM ′

B A

η η′

f⊗g

ϵ ϵ
g⊗f

Morita contexts between A and B form a category in this way.
We now follow [HSV16] for some facts about Morita contexts between Frobenius algebras.
For A a k-algebra, recall that we defined the trace of an (A,A)-module trA(A), which is

also known as A⊗A⊗AopA or A/[A,A]. SupposeB is another algebra and (AMB, BNA, η, ϵ) is a
Morita context. Through “proof by rotation” we get a canonical isomorphism trAA ∼= trB B:

Definition 4.1.36 ([HSV16]). Let A and B be two symmetric Frobenius k-algebras and let
(AMB, BNA, η, ϵ) be a Morita context and let f : trAA → trB B be the canonical isomor-
phism. Since the Frobenius algebras are symmetric, their counits ϵA and ϵB factor through
A → trAA → k and B → trB B → k. We call the Morita context compatible with the
Frobenius algebras if the following diagram commutes:

trAA trB B

k

f

The diagonal arrows are the factored Frobenius algebra counits. ♢

Note that [SP09] has a second compatibility condition, but [HSV16] points out that this
definition is sufficient. The main point is that trAA inherits a Frobenius algebra structure
from A, and we wish for the canonical isomorphism to be an isomorphism of Frobenius
algebras.

Theorem 4.1.37 ([HSV16]). Let A and B be semisimple symmetric Frobenius algebras
over an algebraically closed field k and suppose (AMB, BNA, η, ϵ) is a Morita context. Let
(S1, . . . , Sr) be the simple modules of A and (T1, . . . , Tr) of B. After a permutation of the
simple modules,

AMB ≈
r⊕
i=1

Si ⊗k Ti BNA ≈
r⊕
i=1

Ti ⊗k Si.
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Furthermore, if we write A =
⊕r

i=1Matci(k) and B =
⊕r

i=1Matdi(k) with respect to the
lists of simple modules (using the Artin–Wedderburn theorem) then the Morita context is
compatible with the Frobenius algebras if and only if for all i, ϵA(idMatci

) = ϵB(idMatdi
).

This theorem is implicitly making use of the following lemma, seen in [Koc04] for instance:

Lemma 4.1.38. With A = Matn(k), then if ϵ : A → k is a counit giving a symmetric
Frobenius algebra structure, ϵ = c trkn for some nonzero c ∈ k.

Proof. Recall that, since trkn and ϵ both give Frobenius algebra structures, there is a unit
u ∈ A such that ϵ(x) = trkn(xu) for all x ∈ A. For ϵ to give a symmetric Frobenius algebra,
the Nakayama automorphism must be the identity, which implies u is in the center of A.
Therefore, since the center of A is isomorphic to k, we have our result.

4.1.2 Extended 2D TQFTs

In [SP09], Schommer-Pries classified k-Alg2-valued TQFTs for the extended cobordism cate-
gory for oriented 2D surfaces, providing the oriented version of the 2D cobordism hypothesis.
We give a simplified version here for the case of an algebraically closed field k. Define Frob
to be the symmetric monoidal 2-category whose objects are Frobenius algebras, whose 1-
morphisms are Morita contexts compatible with Frobenius algebras, and whose 2-morphisms
are isomorphisms of Morita contexts. Then the symmetric monoidal 2-category of oriented
2D TQFTs Fun⊗(Cob

or
2 , k-Alg2) is equivalent to Frob via the weak 2-functor that sends Z to

Z(+), where + denotes the positively oriented point.
Here is a brief overview of how some of this works. Suppose Z is such a TQFT. We get

some algebras and modules from the 0- and 1-morphisms:



CHAPTER 4. APPLICATIONS 191

Then from the cusps we can get a Morita context on A and Bop:

Cusps are certainly invertible, and the swallowtail singularity provides the adjunction rela-
tion.

One can observe that the Morse cap provides a function trAA → k and that the saddle
provides a function s : A⊗ A→ A⊗ A:

One can check that A→ trAA→ k gives a counit and the function A→ A⊗ A defined by
a 7→ as(1 ⊗ 1) defines a comultiplication, giving A the structure of a symmetric Frobenius
algebra. A reason the Morita context is compatible with the Frobenius algebras is that one
can turn a Morse cap inside-out (this is, in some sense, what the “proof by rotation” from
earlier was doing, but for a cylinder).

Furthermore, there is a map from trAA⊗ A to A:

It gives a map from trAA → Z(A), and it is an isomorphism. With this it is possible to
deduce that A is semisimple. By symmetry, B is also a semisimple Frobenius algebra.

Once one works out that a pair of semisimple symmetric Frobenius algebras with a
compatible Morita context is sufficient to define a TQFT, then Schommer-Pries uses a care-
ful analysis of the TQFT category and a Whitehead’s theorem for symmetric monoidal
2-categories to prove the equivalence.
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4.1.3 The data of a black-white TQFT

We now give a description of the data that goes into a black-white TQFT. Suppose that
Z is an k-Alg2-valued TQFT for BW2Cob, with k an algebraically closed field. There are
four algebras involved associated to the black and white points with positive and negative
orientation:

Ab = Z(+b) Aw = Z(+w)

Bb = Z(−b) Bw = Z(−w)

Since the uncolored cobordism category includes into BW2Cob as both monochromatic black
and monochromatic white surfaces, then it follows from Schommer-Pries’s theorem that
all four algebras have the structure of semisimple symmetric Frobenius algebras, and the
pairs (Ab, Bb) and (Aw, Bw) have associated Morita contexts compatible with the Frobenius
algebras.

There are also four modules associated to the 1-morphisms for color changes:

These have adjunctions from all the 2-morphisms of the following type:

In the terminology of [Lau], these are ambidextrous adjunctions, and as such their pairwise
compositions define four Frobenius algebras — it should be noted that these are Frobenius
algebras over one of the four point algebras rather than over k.

We leave the full analysis of black-white TQFTs for future work.

4.2 Surface graph invariants
In this section, we give a way to represent surface graph invariants from combinatorics as
extended black-white TQFTs with additional codimension-2 defects to represent edges. (As
a side note, explaining this carefully was the original goal of this thesis, but the detour
through the land of singularity theory turned into a longer adventure than anticipated!)

We give background on graphs, surface graphs, and their invariants from the combina-
torics literature, and in Section 4.2.6 we give an extended TQFT that computes a normal-
ization of the Krushkal polynomial.
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4.2.1 Conventions

A graph G = (V,E) is a set V of vertices and a set E of edges with a map E → V ×2/S2

sending an edge to the unordered pair of its endpoints. That is, our notion of a graph allows
loops and multiple edges. Unless otherwise specified, our vertex and edge sets will be finite.
An oriented graph instead has a map E → V ×2 assigning an ordered pair of endpoints to
each edge.

Each graph has a topological realization as a CW complex. Vertices and edges correspond
to 0-cells and 1-cells, respectively, and the map E → V ×2/S2 describes the attachment maps
for each edge. We will tend not to make a distinction between an abstract graph and its
topological realization. We presume we are working in an unspecified stratified smooth
category, where an embedding of a graph requires that all pairs of edges incident to a vertex
meet transversely.

A surface graph is an embedding G ↪→ Σ of the topological realization of a graph G into
the interior of a compact oriented surface Σ. Two surface graphs i : G ↪→ Σ and i′ : G ↪→ Σ′

are equivalent if there is an orientation-preserving diffeomorphism h : Σ → Σ′ such that
i′ = h ◦ i. Isotopies of maps G ↪→ Σ extend to equivalences.

A cellular or combinatorial embedding (or cellulation) G ↪→ Σ is a surface graph with Σ
closed such that the complement of a regular neighborhood of G in Σ is a disjoint union of
closed disks, called faces.

Up to equivalence, every cellular embedding G ↪→ Σ has a well-defined (geometric or
Poincaré) dual cellular embedding G∗ ↪→ Σ obtained from the dual cell structure, where the
faces of G correspond to the vertices of G∗, and the edges of G and G∗ are in one-to-one
correspondence. The surface Σ can be given a handle decomposition where the 0-handles
and 2-handles respectively correspond to the vertices of G and G∗ and where the 1-handles
correspond to the edges of both G and G∗, as illustrated in Figure 4.3.

A ribbon graph is a surface graph i : G ↪→ Σ such that i is a homotopy equivalence.
A ribbon graph can be thought of as a handle decomposition of a surface, all of whose
components have nonempty boundary, where the 0-handles and 1-handles correspond to the
vertices and edges, respectively. (Recall: a k-handle for a 2-manifold is Dk × D2−k. The
S0 × D1 boundary of a 1-handle is glued into the D0 × S1 boundary of the 0-handles.)
Figure 4.4 is an example of a ribbon graph with a handle decomposition.

Given a surface graph i : G ↪→ Σ, the restriction G ↪→ ν(i(G)) to the closure of a regular
neighborhood of G gives a ribbon graph. For cellular embeddings, this map has an inverse
given by gluing disks into the boundary components of the ribbon graph. Thus, when G ↪→ Σ
is either a cellular embedding or ribbon graph, we may refer to the faces F (G) and boundary
components ∂G for either case. As a small extension to this, for every surface graph G ↪→ Σ
we may refer to ∂G for the boundary of a ribbon graph restriction.

Given a subset A ⊆ E(G) of edges for a surface graph G ↪→ Σ, G − A denotes edge
deletion, which is the restriction (V (G), E(G) − A) ↪→ Σ. If e ∈ E(G) is not a loop, then
G/e denotes edge contraction, which is from collapsing e and its two endpoints into a single
vertex.
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Figure 4.3: A portion of a graph and its dual, with a compatible handle decomposition.

Figure 4.4: A genus-1 ribbon graph whose underlying topological graph is a theta graph.
Contrary to its portrayal, this is an abstract surface, and the crossing is merely an artifact
of its non-planarity.

For G a graph, the ith Betti number is bi(G) = rankHi(G), and we will elide parenthesis
and write bi(V (G), E(G)) for bi((V (G), E(G))). Given a surface graph G ↪→ Σ, the genus
g(G) is g(ν(i(G))), the genus of the corresponding ribbon graph, where for a disconnected
surface the genus is the sum of the genera of each component, and for a non-closed surface
the genus is the genus of the surface obtained by gluing disks into each boundary component.
In general, g(G) ≤ g(Σ) with equality iff G ↪→ Σ is a ribbon graph or cellular embedding.

At least for ribbon graphs and combinatorial embeddings, the relationship between the
notation commonly found in graph polynomial literature and this notation from algebraic
topology is given in Table 4.1. The correspondence comes from linear algebra of the incidence
matrix. If A is the oriented incidence matrix for an oriented graph G, with the columns and
rows of A corresponding to the edges and vertices, respectively, then

0→ Z|E(G)| A−→ Z|V (G)| → 0

is a cellular chain complex for G as a CW complex. Then with n(A) being the nullity of A and
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Table 4.1: Correspondence between the combinatorial notation and the topological notation
we use, where G ↪→ Σ is a ribbon graph or cellular embedding.

Combinatorial Topological

v(G) |V (G)|
e(G) |E(G)|
c(G) b0(G) = b0(Σ)
r(G) |V (G)| − b0(G)
n(G) b1(G)
bc(G) b0(∂G) = |F (G)| = b0(∂Σ)
c(G) + n(G)− bc(G) 2g(G)

r(A) being the rank of A, we have b1(G) = rank kerA = n(A) and b0(G) = rank cokerA =
|V (G)| − r(A). By definition, n(G) = n(A) and r(G) = r(A).

The complementary genus g⊥(G) for i : G ↪→ Σ any surface graph is g(Σ − ν(i(G))).
This is an abuse of notation, with g⊥(G ↪→ Σ) being more precise. A cellular embedding is
characterized by g⊥(G) = 0 with Σ being a closed surface. Similarly, the ith complementary
Betti number is b⊥i (G) = rankHi(Σ− ν(i(G))), by a similar abuse of notation.

Some useful identities between all these graph invariants are given in Appendix A.3.

4.2.2 Partial duality

In [Chm09], Chmutov defines general edge contraction for ribbon graphs and cellular embed-
dings by generalizing the fact for planar graphs that edge contraction corresponds to deleting
the edge from the dual graph. The main ingredient is a factorization of the graph dualization
operation. For an edge e of a ribbon graph G, the partial dual δeG is a ribbon graph with
the same edge set, but the handle attachments for the ribbon graph is manipulated like so:

The data for the handle attachments is known as an arrow presentation. This operation is an
involution in that δeδeG = G. For e and f distinct edges, δeδfG = δfδeG, and G∗ = δE(G)G,
where δE(G) is the composition of all δe for e ∈ E(G).

The general edge contraction is defined to be G/e = δeG − e, which has the following
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illustrated effect, depending on whether the edge is a loop:

Given distinct edges e and f ,

(G/e)/f = δf (δeG− e)− f = δfδeG− e− f
= δeδfG− e− f = (G/f)/e.

Therefore G/A for A ⊆ E(G) is well-defined.
We provide another explanation for Chmutov’s edge contraction. The following is a

generalization of the notion of a surface graph.

Definition 4.2.1. An archipelago on a closed oriented surface Σ is a collection of disjoint
islands, which are compact connected submanifolds of Σ, and edges, which are disjoint paths
in the complement of the islands, the endpoints of which intersect the boundaries of the
islands transversely. The union of the interiors of the islands is called land, the boundaries
of the islands are collectively the coast, and the complement of the islands is called sea. ♢

Remark 4.2.2. Surface graphs are in correspondence with archipelagos whose islands are all
disks. ■

There are two operations one may perform to an edge e in an archipelago G ↪→ Σ. The
first is edge deletion G − e ↪→ Σ, and the second is landfill G/e ↪→ Σ, where a regular
neighborhood of the edge is replaced by land. If e is not a loop, then this joins two islands
into one island, and if e is a loop, this adds a handle to the island. For example, a disk island
becomes an annulus.

Another operation one may apply to an archipelago is surgery in the land or sea, modi-
fying the surface while leaving the coast and edges the same. Any time there is an essential
loop in the land or sea disjoint from the edges, 1-surgery (which involves cutting along that
loop then gluing in two disks) reduces the genus of the surface. We can also add or remove
closed surfaces that are entirely land or sea. An archipelago from a surface graph, when
taken up to 1-surgery in the sea and up to removal of sea spheres, has a representative that
is a cellular embedding. The equivalence class for a surface graph is known as a virtual graph
in [MSM20].

Consider archipelagos up to 1-surgery in the land and up to removal of land spheres.
Then there is a representative archipelago that comes from a surface graph. Given a ribbon
graph G with a cellular embedding G ↪→ Σ, edge contraction G/e for e ∈ E(G) is from taking
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G/e ↪→ Σ up to 1-surgery in the land. G/e is the ribbon graph from the representative that
is a surface graph, as illustrated below:

Since (G/e)/f = (G/f)/e as archipelagos, we have another proof that (G/e)/f = (G/f)/e
for ribbon graphs.

4.2.3 The Krushkal polynomial and other graph polynomials

Many interesting ring-valued graph invariants f satisfy a deletion-contraction relation, which
for fixed constants a and b is a linear relation of the form

f(G) = af(G− e) + bf(G/e)

that holds for all graphs G and edges e of a particular type, such as non-loop or non-bridge
edges. Examples include the chromatic polynomial [Bir13, Whi32], the flow polynomial
[Tut47], the partition function of the Q-states Potts model in statistical physics [Wu82], and
the Jones polynomial of an alternating knot from its Tait graph [Thi87]. Tutte initiated the
study of graph invariants satisfying deletion-contraction relations [Tut47, Tut54], and the
Tutte polynomial TG(x, y) for a graph G = (V,E) is the “universal” polynomial invariant
that satisfies, for each edge e ∈ E,

• if e is a bridge, TG(x, y) = xTG/e(x, y); and

• if e is neither a loop nor bridge, TG = TG−e + TG/e.

With the normalization that TG(x, y) = yi if all i edges of G are loops, then it can be given
as a sum over all subsets of edges of G = (V,E):

TG(x, y) =
∑
A⊆E

(x− 1)b0(V ∪A)−b0(G)(y − 1)b1(V ∪A).
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When G ↪→ Σ is a planar cellular embedding, TG(x, y) = TG∗(y, x).
The Bollobás–Riordan polynomial BRG(x, y, z) for an (orientable) ribbon graph G =

(V,E) is the most-general polynomial invariant that satisfies the same two relations as the
Tutte polynomial but for ribbon graphs [BR01,BR02]. It, too, can be given as a sum:

BRG(x, y, z) =
∑
A⊆E

(x− 1)b0(V ∪A)−b0(G)yb1(V ∪A)zb0(V ∪A)+b1(V ∪A)−b0(∂(V ∪A))

=
∑
A⊆E

(x− 1)b0(V ∪A)−b0(G)yb1(V ∪A)z2g(V ∪A).

Notably, BRG(x, y, 1) = TG(x, y).
The Krushkal polynomial PG↪→Σ(x, y, a, b) is an invariant of surface graphs G ↪→ Σ that

extends the Bollobás–Riordan polynomial to have a duality relation [Kru11], and it is defined
by the sum

PG↪→Σ(x, y, a, b) =
∑
A⊆E

xb0(V ∪A)−b0(G)yk(V ∪A)ag(V ∪A)bg
⊥(V ∪A),

where for a surface graph H ↪→ Σ there is a homological invariant defined by

k(H) = dim(ker(i∗ : H1(H;R)→ H1(Σ;R))),

which satisfies k(H) = b1(H)−g(Σ)−g(H)+g⊥(H) [Kru11, 4.7]. Given a cellular embedding
G ↪→ Σ, there is a duality relation

PG(x, y, a, b) = PG∗(y, x, b, a).

The relationship to the Bollobás–Riordan polynomial is that for a ribbon graph or cellular
embedding G ↪→ Σ,

BRG(x, y, z) = yg(Σ)PG↪→Σ(x− 1, y, yz2, y−1).

Furthermore, TG(x, y) = yg(Σ)PG↪→Σ(x, y, y, y
−1). Using the identities from Proposition A.3.3,

PG↪→Σ(x, y, a, b) = x−b0(G)y−b0(Σ)
∑
A⊆E

xb0(V ∪A)yb
⊥
0 (V ∪A)ag(V ∪A)bg

⊥(V ∪A).

In this form, the duality relation for a cellular embedding is obvious.
Substituting out genus using those identities, this is

PG↪→Σ(x, y, a, b) = x−b0(G)y−b0(Σ)(a−1b)
1
2
|V |bg(Σ)−b0(Σ)∑

A⊆E

(xa)b0(V ∪A)(yb)b
⊥
0 (V ∪A)(ab−1)

1
2
|A|(ab)−

1
2
b0(∂(V ∪A)).

We use the following as our version of the Krushkal polynomial:
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Proposition 4.2.3. For G ↪→ Σ a surface graph with Σ a closed surface, the Krushkal
polynomial is a renormalization of

P ′
G↪→Σ(x, a, b, c) :=

∑
A⊆E

x|A|ab0(V ∪A)bb
⊥
0 (V ∪A)cb0(∂(V ∪A)) (4.2.1)

in the sense that

PG↪→Σ(x, y, a, b) = x−b0(G)y−b0(Σ)(a−1b)
1
2
|V |bg(Σ)−b0(Σ)P ′

G↪→Σ((ab
−1)1/2, xa, yb, (ab)−1/2).

4.2.4 An invariant from a TQFT

Let G ↪→ Σ be a surface graph with Σ a closed surface and G = (V,E). Given a TQFT Z :
BW2Cob→ k-Mod (or an extended TQFT Z : BW2Cob→ k-Alg2), we can construct a graph
invariant with values in k that has a “universal deletion-contraction rule.” If Z is an extended
TQFT, the invariant takes graphs-with-boundary and outputs bimodule intertwiners.

By Z(Σ, G) we will mean the value Z((Σ, ν(G))) ∈ k for (Σ, ν(G)) ∈ Mor(∅,∅), which
is from interpreting the given graph as the black region. Define

PZ
G↪→Σ(x) =

∑
A⊆E

x|A|Z(Σ, V ∪ A),

which comes from taking the following linear combination of elements along each edge of G:

More precisely, the edge expansion is an element of kMor(∅, X2) which is plugged into an
element of Mor(X

⨿|E|
2 ,∅) that comes from the rest of the graph.

Remark 4.2.4. This has a close connection to the medial construction (described in [EMM13]
for surface graphs). The complement in Σ of the union of a graph and its dual is a collection
of quadrilateral faces, two vertices of each coming from G and G∗. By taking the vertices
that do not come from either G or G∗ then taking edges through each quadrilateral that
connect them, we get a 4-regular graph called the medial graph. The medial graph’s faces can
be checkerboard colored: faces containing a G vertex are colored black and faces containing
a G∗ vertex are colored white. This is gives a “singular” morphism. The singularities may
be resolved in two ways to get an actual morphism, corresponding to either including or
excluding the edge from the set A. See Figure 4.5 for an illustration. ■
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Figure 4.5: (a) A local picture of a graph and its dual. (b) The medial construction, giving
a “singular morphism.” (c) The two ways to resolve the singularities so that the resulting
graphs are the black and white graphs for the resulting morphism.

The edge expansion should be thought of as being a projective linear combination that
we have immediately renormalized to eliminate an unnecessary variable. This particular
normalization is also analogous to the partition function of the Q-states Potts model.

Remark 4.2.5. Notice that this polynomial immediately generalizes to archipelagos (Defini-
tion 4.2.1). For an archipelago G ↪→ Σ, let land(G) be the land. Then we may define

PZ
G↪→Σ(x) =

∑
A⊆E

x|A|Z(Σ, land(G/A)),

which is a sum over all choices of landfilling or deleting edges from the archipelago. ■

Proposition 4.2.6. The polynomial PZ satisfies, for e ∈ E a non-loop edge,

PZ
G↪→Σ(x) = xPZ

G/e↪→Σ(x) + PZ
G−e↪→Σ(x).

If G1 ↪→ Σ1 and G2 ↪→ Σ2 are surface graphs, then

PZ
G1⨿G2↪→Σ1⨿Σ2

(x) = PZ
G1↪→Σ1

(x)PZ
G2↪→Σ2

(x).

And for the empty surface graph, PZ
∅↪→∅(x) = 1.

Proposition 4.2.7. Letting Z ′ : BW2Cob → k-Mod be the TQFT coming from reversing
the roles of the black and white regions, there is a duality relation for cellular embeddings
G ↪→ Σ given by

PZ
G↪→Σ(x) = x|E|PZ′

G∗↪→Σ(x
−1).
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Figure 4.6: Replacements for black and white triangles. Triangles without a boundary edge
receive a (co)multiplication for the corresponding Frobenius algebra, triangles with boundary
edge get two strands, one for the algebra and one for the boundary vector space

4.2.5 The Krushkal polynomial via a trace diagram

We can create a classic state sum TQFT (as in [FHK] or [LP]) to calculate the Krushkal
polynomial.

Let QB, QW , and Q∂ be non-negative natural numbers. We give the field k a Frobenius
algebra structure with ϵ(1) = 1. Then, let B be the Frobenius algebra kQB and W be the
Frobenius algebra kQW , both as direct sums of the Frobenius algebra k. Let V be a vector
space of dimension Q∂.

The B Frobenius algebra has the property that trace diagrams D with no boundary
strands evaluate to Qb0(D)

B , where b0(D) is the number of connected components in D when
thought of as a graph. Similarly for W (with Qb0(D)

W ) and V (with Qb0(D)
∂ ). In particular, the

Frobenius algebras B and W are special, that µ ◦ ∆ = id, which implies that in any trace
diagram we can delete non-bridge edges without changing the value — hence, the diagrams
reduce to trees, and using the identity axiom to contract edges one is left with a disjoint
union of vertices, each of which evaluates to the dimension of the Frobenius algebra due to
the choice of counit.

Given a black-white surface Σ, there exists a triangulation of it for which the boundary
of the black region is contained in the 1-skeleton and every triangle has at most one edge
from the boundary. If Σ has boundary components, then we can arrange for there to be no
contiguous edges of the same color. Then, using the replacements in Figure 4.7, we construct
a trace diagram associated to the triangulation. Note:

• The Frobenius algebras B and W do not depend in any way on the orientations, so the
trace diagram makes sense no matter how the pieces are connected up. An equivalent
construction here is to associate to each edge of the triangulation either B, W , or V
depending on whether it is an edge in the black region, an edge in the white region, or
an edge on the boundary of the regions, then for each face we associate a Kronecker
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delta with indices for each edge of the faces color, and finally for each vertex on the
boundary we associate a Kronecker delta with indices for the two incident edges.

• The black region induces an orientation on the boundary, which is why the boundary
vector spaces do not need an inner product for contraction — we can use the dual
pairing.

• The choice of triangulation does not matter since the Frobenius algebras are special
and since subdividing a boundary edge does not change what the V part of the trace
diagram evaluates to.

• Each boundary component yields a vector space of the form B, W , or (B ⊗ V ⊗W ⊗
V ∗)⊗n, where n is the number of incident black regions.

Hence, we may define Z : BW2Cob→ k-Mod to be the state sum TQFT constructed in this
way.

These replacements give

PZ
G↪→Σ(x) =

∑
A⊆E(G)

x|A|Q
b0(V ∪A)
B Q

b⊥0 (V ∪A)
W Q

b0(∂(V ∪A))
∂ = P ′

G↪→Σ(x,QB, QW , Q∂),

which is the version of the Krushkal polynomial in Proposition 4.2.3.

Remark 4.2.8. The TQFT extends the Krushkal polynomial to archipelagos. ■

Remark 4.2.9. The PZ polynomial also can be constructed for ribbon graphs by cellularly
embedding them. Because the white region is a collection of disks, we can be more economical
with our replacement scheme and create a trace diagram in the neighborhood of the graph
itself. In the following, the black curves correspond to V , the blue graphs to B, and the red
graphs to W :

Alternatively, we could place a red vertex in the center of each complementary cell in the
cellular embedding and run edges through the opening is the second term of the edge ex-
pansion. With this version we can see the duality relation for the Krushkal polynomial in a
very direct way. ■
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Figure 4.7: The values of the TQFT Z for which PZ gives our normalization of the Krushkal
polynomial from Proposition 4.2.3. Morphisms labeled “ id” stand for the obvious isomor-
phism. The missing generators from this list are all obtained from swapping the roles of
black and white.

4.2.6 An extended TQFT for the Krushkal polynomial

In this final section, we categorify the construction from Section 4.2.5 to show that there
exists some extended 2D TQFT that computes the Krushkal polynomial. As a quick remark
about what it means for the TQFT to compute the polynomial. In principle, one could
define a version of BW2Cob with 0-dimensional singularities between the black and white
regions, like in Figure 4.5, and then one can associate to this singularity a morphism that
expands to the PZ state sum that we have been working with.

Let B andW be the Frobenius algebras from the previous section of respective dimensions
QB and QW , and let V be a vector space of dimension Q∂. For simplicity in presentation,
assume that V is an inner product space, and let e1, . . . , eQ∂

denote an orthogonal basis.
Recall Sweedler notation, where if x ∈ B, we write ∆(x) =

∑
i x(1)i ⊗ x(2)i.

Both B and W are commutative Frobenius algebras, so they are equal to their opposites.
We will construct a TQFT for unoriented surfaces since the construction does not depend on
orientation, and then that way we can assign the same value to generators that are different
only in orientation.

With that said, define an TQFT Z : BW2Cob→ k-Alg according to Figure 4.7. Checking
that these satisfy the relations is mostly trivial. First, we have defined this using a pair of
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semisimple symmetric Frobenius algebras, and so from the Schommer-Pries classification we
only need to check relations involving the boundary. Going through relations in Figure 4.2:

• The “adjoint cancelation” corresponds to absorbing a counit for B, a unit for A, and
canceling the coeval/eval for V .

• The “boundary cusp slide” and “boundary fold slide” are trivial.

• The “boundary saddle slide” is just like the adjoint cancelation, but without needing
to change anything for V .

• The “boundary cup/cap slide” is similar, but the cup/cap is also a unit/counit.

Another argument we could make is that since we are tensoring the boundary in over k, we
can cut the surfaces open along the boundary and homotope each region to the boundary
without changing the assigned intertwiner.

Thus, we have a TQFT. With a little thought, we can see that on closed surfaces it
computes the same value as the construction from Section 4.2.5. A way to see it is using
the above observation about cutting the surface open along the boundary — the boundary
itself contributes a factor of Q∂ per component, and for a monochromatic component we can
puncture it without changing the value, and by puncturing it in the center of each vertex of
a triangulation we can view the component as being a trace diagram for the corresponding
Frobenius algebra.
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Appendix A

Additional material

A.1 Adequate homomorphisms
There is a version of Nakayama’s Lemma for families of modules over families of rings.
The lemma is essentially due to Mather, but other than some elements in [Mat69a] it went
unpublished (and then rewritten by Baas and left unpublished yet again), and then published
in some form by others, for example [Duf75], [Buc77] and [Dam84]. Our proof is adapted
from the one found in the appendix of [Ber08].

Damon has a theory of adequate systems of rings [Dam84], but it is universally quantified
over all modules, rather than the modules present in the family, which made it difficult for
this author to see where it was safe to relax the adequacy property without reproving things
from scratch as we do here. We remove generality that does not pertain to its use to analyze
cascades, and we expose internal details that have been relaxed as far as possible. This was
in an attempt to get a concrete bound on finite determinacy for singularities with a foliated
codomain; given the difficulty of finding a complete proof of this lemma, we include it here.
For convenience, we first state Nakayama’s lemma and a corollary.

Lemma A.1.1 (Nayakama’s Lemma). Let R be a unital commutative ring, and let I ⊆ R be
an ideal that is a subset of every maximal ideal of R (I is called a Jacobson ideal). Suppose
M a finitely generated R-module. We give a few formulations:

1. If N ⊆M is a submodule such that M = N + IM , then M = N .

2. If IM =M , then M = 0.

3. If N and N ′ are submodules of M and N ⊆ N ′ + IN , then N ⊆ N ′.

Proof. For the third, we have N + N ′ ⊆ IN + N ′, so applying the second for the quotient
module M/N ′ gives N +N ′ ⊆ N ′, hence N ⊆ N ′.
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Corollary A.1.2. Let A be a unital commutative algebra over R and let I ⊆ A be a Jacobson
ideal. Suppose M is a finitely generated A-module, N ⊆M is a submodule, and d, k ∈ N are
such that

d = dimRM/(Ik+1M +N) ≤ k.

Then IdM ⊆ N .

Proof. Let B =M/(Ik+1M +N), and consider the descending chain

B ⊇ IB ⊇ I2B ⊇ I3B ⊇ · · ·

Since B is a finite-dimensional vector space of dimension d, there must be some 0 ≤ i ≤ d
such that

I iB = I i+1B.

Since this means I(I iB) = I iB, then I iB = 0 by Nakayama’s Lemma (Lemma A.1.1), which
implies IdB = 0. Thus, IdM ⊆ Ik+1M +N . Applying the third formulation of Nakayama’s
Lemma using the Jacobson ideal Ik+1−d, we get IdM ⊆ N .

Lemma A.1.3. Let s ∈ N, let R1, . . . , Rs be unital commutative rings, and for each 1 ≤ i < s
let φi : Ri → Ri+1 be a ring homomorphism. Let I1 ⊆ R1, . . . , Is ⊆ Rs be Jacobson ideals
(see Lemma A.1.1) such that φi(Ii) ⊆ Ii+1 for all 1 ≤ i < s. For each 1 ≤ i ≤ s, let Mi and
Ni be finitely generated Ri-modules and let αi : Mi → Ni be an Ri-module homomorphism.
For each 1 ≤ i < s, let βi : Mi → Ni+1 be an Ri-module homomorphism over φi (that is,
βi(rm) = φi(r)βi(m) for all r ∈ Ri and m ∈Mi).

R1 R2 · · · Rs

M1 M2 · · · Ms

N1 N2 · · · Ns

φ1 φ2 φs−1

α1
β1

α2
β2 βs−1

αs

Let M =
⊕

iMi and N =
⊕

iNi, and define f :M → N by

f(m1, . . . ,ms) = (α1(m1), β1(m1) + α2(m2), . . . , βs−1(ms−1) + αs(ms)).

Suppose this system of rings and modules satisfies an adequacy condition: For each 2 ≤ i ≤
s, let N ′

i = {n ∈ Ni | n ∈ f(
∑

i≤j≤sMj)}, and suppose that whenever

Ni = N ′
i + βi−1(Mi−1) + Iiβi−1(Mi−1)

then

(1) Riβi−1(Mi−1) ⊆ N ′
i + βi−1(Mi−1) and

(2) Iiβi−1(Mi−1) ⊆ IiN
′
i + βi−1(Ii−1Mi−1).
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If N = f(M) +
∑

i IiNi, then (i) N = f(M) and (ii)
∑

i IiNi ⊆ f(
∑

i IiMi).
Keeping everything else the same, if N1 = 0 and adequacy condition (2) does not neces-

sarily hold for i = 2, then (i) N = f(M) and (ii')
∑

2≤i≤s IiNi ⊆ I2β1(M1)+f(
∑

2≤i≤s IiMi).

Proof. If s = 0 this is trivial, and if s = 1 this reduces to Nakayama’s lemma. We induct on
the number of nonzero modules in the diagram when s ≥ 2. If both M1 = 0 and N1 = 0, then
we can remove them and reindex everything, and otherwise we consider two cases: whether
N1 ̸= 0 or N1 = 0.

First suppose that N1 ̸= 0. Let N ′ =
⊕

2≤i≤sNs, and let f ′ :M → N ′ be the composition
of f and the projection onto N ′ (or equivalently f ′ = f − α1). Since we assume f(M) +∑

iMi = M , we have that f ′(M) +
∑

2≤i≤s IiNi = N ′. The adequacy condition is still
satisfied by this f ′ system since it does not involve α1, hence we may apply the induction
hypothesis to get

(i') N ′ = f ′(M) and (ii')
∑

2≤i≤s IiNi ⊆ f ′(
∑

1≤i≤s IiMi).

With ι : N2 ↪→ N ′ the natural inclusion, let M ′
1 = (ι ◦ β1)−1f(

∑
2≤i≤sMi), which is equiva-

lently

M ′
1 =

{
m1 ∈M1

∣∣∣∣∣ β1(m1) ∈ f

(
s∑
i=2

Mi

)}
.

We have α1(M
′
1) ⊆ f(M), since for all m′ ∈ M ′

1 there is an m ∈
∑

2≤i≤sMi with β1(m
′) =

f(m), and α1(m
′) = f(m′ − m). Also, we have α1(I1M

′
1) ⊆ f(

∑
1≤i≤s IiMi), since for all

r ∈ I1 and m′ ∈ M ′
1, because β1(rm′) = φ(r)β1(m1) and φ(r) ∈ I2, then by (ii') there is an

m ∈
∑

2≤i≤s IiMi such that φ(r)β1(m′) = f ′(m), so α1(rm
′) = f(rm′ −m).

We claim that it suffices to show N1 = α1(M
′
1). We see f ′(M) ⊆ f(M) since for m ∈M ,

f ′(m)− f(m) ∈ N1 = α1(M1) ⊆ f(M), thus f ′(m) ∈ f(m) + f(M) = f(M). For (i), we see
by (i') that

N = N1 +N ′ = α1(M
′
1) + f ′(M) ⊆ f(M),

and thus N = f(M). For (ii): Since I1N1 = α1(I1M
′
1), we see that f ′(

∑
1≤i≤s IiMi) ⊆

f(
∑

1≤i≤s IiMi) because for all m ∈
∑

1≤i≤s IiMi, then f ′(m) − f(m) ∈ I1N1 = α(I1M
′
1) ⊆

f(
∑

1≤i≤s IiMi), so f ′(m) ∈ f(
∑

1≤i≤s IiMi). Therefore, applying (ii'),

∑
1≤i≤s

IiNi = I1N1 +
∑
2≤i≤s

IiNi ⊆ α1(I1M
′
1) + f ′

(∑
1≤i≤s

IiMi

)
⊆ f

(∑
1≤i≤s

IiMi

)
.

We will show that N1 = α1(M
′
1) by showing N1 = α1(M

′
1) + I1N1, which suffices due to

Nakayama’s lemma since N1 is a finitely generated R1-module and I1 is a Jacobson ideal.
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Recalling the assumption N = f(M) +
∑

i IiNi, then by (ii'),

N = f(M) + I1N1 + f ′

(∑
1≤i≤s

IiMi

)

= f(M) + I1N1 + β1(I1M1) + f

(∑
2≤i≤s

IiMi

)
= f(M) + I1N1 + β1(I1M1).

Projecting onto the N1 component, we have N1 ⊆ α1(M1) + I1N1. Letting n1 ∈ N1 be
arbitrary, then there are some mi ∈ Mi for 1 ≤ i ≤ s as well as an n′

1 ∈ I1N1 and an
m′

1 ∈ I1M1 such that n1 = f(m1 + · · · + ms) + n′
1 + β1(m

′
1). Collecting the N1 and N ′

components, we have n1 = α1(m1) + n′
1 and 0 = β1(m1) + f(m2 + · · ·+ms) + β1(m

′
1). From

the second equation, we deduce m1 + m′
1 ∈ M ′

1. Thus, n1 = α1(m1 + m′
1) + n′

1 − α1(m
′
1)

has α1(m1 +m′
1) ∈ α1(M

′
1) and n′

1 − α1(m
′
1) ∈ I1N1, hence n1 ∈ α1(M1) + I1N1. Therefore

N1 = α1(M1) + I1N1, completing the N1 ̸= 0 case.
We now continue with the second case for the induction, which is that N1 = 0. Consider

the induced R2-module R2 ⊗R1 M1, where R2 is an R1-module via φ1. This is a finitely
generated R2 module, since if {ai}i is a finite generating set for M1 as an R1-module, then
{1 ⊗ ai}i is a finite generating set for R2 ⊗R1 M1. We define γ1 : R2 ⊗R1 M1 → N2 by
r ⊗m 7→ rβ1(m), which is well-defined because for r1 ∈ R1, r2 ∈ R2, and m ∈M1,

γ1(r2 ⊗ r1m) = r2β1(r1m) = r2φ1(r1)β1(m) = γ1(r2φ1(r1)⊗m).

We use this to construct a new system of rings and modules with fewer nonzero modules:

R2 R3 · · · Rs

(R2 ⊗R1 M1)⊕M2 M3 · · · Ms

N2 N3 · · · Ns

φ2 φ3 φs−1

γ1+α1
0+β2 α3

β3 βs−1
αs

We show that this satisfies the adequacy condition involving theN ′
i modules for 3 ≤ i ≤ s,

which are the same for this modified system. The property still holds for 4 ≤ i ≤ s, so we
just have to check i = 3. Since the relevant diagonal homomorphism is 0+β2, what we need
to show is exactly our assumed N ′

i hypothesis, so the condition is satisfied.
Let M ′ = (R2 ⊗R1 M1)⊕

⊕
2≤i≤sMi, and let f ′ :M ′ → N be defined by f ′|R2⊗R1

M1 = γ1
and f ′|Mi

= f |Mi
for 2 ≤ i ≤ s, which is the map analogous to f for this diagram. Then,

since im γ1 = im β1 = f(M1), we see f ′(M ′) = im γ1 +
∑

2≤i≤s f(Mi) = f(M), and thus
f ′(M ′) +

∑
i IiNi = N by the assumption that f(M) +

∑
i IiNi = N . Therefore we may

apply the induction hypothesis to get that

(i') N = f ′(M ′) and (ii')
∑

2≤i≤s IiNi ⊆ f ′ (I2 ⊗R1 M1 +
∑

2≤i≤s IiMi

)
.
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Note that we can equivalently write these as

(i') N = R2β1(M1)+ f(
∑

2≤i≤sMi) and (ii')
∑

2≤i≤s IiNi ⊆ I2β1(M1)+ f(
∑

2≤i≤s IiMi).

Recall that we have defined in the lemma statement the R2-submodule

N ′
2 = N2 ∩ f

(
s∑
i=2

Mi

)
=

{
n2 ∈ N2

∣∣∣∣∣ n2 ∈ f

(
s∑
i=2

Mi

)}
.

We claim it is sufficient to prove that N2 = N ′
2 + β1(M1) + I2β1(M1). Given this, by the

adequacy condition for N ′
2 we get

(1) R2β1(M1) ⊆ N ′
2 + β1(M1) and (2) I2β1(M1) ⊆ I2N

′
2 + β1(I1M1).

Since N ′
2 ⊆ f(M), by (i') and (1),

N = R2β1(M1) + f

(
s∑
i=2

Mi

)
⊆ N ′

2 + β1(M1) + f

(
s∑
i=2

Mi

)
⊆ f(M),

and hence (i) holds. Since N ′
2 is an R2-submodule and N ′

2 ⊆ f(
∑s

i=2Mi), then I2N
′
2 ⊆

f (
∑s

i=2 IiMi) because (φj ◦ · · · ◦ φ3 ◦ φ2)(I2) ⊆ Ij for all 3 ≤ j ≤ s. Thus, using (ii') and
(2), (ii) also holds:

s∑
i=2

IiNi ⊆ I2β1(M1) + f

(
s∑
i=2

IiMi

)
⊆ I2N

′
2 + f

(
s∑
i=1

IiMi

)
⊆ f

(
s∑
i=1

IiMi

)
.

Now we will show that we indeed have N2 = N ′
2 + β1(M1) + I2β1(M1) and

∑
3≤j≤sNj =

f(
∑

3≤j≤sMj). By assumption and by (ii') we have that

N = f(M) +
s∑
i=2

IiNi = f(M) + I2β1(M1) + f

(
s∑
i=2

IiMi

)
= f(M) + I2β1(M1)

= f

(
s∑
i=2

Mi

)
+ β1(M1) + I2β1(M1).

Intersecting each side with N2, we get N2 = N ′
2 + β1(M1) + I2β1(M1). This completes the

N1 = 0 case, and therefore the induction argument.

A.2 Symmetric monoidal categories
This section is a brisk review of symmetric monoidal categories, compact closed categories,
and symmetric monoidal functors. See [Sel] for a more in-depth overview of these concepts
and graphical notations.
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A monoidal category is a category C along with (1) a horizontal composition bifunctor ⊗ :
C×C → C, (2) a unit object 1 ∈ C, (3) a natural isomorphism ax,y,z : (x⊗y)⊗z → x⊗(y⊗z)
called the associator, and (4) natural isomorphisms λx : 1 ⊗ x → x and ρx : x ⊗ 1 → x
respectively called the left unitor and the right unitor. These must satisfy two conditions.
The first is the pentagon identity

((w ⊗ x)⊗ y)⊗ z (w ⊗ x)⊗ (y ⊗ z) w ⊗ (x⊗ (y ⊗ z))

(w ⊗ (x⊗ y))⊗ z w ⊗ ((x⊗ y)⊗ z)

aw⊗x,y,z

aw,x,y⊗idz

aw,x,y⊗z

aw,x⊗y,z

idw ⊗ax,y,z

The second is the triangle identity

(x⊗ 1)⊗ y x⊗ (1⊗ y)

x⊗ y

ax,1,y

ρx⊗idy idx ⊗λy

The point is that the set of objects for C has the structure of a monoid, but all the axioms
of the monoid are represented as isomorphisms in the category. The pentagon and triangle
identities guarantee that any sequence of re-parenthesizations and introductions or removals
of identity objects in a horizontal composition results in the same object, rather than an
object that is merely isomorphic (this is known as “coherence”).

A strict monoidal category is a monoidal category whose a, λ, and ρ morphisms are
identities. Every monoidal category is equivalent through monoidal functors (defined below)
to a strict monoidal category.

A symmetric monoidal category C is a monoidal category with a natural isomorphism
Bx,y : x ⊗ y → y ⊗ x called the braiding satisfying By,x ◦ Bx,y = idx⊗y and the hexagon
identity

(x⊗ y)⊗ z x⊗ (y ⊗ z) (y ⊗ z)⊗ x

(y ⊗ x)⊗ z y ⊗ (x⊗ z) y ⊗ (z ⊗ x)

Bx,y⊗idz

ax,y,z Bx,y⊗z

ay,z,x

ay,x,z idy ⊗Bx,z

An important example of a symmetric monoidal category is R-Mod, the category of
modules over a commutative ring R. The braiding BM,N : M ⊗ N → N ⊗M is given by
m⊗ n 7→ n⊗m. A special case is Vectk, the category of vector spaces over a field k.

A graphical calculus for working with (symmetric) monoidal categories is string dia-
grams. Horizontal compositions of objects and morphisms by horizontal juxtaposition, and
morphism composition is by vertical concatenation. Identity objects are suppressed, and
identity morphisms are represented by vertical lines. We take the convention that mor-
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phisms go from bottom to top. The braiding morphisms can be represented as follows:

The left-hand representation is as a “coupon,” and the right-hand representation suggests
certain valid topological manipulations. For example, the equation By,x ◦ Bx,y = idx⊗y
corresponds to a homotopy of an immersion of strings in the plane:

Naturality of the braiding is that, for every morphism f : x → y, the following diagram
commutes:

z ⊗ x z ⊗ y

x⊗ z y ⊗ z

idz ⊗f

Bz,x Bz,y

f⊗idz

A graphical representation of this is

Combining the hexagon identity with naturality applied to By,z yields another homotopy of
immersions of strings:

Therefore, the braiding yields representations of the symmetric group Sn → EndC(x
⊗n)

for every object x ∈ C and n ∈ Z≥0, where x⊗(n+1) = x⊗ x⊗n and x⊗0 = 1. This is what is
“symmetric” about a symmetric monoidal category. For an element σ ∈ Sn, we denote the
induced endomorphism as σ∗ : x⊗n → x⊗n.

An exact pairing between two objects x and y in a monoidal category C is given by a
pair of morphisms ϵ : x⊗ y → 1 and η : 1→ x⊗ y such that (ϵ⊗ idx) ◦ (idx⊗η) = idx and



APPENDIX A. ADDITIONAL MATERIAL 218

(idy⊗ϵ) ◦ (η ⊗ idy) = idy. In such an exact pairing, y is called the left dual of x and y is
called the right dual of x. (That is, x is left dual to y if the functor x⊗− is left adjoint to
y ⊗−, which is to say Hom(x⊗ z, w) ∼= Hom(z, y ⊗ w) naturally in z and w.) Graphically,

and

An autonomous category (or rigid category) is a monoidal category such that every object
has both a right and left dual, and a compact closed category is an autonomous symmetric
monoidal category. The graphical language for compact closed categories allows for strings
to reverse direction, with the understanding that a portion of a string labeled x in the reverse
direction corresponds to the dual object x∗, which is a well-defined notion since x and x∗∗

are naturally isomorphic. “Cups” and “caps” from backtracking correspond to the respective
η or ϵ for the exact pairing. Hence, the equations for duals are represented as

and

Furthermore, the relationship between the braiding, cups, and caps is that twists may be
removed:

Therefore, diagrams for compact closed categories are invariant under planar isotopies and
arbitrary string rerouting moves — that is, all that matters is what is connected by strings,
but not the route by which a connection takes place — where invariance means such moves
correspond to well-formed equations. This is in contrast with general braided monoidal
categories, where the strings might be knotted.

Example A.2.1. The category of finite-dimensional vector spaces over a field k is a compact
closed category. So is the category of finite-dimensional super vector spaces, which are Z/2Z-
graded vector spaces with braiding v ⊗ w 7→ (−1)|v||w|w ⊗ v for homogeneous vectors v and
w. ♢

A (strong) monoidal functor F : C → D between monoidal categories C and D is a functor
along with an isomorphism ϵ : 1D → F (1C) and a natural isomorphism µx,y : F (x)⊗F (y)→
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F (x⊗ y) subject to two conditions. The first is associativity

(F (x)⊗ F (y))⊗ F (z) F (x⊗ y)⊗ F (z) F ((x⊗ y)⊗ z)

F (x)⊗ (F (y)⊗ F (z)) F (x)⊗ F (y ⊗ z) F (x⊗ (y ⊗ z))

µx,y⊗id

aD
F (x),F (y),F (z)

µx⊗y,z

F (aCx,y,z)

id⊗µy,z µx,y⊗z

The second is unitality

1D ⊗ F (x) F (1C)⊗ F (x)

F (x) F (1⊗ x)

λD
F (x)

ϵ⊗id

µ1C ,x

F (λDx )

and
F (x)⊗ 1D F (x)⊗ F (1C)

F (x) F (x⊗ 1)

ρD
F (x)

id⊗ϵ

µx,1C

F (ρDx )

A (strong) symmetric monoidal functor F : C → D between symmetric monoidal cate-
gories C and D is a monoidal functor such that the following diagram commutes

F (x)⊗ F (y) F (y)⊗ F (x)

F (x⊗ y) F (y ⊗ x)

BF (x),F (y)

µx,y µy,x

F (Bx,y)

A monoidal natural transformation between two monoidal functors F,G : C → D is a
natural transformation φ such that the following two diagrams commute:

F (x)⊗ F (y) G(x)⊗G(y)

F (x⊗ y) G(x⊗ y)

φx⊗φy

µFx,y µGx,y

φx⊗y

and
1D

F (1C) G(1C)

ϵD ϵD

φ1C

Two monoidal categories are monoidally equivalent if there is an equivalence of categories
using monoidal functors and monoidal natural transformations.

Example A.2.2. With R a commutative ring, let F : Set→ R-Mod be the functor sending
a set to a free R-module with that set as its basis.

The category Set is a symmetric monoidal category with disjoint unions as the horizontal
composition and the empty set as the unit object, and the category R-Mod is a symmetric
monoidal category with direct sums as the horizontal composition and the zero module as
the unit object. With respect to these structures, F is a symmetric monoidal functor.

Also, the category Set is a symmetric monoidal category with cartesian products as the
horizontal composition and the one-point set as the unit object, and the category R-Mod is
a symmetric monoidal category with tensor products as the horizontal composition and R
as the unit object. With respect to these structures, F is a symmetric monoidal functor.

This is akin to ring homomorphisms being monoid homomorphisms with respect to two
sets of monoidal structures. ♢



APPENDIX A. ADDITIONAL MATERIAL 220

A.3 Topological graph identities
Many computations with graph polynomials involve the many identities between the various
topological invariants of the underlying spaces. As a reference, we give identities and gener-
ating sets of topological invariants for a few situations. With these we may tell whether two
graph polynomials are renormalizations of one another by rewriting expressions in terms of
a given generating set.

We will consider topological invariants to be functions G → Q with G the set of all
combinatorial objects under consideration. These form a vector space over Q, and it is in
this sense we will speak of linearly independent graph invariants.

A.3.1 Graphs

Consider a graph G = (V,E) and a subset A ⊆ E of edges. We use Betti numbers b0(G) for
the number of connected components and b1(G) for the dimension of the cycle space. By
Euler characteristics, the principal identities are:

b0(G)− b1(G) = |V | − |E|
b0(V ∪ A)− b1(V ∪ A) = |V | − |A|

Proposition A.3.1. Consider a graph G = (V,E) and a subset A ⊆ E(G) of edges. The
invariants |V |, |E|, b0(G), |A|, and b0(V ∪ A) are independent, and we may write

b1(G) = b0(G)− |V |+ |E|
b1(V ∪ A) = b0(V ∪ A)− |V |+ |A|.

Proof. The vectors (|V (G)|, |E(G)|, b0(G)) for G1 a graph with a single vertex, G2 a graph
with a single vertex and a loop, and G3 a graph with two vertices and an edge between them
are (1, 0, 1), (1, 1, 1), and (2, 1, 1), which are independent.

A.3.2 Compact subsurfaces

Let Σ be a closed orientable surface, B ⊆ Σ a compact subsurface, W = cl(Σ − B), and
σ = B ∩W . We use g for the genus of the given surface after being closed up.

• b0(Σ) = b2(Σ) and b0(σ) = b1(σ) by Poincaré duality.

• 2g(Σ) = b1(Σ) by definition.

• b0(B) + b1(B)− b2(B)− b0(σ) = 2g(B) by Euler characteristics.

• b0(W ) + b1(W )− b2(W )− b0(σ) = 2g(W ) by Euler characteristics.

• b2(B) + b2(W ) − b1(B) − b1(W ) + b1(Σ) + b0(B) + b0(W ) − 2b0(Σ) = 0 by the Euler
characteristic of the Mayer–Vietoris sequence for Σ = B ∪W , simplified.
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Krushkal in [Kru11] defines the invariant k of an embedding B ↪→ Σ to be

k(B ↪→ Σ) = dim(ker(H1(B;R)→ H1(Σ;R))).

The discussion in [Kru11, Section 5.1] applies to arbitrary subsurfaces (not just regular
neighborhoods of graphs) thus there are relations like [Kru11, (4.7)] for B and W :

k(B) = −g(B) + g(W ) + b1(B)− g(Σ)
k(W ) = −g(W ) + g(B) + b1(W )− g(Σ).

Proposition A.3.2. Let Σ be a closed orientable surface, B ⊆ Σ a compact subsurface,
W = cl(Σ−B), and σ = B ∩W . Then b0(Σ), g(Σ), b0(B), b0(W ), b2(B), b2(W ), g(B), and
g(W ) are independent with

b0(σ) = g(Σ)− b0(Σ) + b0(B)− g(B) + b0(W )− g(W )

b1(B) = g(Σ)− b0(Σ) + b2(B) + g(B) + b0(W )− g(W )

b1(W ) = g(Σ)− b0(Σ) + b2(W ) + g(W ) + b0(B)− g(B)

k(B) = −b0(Σ) + b2(B) + b0(W )

k(W ) = −b0(Σ) + b2(W ) + b0(B).

A.3.3 Surface graphs

Consider a surface graph G ↪→ Σ with Σ closed and G = (V,E). Then with B = ν(G) a
regular neighborhood of G, since b2(B) = 0, some of the identities from Appendix A.3.2 look
like

• b0(G) + b1(G)− b0(∂G) = 2g(G)

• b⊥0 (G) + b⊥1 (G)− b⊥2 (G)− b0(∂G) = 2g⊥(G)

• b⊥2 (G)− b1(G)− b⊥1 (G) + b1(Σ) + b0(G) + b⊥0 (G)− 2b0(Σ) = 0

• k(G) = −g(G) + g⊥(G) + b1(G)− g(Σ).

Proposition A.3.3. Let Σ be a closed orientable surface, G ↪→ Σ a surface graph with
G = (V,E), and A ⊆ E. Then b0(Σ), g(Σ), |V |, b⊥2 (G), |A|, b0(V ∪A), b⊥0 (V ∪A), g(V ∪A)
are independent with

b0(∂(V ∪ A)) = −|V |+ |A|+ 2b0(V ∪ A)− 2g(V ∪ A)
b1(V ∪ A) = −|V |+ |A|+ b0(V ∪ A)
b⊥1 (V ∪ A) = 2g(Σ)− 2b0(Σ) + b⊥2 (G) + |V | − |A|+ b⊥0 (V ∪ A)
g⊥(V ∪ A) = g(Σ)− b0(Σ) + |V | − |A| − b0(V ∪ A) + g(V ∪ A) + b⊥0 (V ∪ A)
k(V ∪ A) = −b0(Σ) + b⊥0 (V ∪ A)
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Proof. Since |V | − |A| = b0(V ∪ A)− b1(V ∪ A) and

b0(V ∪ A)− b1(V ∪ A) + b2(V ∪ A) + b0(∂(V ∪ A)) = 2b0(V ∪ A)− 2g(V ∪ A),

then using b2(V ∪ A) = 0 we can solve for b0(∂(V ∪ A)).

A.3.4 Cellular embeddings and ribbon graphs

Proposition A.3.4. Let G ↪→ Σ be a cellular embedding with G = (V,E), and let A ⊆ E.
Then b0(Σ), g(Σ), |V |, |A|, b0(V ∪ A), b⊥0 (V ∪ A), g(V ∪ A) are independent with

b0(∂(V ∪ A)) = −|V |+ |A|+ 2b0(V ∪ A)− 2g(V ∪ A)
b1(V ∪ A) = −|V |+ |A|+ b0(V ∪ A)
b⊥1 (V ∪ A) = 2g(Σ)− 2b0(Σ) + |V | − |A|+ b⊥0 (V ∪ A)
g⊥(V ∪ A) = g(Σ)− b0(Σ) + |V | − |A| − b0(V ∪ A) + g(V ∪ A) + b⊥0 (V ∪ A)
k(V ∪ A) = −b0(Σ) + b⊥0 (V ∪ A)
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A
k-Alg2 (Morita 2-category), 178
α (source of k-jet), 8

B
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C
Cobm (m-dimensional cobordism
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p (M) or C∞

p (ring of germs of smooth
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manifold germs from N (A) to
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C∞
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D
∆r
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∆r
M (fat diagonal), 36
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Diff(M,N) (diffeomorphisms), 39
Diffp(M) (group of diffeomorphism

germs), 45
Diffp(M)q (diffeomorphism germs), 45
Diffp(M ;N) (group of diffeomorphism

germs leaving N invariant), 144
domφ (domain of definition), 38
drk a (dropped rank), 57

F
F (k1 ≤ · · · ≤ kn) (pseudogroup for
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foliations), 40
F ({Ui}i) (pseudogroup for family of

integrable distributions), 40
Fun(C,D) (category of functors from C to

D), 14
Funlex(C,D) (category of left-exact

functors), 14

G
G (globe category), 159
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differentials in G), 39
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gSet (category of globular sets), 159

H
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57
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conditions), 58

J
jkfp (k-jet of f at p), 8
Jk(M,N) (k-jet bundle), 8
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Jk(M,N) (multijet bundle), 36
jkf (multijet extension), 36
Jkp (M,N) (k-jets of maps at p), 8

Jkp (M,N)q (k-jets of maps at p with
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Jkf (iterated Jacobian of f), 71
J(M,N) (infinite jet bundle), 12

K
kerU (kernel of a pro-open set), 22

M
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p ), 30

N
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24

P
P k
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Pro(C) (category of pro-objects), 17

S
S(f) (S-type singularity points of f), 74
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T kfp (kth order Taylor polynomial of f at
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Cerf singularity, 131
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representable, 14
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D
diagonal, 36
diffeomorphism, 39

group, 39
diffeomorphism germs, 45
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downward set, 59

generated by set, 59

E
enveloping algebra, 179
equivalent map germs, 47, 82

Cerf equivalence, 85
Cerf multigerms, 91
multigerms, 91

F
fat diagonal, 36
filtered

category, 13
colimit, 13

filtration, 39
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flag (partial), 39
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manifold, 40
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Frobenius algebra, 183
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special, 201
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symmetric, 182
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final, 19
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G
globe category, 159
globular halated manifold, 162
globular set, 159
Grassmannian, 39, 58

H
Hadamard Lemma, 30
halated manifold, 161
Hessian, 71

I
infinitesimal stability, 47
interchange moves, 122
intrinsic derivative, 69

second, 75
third, 78

iterated Jacobian, 71

J
Jacobian, 71
Jacobson ideal, 211
Jacobson radical, 184
jet, 8

bundle, 8
extension, 8
infinite, 12

K
knot shadow, 98

L
local coordinates

germs, 30
local diffeomorphism, 38, 45
local homeomorphism, 38
localization, 29

M
Malgrange preparation theorem, 32
meet, 58
monoidal category, 216
Morita 2-category, 178
Morita context

compatible with Frobenius algebras,
189

Morita equivalence, 188
Morse Lemma, 83
multigerms, 91
multijet

bundle, 36
extension, 36
transversality theorem, 37

N
Nakayama automorphism, 184

O
order filter, 13

P
plaque, 42
pro-objects

category of, 17
category of (second version), 18

pro-open set, 21
neighborhood of A, 24

pseudogroup, 38

R
radicular, 187
residual subset, 35
ring of germs of smooth functions

along A, 29
at p, 29

S
S-type singularity points, 74
semilattice, 58

bounded, 58
smooth manifold, 38
smooth manifold germ, 25

category of, 27
composition of smooth maps of, 26
smooth map of, 26

smooth map germ
along A, 27
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at p, 27
smooth map germs

parameterized, 33
socle, 184
stable

germ, 47
map, 45

suspension of germ, 92
symmetric power, 72
symmetric product, 72

T
Thom Transversality Theorem, 36
topological quantum field theory, 176
TQFT, 176
trace of module, 181
transition function, 38
transverse, 34

W
weak topology on C∞(M,N), 34
Weak Whitney Immersion Theorem, 94
Whitney C∞ topology on C∞(M,N), 34
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