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§0. Introduction. Some of the natural operators in differential geometry
are the Hodge-Laplace-Beltrami operator A on differential forms, the Kodaira~
Hodge-Laplace operator [ on differential forms with values in a holomorphie
vector bundle, and the Dirac operator D on spinors with values in certain vector
bundles. The latter two are quite versatile because one can vary the bundle.
In each case the operator is symmetric (formally self adjoint) and elliptic. If
the base manifold is compact, then the operator has well defined spectrum (z.e.,
is essentially self adjoint), which is discrete with finite multiplicities. The study
of those spectra is one of the developing chapters in modern geometry.

When the base manifold is noncompact these operators need not be essentially
self adjoint. However, they turn out to be essentially self adjoint, .e., to have
well defined spectra, when the riemannian or hermitian metric on the base mani-
fold is complete. Gaffney ([3], [4], [5]) proved A essentially self adjoint under
conditions that he showed to be automatic for complete riemannian manifolds.
Andreotti and Vesentini [1, §6] obtained estimates that show [ essentially
self adjoint over a complete hermitian manifold. Parthasarathy [7] stated that
one of the Andreotti-Vesentini estimates (see below) could be proved for D*
by a similar method. Here we prove that D and D? are essentially self adjoint
over a complete riemannian spin manifold. This has applications (¢f. §7-10
below) to the problem of explicit realization of unitary representations of Lie
groups, and we work in the generality suitable for construction of unitary
representations.

In §1 we recall the Clifford algebra construction for spin groups and spin
representations.

In §2 we establish the setting for our Dirac operators. Let ¥ be an oriented
riemannian n-manifold and a: K — SO(n) a Lie group homomorphism that
factors through Spin(n). The setting consists of a principal K-bundle Fx — Y
and a connection I'x on Fx , such that « sends Fx to the oriented orthonormal
frame bundle of ¥ and sends T’k to the riemannian connection. The case a: K =2
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Spin(n) is the classical spin manifold structure. We find criteria for the existence
of a “riemannian (K, a)-structure” (§x , I'x) similar to the standard spin
manifold condition.

In §3 we construct the Dirac operators associated to a riemannian (K, a)-
structure (Fx , T'x) on Y. Let « be a finite dimensional unitary representation
of K and U, — Y the hermitian vector bundle associated to Fx . Then our Dirac
operator D acts on the U,-valued spinors on Y. D is a first order elliptic operator.
In terms of a local moving orthonormal frame {e;} it has formula D(u) =
> e;+V.,(u) where “-” is Clifford product and W is covariant differentiation
specified by I'x .

In §4 we set up the Hilbert space of square integrable U,~valued spinors on Y,
and we check that D is a symmetric operator there with dense domain consisting
of the C°, spinors. In fact we prove a stronger symmetry result ((Du, v) =
(u, Dv) for u, v locally Lipschitz and one of them compactly supported) that
we need in §§5 and 6.

In §§5 and 6 we further assume that the riemannian metric on Y is complete.
Local regularization and an examination of the gradient of the distance function,
yields essential self adjointness of D in §5. Then in §6 we combine that with
an L,-norm estimate

ID@IF < ¢IDGIF + 7 il < © for ¢>0 and weC®

to prove essential self adjointness of D® That estimate is similar to the “Stamp-
acchia inequality’’ of Andreotti-Vesentini [1].

In §7 we discuss the space of square integrable Dirac spinors with values
in U, and indicate its role in construction of unitary representations.

In §§8, 9 and 10 we illustrate the realization of unitary representations on
spaces of Dirac spinors, for a nilpotent group (the Heisenberg group Nj), a
semisimple group (the universal covering group @ of SL(2; R)) and a non-
unimodular solvable group (a parabolic subgroup B of (). As it happens, essential
self adjointness of D® (thus D) is easy in these cases from classical function
theory. That is not the situation in general, although one can sometimes use [9].
At any rate, in each case the representations obtained are irreducible, and they
are precisely those of the relative discrete series. This means that for some
unitary character on the center of the group, they are subrepresentations of
the corresponding component of the left regular representation. In the
unimodular cases it means that we obtain precisely those irreducible repre-
sentations whose coefficients are square integrable over the group modulo
its center. That appears to be the general pattern.

I wish to thank P. Chernoff and O. Lanford for informative conversations on
self adjoint operators.

§1. Spin construction. Let p be a real n-dimensional vector space with
positive definite inner product (e, f). The Clifford algebra over p is Cliff (p) =



DIRAC OPERATOR 613

T(p)/I where T(p) is the tensor algebra and I is the ideal generated by all
e® e+ (e e)l,eep. Thusif {e;, --- , e,} is an orthonormal basis of p, then
CIiff (p) is the real associative algebra generated by {e;} with relations

1.1) ¢ =—1 and e;rertece; =0, 1=jk=n, jFk

It has basis {e;,-e;,, - e, :1 £ j1 < - < Snand 0 £ k £ n}; thus
dimension 2". Also Cliff (p) = Cliff* (p) + Cliff~ (p) sum of subspaces spanned
by products of even (resp. odd) number of the ¢; .

The map ¢ — —e of p extends uniquely to an involutive automorphism
z — % of Cliff (p). If z = e,, -+ e;, as above, then # = (—1)";, --- e;, . The
spin group is the multiplicative group Spin (p) = Spin (n) of all invertible
elements z ¢ Cliff (p) such that
1.2) ze CLff* (p), z-p-z*=1p and z-Z=1.

Spin (p) has vector representation » on p given by
1

(1.3a) v(x):p—p by v(x)e =z-e-z7.

That vector representation has image SO(p) = SO(n), special orthogonal group,
and kernel {=1}. Thus

(1.3b) v: Spin (p) — SO(p) is a 2-sheeted covering group forn = 2.

If n > 2 it is the universal covering group.

Suppose n = 2m + 1 with m = 1. Then SO(p) has center {I} so Spin(p)
has center v™(I) = {=%1]}.

Suppose n = 2m. Fix an orientation on p and define

(1.4a) €= e, - e, where {e;, -+ , €2} is an oriented orthonormal basis.
We note that SO (p) has center {£]} and we compute
(1.4b) €= (=D"v(—I) = {*e} and e:x = *x- ¢ for ze CLff* (p).

In particular if m > 1, then Spin (p) has center {1, d=e} which is cyclic Z,
for m odd, noncyeclic Z, X Z, for m even.
Left multiplication in the complexified Clifford algebra

Cliff (p)¢ = Cliff (p) ®= C
restricts to

(1.5a) 1*: linear representation of Spin (p) on CLff* (p)c¢ .

To decompose I* we fix an oriented orthonormal basis {e, , -+ , €,} of p and
define

a; = y;_176; for 1 =2j=<m n=2m or 2m- 1.

Then ¢ = 1 and a;-a, = a,-a; . Each left multiplication I*(z) commutes with



614 J. A. WOLF

every right multiplication y — y-a; . Thus Cliff* (p)c is direct sum of 2™ sub-
spaces

(1.5b) By = {yeCLff* (Ne:y-ai =qy, ¢ ==l 1<j=<m]
on which I*(Spin (p)) acts irreducibly. That decomposes
(1.5¢) I* is direct sum of 2™ irreducible representations of Spin (p).

Suppose n = 2m - 1. Then the irreducible summands of [* all are equivalent.
Thus dim¢ CLff (p)e = 2°™** gives us

(1.6) I* = 2"s where s is irreducible and of degree 2™.

The representation s is the spin representation of Spin(p) = Spin(2m -+ 1).
Suppose n = 2m. Retain (1.4) and (1.5). If y e E and r is the number of ¢;
equal to —1, then

Fy = ey = £yre=£y:a; - Gt " = £(—=1)"7""y.
This scalar value on ¢ determines the representation, so
(1.7a) I* =2"%, s =s"@s", s*irreducible of degree 2™*
where the orientation of p distinguishes s™ and s~ by
(1.7b) s*(e) = 7™ and s*(—1) = —1I.

The s* are the half spin representations of Spin (p) = Spin (2m) and s = s* @ s~
is the spin representation.

Multiplication in Cliff (p)¢ restricts to two maps
(1.8a) i po & CLff* (p)¢ — CLff* (p)c .

Left multiplication by an element of po commutes with right multiplication
by any a; . Thus, in the notation (1.5b),

(1.8b) 7 pe @ E% — E7 linear isomorphism.
If we denote

(1.92)  S: representation space of the spin representation s,
then (1.6) and (1.7) show that & induces maps

(1.9b) u: pe @ S — 8 linear isomorphism.

In case n = 2m we further denote

(1.10a) S*: representation space of s*;s0 S = S* @ S~.
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Then (1.7b) and the calculation just before (1.7a) show that
(1.10b) p = u" @ p where p*: po Q 8* — 87 linear isomorphisms.

We will need the multiplication maps u and p* for construction of the Dirac
operators.

§2. Differential-geometric preliminaries. We work over an oriented =-
dimensional riemannian manifold Y. Thus the bundle #: § — Y of oriented
orthonormal frames is a principal SO (n)-bundle. Let

2.1) a: K — SO (n) Lie group homomorphism that factors through Spin (n).

To define our Dirac operators, we must lift both the bundle =: § — Y and its
riemannian connection to a principal K-bundle over Y. This will entail some
restrictions on K and a.

By smooth (K, «)-structure on Y we mean a principal K-bundle 7x : 5 — Y
such that bundle projections are related by a commutative diagram

Fe—2
(2.2 k\ ©  with @ given by (2.1) on each wx-fibre.
Y

By spin structure we mean a smooth (Spin (n), v)-structure. Since a factors
through Spin (n), every (K, a)-structure specifies a spin structure.

It is easy to enumerate the smooth (K, a)-structures in sheaf language.
If A is a Lie group write A — Y for the sheaf of germs of C* functions from
Y to A. Then the set of all equivalence classes of principal A-bundles over Y
is in one to one correspondence with the elements of the cohomology set H*(Y'; A).
In effect, the transition functions of a bundle form a cocycle relative to any
locally trivializing open cover, and equivalence modifies the cocycle within
the same cohomology class. Now denote

(2.3) 7¢ H'(Y; SO(n)): element corresponding to =: § — Y
and
(2.4) a4 : H(Y; K) —» H'(Y; SO(n)) coefficient map defined by a.

Then the smooth (K, a)-structures on Y are in one to one correspondence with
the elements of the (possibly empty) set az'(7).

If « has kernel L that is central in K, we have an exact diagram

1
l
2.5) 1-L—->K—->K/L—-1

l
SO(m)
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and that gives an exact cohomology diagram
{1}
, l
(2.6) — HY(Y;L) 5 H'(Y; K) = H(Y; K/L) 5 H*Y; L).
il
H'(Y; SO(m))

Thus there is a smooth (K, a)-structure if and only if () » = j(+/) and (ii)
8(7) = 0; and in that case they are enumerated by +H'(Y, L). For example,
if Y is connected this says that there is a spin structure just when the Stiefel-
Whitney class 6(r) = w,(Y) is zero, and in that case it says that the spin struc-
tures are enumerated by H'(Y; Z,).

Now fix a smooth (K, a)-structure =z : Fx — Y. We see about lifting the
riemannian connection from & to Fx . If I'x is a connection on ¢ : Fx — Y we
recall that &(Tk) is the connection on 7: § — Y such that the a(I'k)-horizontal
space at a(f) is the a-image of the I'r-horizontal space at f ¢ Fx . In other words,
if wg is the connection form of I'k , then a-wg is the @*-image of the connection
form of @(T'x). If @(I'k) is the riemannian connection on =: § — Y, then we say
that (Fx , I'x) is a riemannian (K, a)-structure on Y.

A smooth spin structure specifies a riemannian spin structure. For over every
component of Y, @ Fx — F is a (two sheeted) covering, so the riemannian
connection lifts from & to F . But in general one needs some conditions.

Denote Lie algebras by small German letters, so

2.7 f is the Lie algebra of K and I is its ideal for L = kernel (a).

2.8. Lemma. Suppose that ¥ = | @ m direct sum of ideals. Let T be the
riemannian connection on § and w its connection form. Then the following conditions
are equivalent.

1. Fx has a connection T'x such that a(T'x) = T.

2. a(K) contains the holonomy group of every component of Y.

3. The restriction of v to a(Fx) takes values in a(¥).

Let Tk be one connection on Fx with a(Tx) = T, and let wx be its connection form.
If T} is another connection on F¢ , then a(T'%) = T if and only if T} has connection
form wg + N where \ is an l-valued linear differential form on Fx that annihilates
the vertical spaces.

Proof. Given (1), let wx be the connection form of I'x , 50 @ wx = a*(w).
Then a*(w) takes values in a(f). Now (2) follows because the values of w|a(Fx)
are the values of a*(w).

Given (2), a(Fx) is a sub-bundle of & stable under the riemannian parallelism,
8o (3) follows from the Holonomy Theorem.

Assume (3) and denote n = &*(w). Then 7 is a linear differential form on Fx
with values in a(f). By hypothesis f = [ @ m we may view 5 as having values
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in m. If £ e  then ¢ denotes the corresponding vertical vector field on Fx .
Now, for every f e Fx ,

n(E) = 0ifgel and n(E) = tiffem.

Choose a K-invariant riemannian metric on § such that {¢ :£e(} L {£ :£e m}
for every f e Fx . Define an [-valued linear differential form 8 on Fx by

BE) = tifteland B({E £ 1}') = 0.

Then wg = n @ Bis a f-valued linear differential form on Fx such that wg(t}) = ¢
for all £ ¢ f, and such that the zero-spaces of wxz form a K-invariant distribution
I'x on Fx . Now I'g is a connection and wy is its connection form, and a(T'x) = T’
because a:wx = 7 = a@*(v).

We have shown (1), (2) and (3) equivalent.

Let T'x and T/ be connections on Fx , wx and wyf their connection forms. Then
wx and o/ agree on vertical vectors, sending £} to £ e . Further a(I'sx) = a(T'%)
precisely when a-wx = «a-wl , t.e., when wt — wg takes values in I. The last
assertion follows. Q.E.D.

Note that the hypothesis that I be a direct summand of f, is automatic
if (i) L is discrete or (ii) f is reductive. If L is discrete, Lemma 2.8 shows that
there is at most one riemannian (K, a)-structure.

We summarize as follows, retaining the notation (2.3) through (2.7).

2.9. Proposition. Let | be a direct summand of §. Then there is a riemannian
(K, a)-structure on Y if and only if

(2.10a)  a(K) contains the holonomy group of every component of Y
and
(2.10b) a3' (1) s not empty.

If L is central in K and if (2.10a) holds, then v = j7'(7) exists and (2.10b) is
equivalent to

(2.10c) 57 (r) = 0.

§3. Definition of Dirac operators. Y is an oriented n-dimensional riemannian
manifold and a: K — SO (n) is a Lie group homomorphism that factors through
Spin (n). We suppose that ¥ has a riemannian (K, «)-structure, and we fix
one such structure (F¢ , I'x).

Viewing « as a unitary representation K — U(n), we have the vector bundle
associated to Fx :

(3.1) J-Y complexified tangent bundle.
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As o factors through Spin (n) we have

/&,Spin (n)
K v commutative diagram.
* T80m)

The vector bundle associated to Fx by s-a is
(3.2a) §$—»Y spin bundle.
If nis even, then s = s* @ s” andso 8§ = 8" @ $~ where
(3.2b) oY half spin bundles.
Now we fix
(3.3a) «: finite dimensional unitary representation of K
and denote
(3.3b) V. — Y vector bundle associated to Fx by «.

All these bundles carry hermitian metrics because they come from unitary
representations of K.

The connection T'x specifies covariant differentiation of sections of vector
bundles associated to Fx . Writing C”(-) for C” sections, we denote the covariant
differentials by

(3.4a) V:C°8 R V) — C°(3*Q 8§ ® V,) in general,
(3.4b) V5 C°((* Q V) — C°(5*® 8* ® V,) forn even.
The hermitian metric on 3, <.e., the riemannian metric of Y, specifies
(3.5a) h: 3* — 3 conjugate-linear bundle isomorphism.
The map (1.9b) on fibres specifies
(3.5b) g: 3@ 8 — 8 bundle isomorphism.

Similarly, if n is even, then 7 = g* @ g~ where (1.10b) on fibres gives
(3.5¢) A*: 3Q 8* — 87 bundle isomorphism.
By definition, the compositions

ER®1)-(P®1®1)-V in general,

@R hR1R1L1-V* ifniseven

are the Dirac operators
(3.6a) D:C°(8®V,) = C°(8®V,) in general,
(3.6b) D*:C°(8* @ V,) = C°(8F ® V,) forn even.
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We refer to sections of § X) U, and $* Q) U, as spinors on Y with values in
U, . Those annihilated by the Dirac operator are Dirac spinors on Y with
values in O, .

3.7. Lemma. The Dirac operators are elliptic.

3.8. Lemma. Let {e,, -+ , e,} be an orthonormal moving frame on an open
set U C Y. Then the Dirac operators are given on U by
3.9) D) = 2. &V, V;=V.,
1sisn

where ‘-’ denotes Clifford multiplication.

Proof. The orthonormal frame is a trivialization of § over U, thus also
trivializes Fx and the vector bundles over U. Let {¢;, -+ , t,} be sections of
8 @ U, over U that give a basis of the fibre at every point. In the frames {e;},
{t,} the connection form (w?) is a matrix of 1-forms on U such that V(t,) =
St ® ity e, Vi) = g ie)t, . Let u = >, ft, section of 8§ ® U,
over U. Then

V@) = ; {dF@t,+ ;wz@ta} and V() = ; {e:(™), + ﬂZw:(ei)tq}.
Thus

D) ; {r@f)-t, + 1 ; h(wy) - ta}

Z {dfe)ei-t, + f ;w,?(ei)ef-ta} = ’Zei‘vi(u)-

i

That proves Lemma 3.8. If 8 ¢ 3* now the symbol o(D) (6) is Clifford multipli-
cation by k(6), which has square h(8)-h(8) = —<(h(8), h(6)) = — |[6])>. Thus,
if 6 £ 0 real o(D) () is bijective. This proves Lemma 3.7. Q.E.D.

§4. Symmetry of D on square integrable spinors. Y is an oriented rieman-
nian n-manifold with a fixed riemannian (K, a)-structure (Fz , I'x). We have
a finite dimensional unitary representation « of K, and D is the Dirac operator
C°(s ® V,) — C°(8 Q V,) on spinors with values in U, .

If f is a (Borel-) measurable function on Y, then [y f(y) dy denotes its integral
against the measure specified by the orientation and riemannian metric of Y.

If W — Y is a hermitian vector bundle, and if ¢ and ¢ are measurable sections,
then the pointwise inner product (¢, ¥), = (¢(y), ¥(¥)) is a measurable function
on Y. The global inner product is

(4.1a) @ = [ @ v

As usual, the L;-norm is ||¢||* = (¢, ¢) < =, and
(4.1b) L,(W) = {measurable sections ¢ of W: ||p|| < =}
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is a Hilbert space with inner product (4.1a). It is important to note that the
space C% (W) of smooth compactly supported sections, satisfies

(4.1c) C% (W) is dense in L,(W).
We now have Hilbert spaces
(4.2) L,(s ® V,) and L.(8* ® V.):
square integrable spinors on Y with values in O, .

The Dirac operators may be viewed as densely defined linear operators on these
spaces with domains C%(8 & U,) and C%(8* & U,). In this §4 we prove that D,
with domain C%(8 Q) V,), is a symmetric operator on L,(8 & V,). More precisely
we will prove

4.3. Proposition. Let u and v be sections of 8 Q) U, such that
(1) u has compact support and satisfies a Lipschitz condition,
(ii) v s locally Lipschitz on a neighborhood of support (u).
Then (D(u), v) = {u, D@®)).

We set up the procedure for integration by parts used in the proof of Proposi-
tion 4.3.

Let £ be a C' tangent vector field on an open set U C Y. If s and ¢ are locally
Lipschitz sections of 8§ & U, over U, we claim

(4.4) E(s, 1) = (Ve(s), &) + (s, V(9)) ae. in U.

This holds at points of U at which both s and ¢ are differentiable, because
8 ® U, is associated to Fx by a unitary representation of K. Since s and ¢ are
each differentiable a.e. in U, now (4.4) follows.

Let £ be a Lipschitz tangent vector field on an open set U C Y. Its divergence
is the function div (¢) on U that is contraction of the covariant differential V.

In moving orthonormal frame {e;, - - - , e,}, if £ is differentiable at y,
(4.52) div ¢)(y) = 1525: (Vi@,e), Vi=V..

Let @ be an open set with compact closure & C U, whose boundary 62 = & — Q
is the union of a smooth (n — 1)-manifold 6@’ and a singular set 92" of dimen-
sion £n — 2. Let » denote the outward unit normal on 69’. Orient 42’ so that
it has volume element db = 6* A --- A 6" whenever {e;} is an orthonormal
moving frame with » = e,| sg-such that, in the dual co-frame {6}, ¥ has volume
element dy = ' A --- A 60" The Lipschitz condition ensures that £ is dif-
ferentiable a.e. and div (¢) is measurable. The divergence theorem says

(4.50) [div @@ ay = [ @ an.
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In effect, £ = D t'e; locally and the Cartan structure equations give
4.5¢)  dOo(=1DTER A - AFTTAGTA - A
=div ¢)0' A --- A 6"

Now (4.5b) follows from (4.5¢), Stokes’ Theorem and partition of unity.
Retain U, ¢ and Q as above. Let f be a Lipschitz function on U. Substituting
ft for £ in (4.5a) we get

(4.6a) div (f§) = £(f) + fdiv ¢) a.e.in U.
If we replace ¢ by f¢ in (4.5b), that says

wor  [eoway = [ 10Emd - [ 10)div @0 d,

which is our formula for integration by parts. In particular, if f has compact
support in 2, then the boundary term drops out and we are left with

(469 [cow ay = - [ 10) div ©@) av.

One more preliminary remark. If £ is a tangent vector at y e Y, then left
Clifford multiplication by ¢ has square — (¢, £), on the fibre (§ Q) U.), . Polar
decomposition thus implies

(4.7) (€5 thy + (s, £1), =0 for s,te(SQV),.

Proof of Proposition 4.3. It suffices to consider the case where support (u)
is contained in an open set that carries a moving orthonormal frame. For then
a partition of unity argument gives u = u, + --- + u, where each u; is Lip-
schitz with compact support in an open set that carries an orthonormal moving

frame, so (D(u), v) = 2 (D(w), v) = 2 (ws, D)) = (u, D@)).

Now u has compact support in an open set U that carries an orthonormal

moving frame {e, , --- , e,}. Using (3.9), then (4.7), then (4.4), then (4.6¢c),
we compute

(D), v)

2 [ Vi, o, d

=% [ (i, 0, dy

~% [ et eddy+ T [ @ Viteromdy
-2 [ e dive®d+ T [ @ Vi) dy

= [ @ T (90 + div es-ob), dy.
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Thus the adjoint of D is given on U by the formula
(4.8) D*@) = 2. (Vi + div () v).

1sisn
Using (3.9) and (4.8) one sees that the first order terms cancel in D* — D.
In other words,

(D* — D)(fv) = f(D*¥ — D)(v) for f and v differentiable.

Thus [(D* — D)()](y) is determined by v(y). To compute it, we change v and
{e;} in a neighborhood of y (but not at y) as follows. We replace v (resp. e;)
by the spinor (resp. vector) obtained by parallel translation of v(y) (resp. e;(y))
out along geodesic rays that start at y. That change made,

Ve; , Vvand V(e;-v) all vanish at y.

Thus every term vanishes at y in the expression of (D* — D) (v) by formulae (3.9)
and (4.8), so (D* — D) (v) vanishes at y. As y was arbitrary now (D* — D)(v) = 0.
Thus (D(u), v) = (u, D*@)) = {(u, D(@)). Q.E.D.

One can add a potential and consider operators D; ,(u) = D(u) + i-u + fu
where £ is a real tangent vector field, f is a real function, and ¢ and f are locally L, .
Then again (D; ,(u), v) = (u, D; ;(v)) if » and v are Lipschitz and one of them
is compactly supported, so D; , is a symmetric operator on L,(8 @ U,) with
dense domain C%(8 @ V,).

§5. Essential self adjointness for the Dirac operator. Y is an oriented
riemannian n-manifold with a fixed riemannian (K, a)-structure, and D is the
corresponding Dirac operator on 8 &) U, . We have just seen that D is symmetric
as operator on Ly(8 & V,) with dense domain D(D) = C%(8 ® V.).

5.1. Theorem. If the riemannian metric of Y is complete, then D is essentially
self adjoint, i.e., the closure D of D from C%(8 & U,) is the unique self adjoint
extension of D.

Proof. We write L, for L,(8 ® 0,) and C* for the domain D(D) = C%(8 ® V.)
of D. Then the adjoint D* of D has domain

D(D*) = {weL,: 3 weL, with (Du,w) = (u,w’), al ueC%}
and there D*(w) = w'. The closure D of D has domain
D(D) = {lim u, : {u,} C C% is Cauchy and {Du,} is Cauchy}

and there D(lim u,) = lim D(u,). D* and 1:) are well defined because D is sym-
metric with dense domain. D is symmetric, D = D** C D*, and D is the minimal
closed extension of D. If we prove

(5.2) D(D*) C D),
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then we will have D = D*, so D* = D** = D; then D will be self adjoint so D
will be essentially self adjoint.

D(D*) carries the norm N (w) = {||lw||* + ||D*w||*}'/*. The containment (5.2)
is equivalent to
(5.3) C* is dense in D(D*) with the norm N.

We will prove Theorem 5.1 by proving (5.3).
Denote D.(D*) = {weD(D*): whas compact support}. Then C C D.(D*) C
D(D¥*). We are going to prove

(5.4) C? is dense in D.(D*) with the norm N.

Let w e D.(D*). Choose a locally finite coordinate cover {U,} of Y, closures U,
compact, and a C” partition of unity {f.} with support (f.) C U, . We may
suppose that {1, 2, --- , I} are the only indices ¢ such that support (f;) meets
the compact set support (w). Then w = w, + -+ 4+ w, where w; = f,w has
compact support in U, . Fix local trivializations of 8 & U, over U; and local
coordinates z; : U; — R". Then w; goes to a compactly supported distribution
on z,;(U,) with values in the typical fibre S Q) V, of 8 &) U, . Convolution with
a C” approximate identity on R" gives sequences {u}; of C% functions z,(U,) —
S & V., which, re-interpreted as C, sections of 8 Q) U, , satisfy N(w; — uy) <
1/k. Now w, = un 4 -+ 4 u; e C% satisfy N(w — w) < U/k, so {up} — w
in the norm N. That completes the proof of (5.4).

If Y were compact, we would have D.(D¥*) = D(D*), and Theorem 5.1 would
be proved. For the general case we now use the methods of Gaffney [4] and
Andreotti-Vesentini [1] to obtain the estimate (5.8) below. That estimate will
enable us to prove

(5.5) D.(D*) is dense in D(D*) with the norm N.

Combining (5.4) and (5.5) we will have (5.3) and so Theorem 5.1 will be proved.

If » and v are measurable sections 8 (X) U, over a Borel set B C Y, we denote
(u, v)p = [ (u, v), dy and |[ul|z = (u, u)s .

Fix y, ¢ Y and let Y, be the topological component of ¥ that contains it.
If ye Y, then p(y) denotes riemannian distance from y, to y. Triangle inequality
in the metric space Y, says |p(y) — p(z)| < distance (y, z). Thus p is locally
Lipschitz, hence differentiable a.e., and at points of differentiability its gradient
has length |grad (p)| < 1.

Ifr>0let B, = {yeY,:p(y) < r}. Completeness of ¥ says that the open
set B, has compact closure B, .

Choose a C* function a: R' — [0, 1] such that a(— «, 1] = 1 and a[2, ») = 0.
Denote M = max |a’(t)| . If r > 0 define b, : Y, — [0, 1] by b,(y) = a(e(y)/7).
Then b, = 1 on B, and support (b,) C B,, . From the corresponding properties
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of p, b, is locally Lipschitz, thus a.e. differentiable, and at points of differentiability
it has

5.6) jgrad ()1 = |2 0o/ grad ()] D7/,

Fix w ¢ D(D*) and consider the sequence {w,} C D.(D*) given by w, = bw
(k =1, 2, ---). Here we are using completeness of ¥ so that the set B, con-
taining support (b;) is compact. Using (3.9) to compute locally in an orthonormal
moving frame {e,}, Proposition 4.3 gives D*(w,) = D*(bw) = 2 ¢;-V;(byw) =
> e+ (ei(b)w + b, V;(w)) = grad (b)) -w + b.D*(w) where b, is differentiable.

Thus
6.7 D*(w,) = grad (by)-w + b.D*(w) a.e. on Y, .
Using (5.7) and b, = 1 on B, we see

[[D*w — w[r. = [|(1 — b)D*(w) + grad (b)-wl|%,

M2
< 1ID*@) ey + 35 (1013
That gives us
M2
6.8 N lr. —w)* = [[D*W)|[ve-ss + [0l re-ss + T [l0][5. -

Let {Y;} be the topological components of Y, so L, is discrete direct sum of
the Ly((S ® V.)|y,)- As X, |[w||%, = |Jw|* < «, only countably many w)|y, are
nonzero, so there is a (possibly finite) sequence {Y,} of components of ¥ with
w = 2 wly, and D*(w) = > D*(w)|y, . If we set ¥, = Y, in (5.8) we get a
sequence {v,,}; C D.(D*) of elements supported in Y, such that N(w|y, —
va1)®> < 1/2°. Then the u; = Y 12.4: ¥o: form a sequence in D,(D*) such that
Nw — u)* £ 2 es: ||w]|%, + 1/1. We conclude {w;} — w in the norm N. That
completes the proof of (5.5). Now Theorem 5.1 is proved. Q.E.D.

§6. The Dirac operator has essentially self adjoint square. Y is a complete
oriented riemannian n-manifold with a fixed riemannian (K, a)-structure, and
D is the corresponding Dirac operator on 8 ) U, . We have just seen that D is
essentially self adjoint as operator on L;(8 & U,) with dense domain C%(8 X U,).
For applications it is useful to know that D* has well defined spectrum.

6.1. Theorem. If the riemannian metric of Y is compleie, fhen 122 18 essentially
self adjoint with domain C%(S X V,), and D* has closure D*D = D*.

Our proof consists of combining essential self adjointness of D with the
following estimate (in which D and D” act as differential operators).
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6.2. Proposition. If the riemannian metric of Y is complete, u ¢ C*(8 Q V,)
andt > 0, then

(6.39) D@ < ¢ 1D + 3 [l < .

In particular (lett = 1)

(6.3b) if |lull < = and [[D*@)|| < w, then [[DW)]| < «
and (lett — )

(6.3¢c) if ||ul]] < « and D*(u) = 0, then D(u) = 0.

Proof of Proposition 6.1. We write L, , C* and C* for L,(S ® V.), C*(8 ® V.)
and C%(8 @ U,), and we retain the notation established between (5.5) and (5.6).
We are going to use the method of Andreotti-Vesentini [1, §6] to prove:

6.9 if r,¢>0 and uweC? then
4apM?
ID@IE. S ¢ 11D + (2 +2E) )

t r’

In an orthonormal moving frame {e;} we compute D(b%) = > e;-V;(b%) =
> e;-(2b,e;(b,)v + b2 V;(v)) = 2b, grad (b,)-v + b>D(v) where b, and v are
differentiable. Thus

D) = 2b, grad (b,)-v + b2D(v) a.e. on Y, for v Lipschitz.
As b, has compact support in B,, now, using Proposition 4.3,
[16.D@)|[3.,.. = (bD@W), D@))s,,.. = (DO;DW)), Uz, s
= (2b, grad (b,) D), Wz.,+, + (V7 D*W), U}z, s
for every ¢ > 0. In view of (4.7),
(6.52)  [|b,D@)|[3., = (D*(w), bu)s,, — (b. D), 2 grad (b,)-w)s,, -
The Schwarz inequality and (5.6) combine to give

2
Bar

©55) (4D, 2 grad (5)-wda.| S # 116D, + 2L |fullh, -

As b, £ 1, the Schwarz inequality also gives
(6‘56) I<D2(u)7 bfu Bnrl é % “Dz(u)”?hr + -21_t ”ullanr for t > 0'

Calculating with (6.5),
[ID@)|[z. = [|16.DW)|[3., = 2 ||b,D@W)|[3., — |[6.D@)][3..

s D@1 + (E + 25) i,
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That proves (6.4). Let r — o and (6.4) becomes ||[D(w)||}y, = ¢ |[|D’W)||%, +
(1/%) ||u|l¥, - Summing over the topological components of ¥ we obtain (6.3a).
Q.E.D.

Theorem 5.1 and Proposition 6.2 combine as follows.

6.6. Lemma. If u is in the domain of (D* + 1)*, and if (D* + 1)*(u) = 0,
then u = 0 in Ly,(8 Q) 0,).

Proof. As D?is elliptic, u e C” and (D* + 1)(u) = 0 as differential equation.
Now u e L, implies D*(u) € L, and (6.3b) forces D(u) e L, . Define v = (D — 7) (u).
Thenve C° N Lyand (D + 9)(v) = (D + 0)(D — 9)(u) = (D* + 1)(u) = 0.

Proposition 4.3 gives v ¢ D(D*), so D*(v) = D(v) = —v. Now Theorem 5.1
says v = 0. Thus D(u) = <u. Again, Proposition 4.3 gives D*(u) = <u and
Theorem 5.1 says v = 0. Q.E.D.

Proof of Theorem 6.1. Define A = D* + 1 with domain D(4) = C°. Lemma
6.6 says that the range R(4) = A(C%) is dense in L, . Further A = 1 on C< so
the closure A = 1 on D(A). Now B = A" is a well defined closed bounded
symmetric operator with dense domain D(B) = R(A) D R(4). Thus B is self
adjoint, so A = B™'is self adjoint, and D* has self adjoint closure 4 — 1.

We have just proved D* essentially self adjoint with closure A — 1. Now
A — 1is the unique self adjoint extension of D* As D*D = D?is a self adjoint
extension we must have A — 1 = D*D. Q.E.D.

§7. Square integrable Dirac spinors. Y is an oriented riemannian n-manifold
with a fixed riemannian (K, a)-structure (Fx , I'x). Given a finite dimensional
unitary representation x of K we have the hermitian vector bundle U, — Y
associated to Fx , the bundle 8§ X) U, of V,~valued spinors, and the Dirac operator
D on L,(8 ® V,) with domain C%(8 & U,). The space of square integrable
U,.~valued Dirac spinors on Y is

(7.1a) H,(0,) = {ue L, (8 V,): D(u) = 0 as differential equation}.

In other words, using ellipticity of D,

(7.1b) Hy(0,) = {ueLy(8 V.): D¥(w) = 0} C C°(8 X V).

Further, if n is even, then we have

(7.1¢) H,(V.) = H3(V.) @ H3(V,) where H3(V.) = Ha(0,) N La(8* @ V).

If D (resp. D?) is essentially self adjoint, then its closure is its adjoint, and
every eigenspace of the latter is closed. Thus, from the results of §§5 and 6,
we have

7.2. Proposition. Suppose that the riemannian metric of Y is complete. Then
H,(0,) is a closed subspace of L:(S &) V,), given by the elliptic equation

H,(V,) = {ue LS ® 0.): D*(u) = 0}.
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Suppose further that n is even. Then H,(V,) is orthogonal direct sum of its
closed subspaces H%(0,), and they are given by elliptic equations:

H3(0.) = {ue Ly(8* ® V,): D’D*(u) = 0}.

Let G be a Lie group and &: G@ X ¥ — Y a differentiable action by orientation-
preserving isometries. Then & has a natural lift to the oriented orthonormal
frame bundle,

X5 g
1X~n « commuting diagram of group actions,

GXY 2y

and the lifted action ¥ preserves the riemannian connection T' of . The action
may or may not lift further; for example it lifts to the principal Spin (n)-bundles
precisely when G acts trivially on H'(Y; Z,). In any case, by lift of & to (Fx , I'x)
we mean a differentiable group action ¥ : G X Fx — Fx that covers ¥, ‘.e.,

G X 5 X5 g,

1Xa a commuting diagram
(7.3) @X &g —‘I,—> g of differentiable
1 X7 x group actions,

axy vy

such that each (g, -) preserves the connection I'x of Fr . We say that & lifts
to (Fx , T'x) if it has such a lift.
Proposition 7.2 and the definitions give us

7.4. Proposition. Let &: G X Y — Y be a differentiable group action by
ortentation preserving isometries and Vg : G X Fx — Fx a lift of ® to (Fx , k).
Then ¥x specifies a unitary representation p, of G on Ly(8 Q) V.) such that every
p(g) commutes with D.

Suppose that the riemannian metric of Y is complete. Then p, restricts to a unitary
representation p, of G on H,(V,). If n is even, then p, = p*, @ p, where p% is the
representation of G on H%(V,).

We examine a case where p, are related to induced representations. Suppose
that

(7.5a) G is a Lie group and K is a closed subgroup, and
(7.5b) Y = @/K has G-invariant structure of oriented riemannian n-manifold.

Let a denote the (isotropy) representation of K on the tangent space to Y at
Yo = 1K ¢ G/K = Y. Then a: K — SO (n) Lie group homomorphism. We
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further assume

(7.6a) a: K — SO (n) factors through Spin (n),

(7.6b) a(K) contains the holonomy group of Y at y, , and
(7.6¢) the Lie algebra [ of L = kernel (a) is a direct summand of f.

G — G/K is our principal K-bundle Fx — Y. Choose an oriented orthonormal
basis f, of the tangent space Y,, . Then a: G — ¥ is given by a(g) = ¢(f,). Choose
a decomposition f = [ @ m. According to Lemma 2.8 that specifies a connection
T'x on G — G/K such that a(I'x) is the riemannian connection. Now (G, T'g)
is a riemannian (K, a)-structure on Y. The action of G on Y is lifted by the
action of G on itself through left translation. Since homogeneous riemannian
metrics are complete, now the unitary representation x of K gives us a unitary
representation p, of G.

§8. Example: Representations of the Heisenberg group. We apply the
construction of representations p* and obtain all infinite dimensional irreducible
unitary representations of the Heisenberg group.

The 3-dimensional Heisenberg group N; is the connected simply connected
Lie group, whose Lie algebra 1, has basis {£, #, {}, { central and [£, 4] = ¢. The
central Z of N; is the analytic subgroup for 3 = {R. The coset space N;/Z is
identified with the standard euclidean plane R® by exp (2t + y17)Z < (z, v),
and the action of N; is

exp (at + bn + ct) exp (2t + yn)Z = exp ((z + @)t + (y + b)n)Z.

Thus N acts on R? by orientation-preserving isometries for the euclidean metric
dz® + dy’, and {£, n} gives the global orthonormal frame {9/dz, 8/dy}.

The half spin bundles over B* = N,/Z are the trivial complex line bundles
$* — R? with respective fibers S* = (1 + 4-4)C and S~ = (it 4+ 7)C. Here
“.” js Clifford multiplication.

The irreducible unitary representations of Z are the characters x, : exp (() —
e, N real. As Z acts trivially on R* the corresponding bundles U, = V,, — R’
are trivial complex line bundles.

A section u of 8* ) U\ now corresponds to a function U: R*> — C by the rule
@, y) = A+ %e. 9en) U, y). Similarly a section v of 87 X) U, corresponds
to a function V: R* — C under v(z, ) = (€¢..y + 16.0)V (@, ).

8.1. Lemma. Letue C'(8* X V) and U: R* — C the corresponding function.
Then D*(u) = 0 <f and only if

(8.2a) Uz, y) = e " *E(x + iy) with E holomorphic.

Letve C'(8™ ® V) and V: R* — C the corresponding function. Then D™(v) = 0
if and only if

(8.2b) Viz, y) = " /*F(x + y) with F antiholomorphic.
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Proof. We compute D*(u) = £-V(u) + - V,(u). For that view u: N; —
(1 4+ 4¢-79)C function such that u(gz) = x(2) 'u(g), all g e N; and z ¢ Z, and
note from the Campbell-Hausdorff formula that

exp (zt + yn + wf) exp (af + bn)
= eXP((x+ )t + (y + b + (w+@~;—?&)i‘)'

Now

Vi@ (exp @ + yn + i) = &
_d

" u(eXP ((x + 0+ yn + (w - %’)t))

{e™"*u(exp (@ + & + yn + wo))}.

t=0

"~ dt
Bringing u back down to R’, this says

Vi@ B = (4 + Bl U, v + 22 @, 0)-
Similarly
V,,(u)(:c, y) = (1 + ":*‘.:'"7)(4»:.:1){_'?.—;£ U(x) y) + %% (x) y)}'
Notice £-(1 + i-9) = ¢ — dnpand n-(1 + %-9) = n + & = (¢ — in). Now
(8.3a) D*W)(z,v) = {& V@) + n-V,W)}(z, v)
= (E - iﬂ)(z.v){}%ﬂﬂ U(Z, y) + [g;q + 7' %;_]_'](x’ y)}'
Defining E: C — C by U(z, y) = e *"*"“E(z + 1y), we have

E .0F .
(8.3b) %5 + 4 %—y](:c + 1)
e ; oU
- e)\(z )/4{2\_(_12.;2}—.1'_@ U(IE, y) —|— [g?U + 7 Ty’](‘t: ?/)}.

Comparing (8.3a) and (8.3b), we see that D" (u) = 0 precisely when dE/dz +
1 dE/9y = 0, i.e., when E is holomorphic.
Computation of covariant derivatives of v is the same; we get

VO 1 = G+ DD Ve 1 + 2L @, )

vv(v)(x’ y) = ('LE + "7)(:.11){_?%2 V(x) y) + % (x) y)}'
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Notice¢ (4 19) = —i+&-nandn- (i +19) = —g-n—1= —i(—i+&9),50
(84a) D (O)(z,y)

=(—i+£°ﬂ)<=,y){ M=) v, y) + [”’—ﬁz](x, y)}

Defining F: C — C by V(z, y) = &/ “F(:c + 1y), we have

(8.4b) [%5— -1 ——:l (= + %)

=e_u,.+,.>,4{ Me =)y, ) 4 [59_11_,9}1]@, y)}

Comparing (8.4a) and (8.4b), we see that D™(v) = 0 precisely when F/dx —
1 0F/oy = 0, i.e., when F is antiholomorphic. Q.E.D.

We carry the action of N; on sections u of 8* (X) Uy (resp. v of 8~ ) UV,) over
to the action on functions E (resp. F) specified by

(8.5a) u(@, y) = (L + 1) e = E@ + )
and

(8.5b) v, y) = @&+ 1) end V(@ + ).
For that, denote

(8.6a) A%(g): action of g £ N; on sections of §* ) Uy .

Using (8.5) we now define actions &3 by

®.6b)  [M@ul(@, y) = (L + &n)eme TV B E + ).
and

(8.6¢) [AS(@)0)(x, ) = (E + 0) @ T B9 Fl + ).

Viewing u: N5 — (1 + 4¢-n)C function such that u(gz) = x,(2)'u(g) for all
gt N; and z £ Z, we calculate

[AS (exp (xof + yon + wob)ul(exp (2§ + yn + wi))
= u(exp (Tof + Yon + wo) ™ exp (x€ + yn + wy))

= u(exp ((x — )k + @ — yon + (w —wo + %}ﬂ% ))

= oM womGrerT Dy (ovny (z — o)t + (Y — Yo)n + we)).

Down on R? this says that the corresponding action L} on U(z, y) =
e)\ (z’+u’)/4E(x + iy) iS

(L7 (exp (ot + yon + wod)Ul(z, 3) = ™™D Ul — 24, y — o).
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We conclude

[&%(exp (ot + Yon + wod) El(x + 1y) = e’E((z + 1y) — (%o + o))

where

f=

>

@+ 9) + Do — 2 v — 12 — 3 (@ — 2 + @ — 90

= i\w, — -E(xﬁ + v + -3 (= + w)(xo — o).

In summary,
8.7 [&(exp (xof + yon + wod)E]R)
= gMwerMasl/anhtorzp, Ly 2o = To + o .
A similar calculation gives
(8.8)  [®x(exp (xof + yon + wol)F1()

— eikwo+)\lzo|'/4—)\izo/2F(z _ Z) 20 = Zo + 'I:yo
= o)) = .

In view of Lemma 8.1 we define Hilbert spaces
(8.9a) Hy = {E’ :C — C holomorphic: f f M2 EQR] dr dy < m}
with inner product
(8.9b) @)= [ e BTG d dy.

The formula (8.7) defines a unitary representation ¢} of N; on H} , which is the
classical Fock representation. Here note H = {0} for A < 0;if A > 0 then the
linear combinations of functions e"*P(z), ¢ constant and P polynomial, form a
dense subspace of HY .

Similarly we define Hilbert spaces

(8.10a) H; = {F : ¢ — C antiholomorphic: ff & |F@R)[ dz dy < w}
with inner product

(8.10b) F, Fy = [[ @ QTG do dy.

The formula (8.8) defines a unitary representation ¢3 of N3 on Hy , which is
the dual (contragredient) of ¢, . Here note H; = {0} for A = 0;if A < 0, then

the linear combinations of functions e**P(z), ¢ constant and P polynomial, form
a dense subspace of H7 .
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The Fock representations and their duals give us a collection
(8.11) {p: A > 0} U {o5: A < 0}

of nontrivial unitary representations of N; . A glance at the dense subspaces
{span ¢”*P(z)} and {span ¢**P(z)} shows that these representations are irre-
ducible. Further they are mutually inequivalent because they have distinet
central characters, ¢3|; being a multiple of x, . Finally, if p is any irreducible
unitary representation of N, then either p is infinite dimensional and equivalent
to one of the ¢%, ==\ > 0, or p is 1-dimensional and of the form

(8.12) pa'b(exp (xg + yn _I__ wg-)) = ei(az-l-bﬂ).

We summarize as follows.

8.13. Theorem. Let p3 denote the unitary representation of N3 on the space
H%(0,) of square integrable Vy-valued Dirac spinors on R* = N,/Z.

1. Suppose X > 0. Then H3(Vy) = {0}, and p} 7s equivalent to the Fock repre-
sentation ¢3 of N3 on HY.

2. If N = 0, then H3(V,) = {0} = HZ(Vy).

3. Suppose A\ < 0. Then H%(V,) = 0, and p5, is equivalent to the representation
&5 of N; on HY , dual to ¢, .

4. {p5: A > 0} U {p5: A < 0} all are irreductble, nontrivial and mutually
inequivalent, and they represent all the equivalence classes of irreductble unitary
representations of N3 except for those of the unitary characters (8.12).

In a later paper [13] I hope to extend this method to the class of all connected
nilpotent Lie groups N with a unitary representation whose coefficients are
square integrable over N/(center). That class includes the generalized Heisen-
berg groups N;,., . The Plancherel measure for a group in that class is in fact
carried by the ‘“‘square integrable’ representations [6].

§9. Example: Representations of the universal cover of SL(2, R). We apply
the construction of representations p% and obtain all relative discrete series
(cf. [11]) representations of the simply connected covering group of SL(2, R).

SL(2, R) is the multiplicative group of 2 X 2 real matrices of determinant 1.
It acts on the upper half planeh = {2 = z + iy C: y = Im (2) > 0} by linear
fractional transformations (¢ 3): 2z~ (az + b)/(cz + d). The action is transitive,
orientation-preserving, and isometric for the Poincaré metric y~>(dz* + dy®).
The isotropy subgroup at 7 is K = {(_23% § 22 0): 0 real}. The Lie algebra
81(2, R) consists of the 2 X 2 real matrices of trace 0. The subalgebra f for K
isspanned by (_! }). The global orthonormal frame {e, , .} = {y(9/9z), y(8/9y)}
on h is represented, at the point 7, by 3(; _}) and —3( o).

Denote the universal cover by ¢: G — SL(2, R), identify the Lie algebra
g with 8((2, R) under ¢, and define K = ¢'(K). Then k: 6 — expe (_§ o) is an
isomorphism of B' onto K, and q has kernel k(27Z) where Z denotes the integers.
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G acts on h by ¢g(2) = q(g)(2); the isotropy subgroup at 7 is K; that identifies
G/K with h under gK < g(z).

The irreducible unitary representations of K are the characters x(k(6)) =
¢*™, Areal. Let 0, — h denote the complex line bundle associated to G — G/K =
h by x\ . k(6) rotates the real tangent space h; by 26, so its image in Spin (h;)
is — (cos G e, + sin 0 e,)-¢; = cos 6 + sin 6 e;-e; . Thus the K-lifts of the half
spin representations satisfy 5" (k(6))(1 + 7e,-e;) = (cos 8 + sin 0 e;-¢;)- (1 +
ie;-es) = ¢ (1 4+ de,-e,) and (similarly) 37 (k(6))(te, + ex) = e”(ie, + e2).
Now 5 = XF1/2 «

In the moving frame {e, , e,} = {y(3/0z), y(8/dy)}, h has Christoffel symbols
¥, = 1 = —T}, and all others zero. Thus V,(e;) = e,, Vi(e:) = —e;, Va(e;) =
0 (V, = V.,). In other words the {e, , e,} *-image of the connection form of the
oriented orthonormal frame bundle is given by

wle) = ((1) _(1)) and w(e,) = (g g)

Thus the connection form on U, — h, in the frame {e, , e}, is
w(e) = (h)*w(ex) =1\ and w(e) = 0.

9.1. Lemma. Letu(z) = (1 + de;-e,)UR) = (1 + de;-e)y "’ E(2) section
of 8* ® U, — h. Then

(9.2a) [D"W]E) = (& — wz){%(k - DUE + y[ +1 —](Z)}

In particular D*(u) = 0 if and only if E is holomorphic.
Let v(2) = (ie; + e,)V(2) = (te; + e)y" "’ F(2) section of X Uy — h. Then

(9.2b) [D"W)]@) = —i(l + e, ez){z()\ + DV + y[aV 6V] ( )}

In particular D™ (v) = 0 ¢f and only if F is antiholomorphic.

Proof. Note 8 X Uy = Urziz , 50 it has connection form wyzi2(e;) =
(A 7F 3) and wyz1,2(e2) = 0. Compute

Vi) =1+ iel-ez){i(k - U4y %%} and V.w) = (1 + ierez)y%g

Using D*(u) = ;- V,(u) + €-Va(u) and ey- (1 + de;-e5) = i(e; — 1ey) =
ie,- (1 + 1e,-e,), the assertions on D*(u) follow. Similarly

Vi) = (e + e»{i(x +HV +y %.g} and  V,0) = (e + &)y %Lf ;

and the assertions on D™ (v) = e,-V(v) + €- V.(v) now follow using e,- (fe, +
) = —iferres — 1) = —iey-(ie + es). Q.E.D.
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To compute the action of G we need some algebra. Define

(93a) b:h—G by b+ w)

_ 0 x) (1/2 log () 0 )
= &P (o 0/ &Pe 0 —1/2 log ()
Then z = b(z)(z), so bis asection to @ — G/K = h, and we have a diffeomorphism
(9.3b) hXR—>G by (z 60— bk(6).

Note that the unique factorization

0
(9.3¢) g = expe (O :5)

expe (1/2 lgg ) _—1/2qu (y))]c(()), z + iy = g(G),

is the lift @ = NAK of the Iwasawa decomposition SL(2, B) = q(N)q(4)q(K).
Now define a function

(9.4a) ¢:G Xh—R by g¢gblz) = blg)k(—¢(g, 2)).

Then the function

(9.4b) &:G X h— Cby &g, 2) = {Im (2)/Im (g(2))}e**®

has the property that

(9.4¢) ®(g,2) =cz+ d where ¢(g9) = <‘Z Z)

The point, however, is that we can take arbitrary real powers
(9.4d) &(g, 2)” = {Im (2)/Im (g(z))}""*¢*"***> holomorphic in z.

Now we compute the action of G. Denote

(9.5) Ai(g): action of g £ G on sections of 8* X) U, .
Ifu) = (1 + de;-ex)y"*E(2), then we denote
(9.62) [A3@ul(d) = A + der-e)y™ " [T5(9) E](2).

Identify u with the function %: G — C given by
b(@)k(6) = x0-12(k(8) "'y E(2).
Then we compute
[0 EIE) = ¥ (g™ b()
¥ (g )k(—e(g", 2)))

— yx 1/261(2)‘ 1)¢(g—1,2) Im (g-l(z))—)dl/zE(g—lz).
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That says
(9.6b) W3(QEIR) = ¥, 2" E(g™").

If v(2) = (e, + e))y**/*F(2) section of 8~ &) UV, , we denote
(9.72) [AX(9)0]G) = (e, + &)y [T D)FIR).
Caiculating as above,

[T3(9)F1E@) = y™"5(g7'b())
=y (b(g 7 h(— (97, 2)))
= y-—)\—l/2e|'(2)\+1)¢(a"‘.s) Im (g_l(f\)“.l/zF(g_lZ).
That says
(9.7b) (W3 (@)Fl@) = &7, 2™ 'F(g72)

where & is the complex conjugate function of &.
In view of Lemma 9.1 we define Hilbert spaces

(9.82) Hy = {E :h — C holomorphic: f v EQR)| dulk) < oo}
h
where u is the G-invariant measure
du(z) = y~* dx dy.

The inner product on Hj is
(9.8b) (E,E') = f Y'EQE @) du) = f dy f EQE @y dz.
h ] —-»

Formula (9.6b) gives a unitary representation ¢} of G on HY. It is straight-
forward to check that H = {0} for A = 0. If A < 0 then, fixing a branch of
log (¢ + ©) on h, we see that the

Eyn@) = (2 + i)’*-l(i.._‘i_::)m, m=0,1,---,

form a complete orthogonal system in HY consisting of K-eigenvectors. Irre-
ducibility of ¥} follows immediately from (9.6b).
Similarly we define

(9.92) H;y = {F :h — C antiholomorphic: f MR due) < oo} ,
h
Hilbert space with inner product

©.9b) (F,F) = fh yMFRF @) due) = fo " ay f_ i FRF @™ da.
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Formula (9.7b) gives a unitary representation y; of G on H; . Note that F — F
is an isometry of Hj onto HY, that carries ¢5 to ¢*, . Now H; = {0} for A £ 0;
if A > 0, then the E_, ,, form a complete orthogonal system in H7 consisting
of K-eigenvectors; and the 3 are irreducible.

In Pukanszky’s notation [8], ¥ is equivalent to the representation D% where
I = FX 4+ %. Thus, if 2X is an integer, then y3; factors through Bargmann’s
representation [2] D% of SL(2, R), again with [ = X + 1.

The representations just constructed, form a collection

(9.102) (YA <0} U {¢¥5: 2 > 0}

of irreducible representations of G, which contains just one element from each
class in the relative discrete series [11]. View X as the linear form (_? {) — 2\t
that exponentiates to x, on the Cartan subgroup K of G. Then 1 is the (unique,
noncompact) positive root. In my notation [11], which is consistent with Harish—~
Chandra’s notation,

(9.10b) if &)\ < 0, then ¢35 represents the class [m].

Thus the distribution character of ¢35 is the locally integrable class function
specified on the regular elliptic set by k() — +=(&*" — e ***)'x\(k(6)). Or
see [8, p. 132].

We summarize as follows.

9.11. Theorem. Let p5 denote the representation of G on the space H(V,) of
Us-valued square integrable Dirac spinors on h = G/K.

1. Suppose X < 0. Then H7(0,) = {0} and p3, is equivalent to the holomorphic
relative discrete series representation 5 of G on HY, .

3. Suppose X > 0. Then H%5(0,) = {0} and p5 s equivalent to the antiholo-
morphic relative discrete series representation ¥ of G on HY .

4. {p3: A < 0} U {p%: X > 0} all are irreductble, nontrivial and mutually
tnequivalent, and they form a system of representatives of the relative discrete
series of Q.

In [12] I will extend this method to the nondegenerate series representations
of reductive Lie groups. The case of discrete series representations of linear
semisimple groups is independently due to Schmid (unpublished) and Parth-
asarathy [7].

§10. Example: Representations of a parabolic subgroup. We retain the
notation of §9 and examine the action of parabolic subgroups of G on the spaces
H3(0,) of square integrable Dirac spinors.

Recall the parametrization (9.3) of G. Denote

(10.1a) N = {expg <g g) :xeR} and A = {expg (g _g) :aeR} ,



DIRAC OPERATOR 637

so that b: h — @ has image NA. Further denote

(10.1b) Z = {k(6): 0/= is an integer} = (center of G).
Then the proper parabolic subgroups of G are just the conjugates of
(10.1¢) @ B = NAZ = (NA) X Z = {ge G: gNg~' = N}.

We will analyse the representations p5|z of B on H5(0,).
The unitary characters on Z are the

(10.22) & = xarrelz @ k(xl) > 772 ) specified modulo 1.

As 8* ) Ur = Urzise , O I8 the action of Z on the fibres of §* ) UV, . Since Z is
central now it acts on sections of 8* &) UV, by & , 80 p}|z is a multiple of &, :

(10.2b) p3 has central character ¢, .
Since the (infinite cyclic) group Z is type I, now
(10.2¢) Pﬂa = (pxlva) ® &

To calculate p}|v4 we formulate the product in NA = b(h) in terms of h.
Denote

(10.33) n(r) = expg (8 g) and
a(y) = expo (l/ 2 lgg @ 4 /2010g (y)) so bz + iy) = n(x)a().

Then b(z, + o) "'b(z + 1Y) = a(ys) n(xo) "'n(@)ay) = a(yo) 'nlz — zo)aly) =
n(ys* (z — zo))a(yo) 'aly), so

(10.3b) b(zo + o) "b(z + 1) = b(ys' (z — o) + W oY)-
In particular the function & of (9.4) satisfies
(10.3¢) ®(b(20) ", 2) = yi/* where 2, = zo + 1o -

Combining (10.3) with the results of §9 we arrive at

10.4. Lemma. The restriction p%|y4 is equivalent to the representation of NA
on HY, given by

(10.52)  [BOGNEID = 4o EWs'(e — ), 20 = %o+ o -

The restriction py|xa ts equivalent to the representation of NA on Hy given by
(10.5b)  [B3BENFIE = yo  °Flys'e — o), 20 = To + o .

In particular,

(10.5¢) [B3(n(20))El(2) = E(z — %) and [B3(n(zo))F1(2) = F(z — o).
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In order to identify the p}|y4 we recall the structure of
(10.6a) Iy : left regular representation of NA.
Evidently it is the unitarily induced representation

Iva = Ind1)1v4(1) = Indy;va (Ind 11 x(1))

where 1 denotes the trivial representation of degree 1. Now denote representa-
tions of N and NA hy

(10-6b) a'e(n(x)) = e"e” and Ty = Indm NA(JE)-
Then

lys = Iﬂdmmf o df = f Te dt.
Note a(y)n(z)a(y)™ = n(yz), so a(y) sends r; to r,; . Thus r; is irreducible for
£ # 0, and 7, =~ 7, just when either £ = 0 = g or £y > 0. In summary
(10.6¢) Iya = o1, @ o714
The 7., are distinguished by the fact, evident from

0

Tl|N=j; Uedf and T—I‘N=‘/:_ Usd'é;

that
. (0 1
(10.7a) —zr,(o 0) has spectrum (0, «)
and
. (0 1
(10.7b) -—z-r_l(o 0) has spectrum (— =, 0).

10.8. Lemma. If\ < 0, then p}|xa 18 equivalent to r—y . If X > 0, then p3|na
8 equivalent to 1, .

Proof. By construction, each p}|y4 is a subrepresentation of Iy, . Irre-
ducibility follows from Lemma 10.4. Thus each p3|y4 , =N < 0, is equivalent
to 7, or 7—; . We will use (10.7) to distinguish the two possibilities.

Let A < 0 and let E ¢ H} be a finite linear combination from the complete
orthogonal set By .(2) = (z + 9™ (¢ — 9)/(z + ©))", m = 0,1, --- . Then
the Fourier transform

(10.92) B, = e [ Ba+ et ds
converges and we may move 9d/dy under the integral. As E is holomorphic,
dE/dy = 1 dE/dz, so
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9 _ o1 [ OE@ + ) i
5 @) = iene [ I it g
© —~iz§
= —ien™ [ Ba+a) E—dz
= —EEH(E)‘
That says
(10.9b) B, () = By(¢) independent of y.

Now compute

IBIF = [y ay [ 1B+ i)l dz

= j; Ty gy f_ : 1B.® de

f_: 1Bo® d j: My gy

Fubini’s Theorem now says that [ e™%'y~**" dy converges a.e. on the set
By(¥) # 0. That integral never converges for ¢ < 0. We conclude

(10.9¢) E,¢) = 0 a.e. in the interval £ < 0.

We use (10.5¢) to compute [ — 185 DE|(x + 1y) = —idE(x + ty—1t)/dt|sao =
i(dE/ox)(z + 1y). In other words [—i8%L(C DE(E) = —tE,(). From (10.9)
we see that the self adjoint operator —8%(; ) has spectrum in (—, 0]
Lemma 10.4 now says that —4p%(J }) has spectrum in (— «, 0]. Thus (10.7a)
implies p%|y4 not equivalent to r, . We conclude p}|ya = 71 .

If A > 0, then a similar argument shows p3|y4 =~ 71 . The difference is that

we work on an antiholomorphic function F, so 0F/dy = —1 dF /dx and (10.9b)
is replaced by e ™F,(£) = F,(¢) independent of y, so that F,(£) = 0 a.e. in the
interval ¢ > 0. Q.E.D.

Lemma 10.8 combines with (10.2) as follows

10.10. Theorem. Let p% denote the representation of G on the space H3(0y)
of Vy-valued square integrable Dirac spinors on h = G/K.

1. If A < 0, i.e., if H5(0y) % {0}, then p}| 5 s equivalent to 7y & § -

2. If x > 0, i.e., if H3(V\) # {0}, then p3| 5 is equivalent to 71 & &

3. {pils:1 S A <0} VU {p3lr:0 <\ = 1} all are irreducible, nontrivial and
mutually inequivalent, and they form a system of representatives of the relative
discrete series of B.

Taking (9.10) and Theorem 9.11 into account, Theorem 10.10 is contained
in M. Vergne’s systematic analysis [10] of restrictions of holomorphic discrete
series representations.
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