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Abstract. We prove that certain compact cube complexes have special finite covers.
This means they have finite covers whose fundamental groups are quasiconvex sub-

groups of right-angled Artin groups. As a result we obtain, linearity and the separa-
bility of quasiconvex subgroups, for the groups we consider.

Our result applies in particular to compact negatively curved cube complexes whose
hyperplanes don’t self-intersect.

For cube complexes with word-hyperbolic fundamental group, we are able to show
that they are virtually special if and only if the hyperplanes are separable.

In a final application, we show that the fundamental groups of every simple type
uniform arithmetic hyperbolic manifolds are cubical and virtually special.
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1. Introduction

In this paper we give a high-dimensional generalization of the 1-dimensional work in
[Wis02]. The main result there can be loosely reformulated as follows: the 2-complex
built by amalgamating two graphs along a malnormal immersed graph is “virtually
special”. Recall that a subgroup H ⊂ G is malnormal if gHg−1 ∩ H = {1} for each
g 6∈ H, and an immersed subgraph is malnormal if its π1 maps to a malnormal subgroup.
More precisely, we consider two combinatorial graph immersions A ← M and M → B
and form a nonpositively curved square complex X = A ∪M B by attaching a copy of
M × [−1, 1] to A and B using the maps A← M × {−1} and M × {1} → B. The main
result of [Wis02] can be reformulated as:

Proposition 1.1. If π1M is malnormal in π1A and π1B then X = A∪M B is virtually
special.

From a group theoretical viewpoint, two particularly salient features of a graph Γ are
that: Γ retracts onto its connected subgraphs, and that any finite immersed subgraph
embeds in a finite cover of Γ. These features lead to notions of canonical completion
and retraction for graphs that were studied in [Wis02]. The special cube complexes
introduced in [HW08] are higher dimension spaces that also admit canonical completion
and retraction. Simple aspects of these notions and their peculiar properties were verified
and extended to higher dimensions in [HW08], and more difficult such aspects are treated
in this paper. Using these, we prove the following:

Theorem 1.2. Let A and B be compact virtually special cube complexes with word-
hyperbolic π1, and let A ← M and M → B be local isometries of cube complexes such
that π1M is quasiconvex and malnormal in π1A and π1B. Then the nonpositively curved
cube complex X = A ∪M B is itself virtually special.

The specificness of Proposition 1.1 is misleading, in fact, it was surprisingly widely
applicable to many 2-dimensional groups appearing in combinatorial group theory. We
expect Theorem 1.2 to be even more powerful and dynamic, both because it can reach
higher-dimensional groups, but also because sometimes 2-dimensional groups are not
fundamental groups of 2-dimensional special cube complexes, but require the greater
flexibility of higher-dimensions.

A VH-complex X is (up to double cover) a square 2-complex with the property that
the link of each vertex is bipartite. Furthermore, X is negatively curved if each link
has girth ≥ 5. An immediate application of Proposition 1.1 is that negatively curved
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VH-complexes are virtually special. In higher dimensions, this naturally extends to
negatively curved “foldable complexes” as defined in [BŚ99]. The cube complex X is
foldable if there is a non degenerate combinatorial map X → Q onto some cube Q. X is
negatively curved if the link of each vertex is a flag complex, and moreover, any 4-cycle
in the link bounds the union of two 2-simplices.

Theorem 1.3. Let C be a compact negatively curved foldable cube complex. Then C has
a finite cover Ĉ such that Ĉ is a special cube complex.

The work in [Wis02] led to connections between negative curvature and residual finite-
ness. Our paper extends this connection considerably, since it is now understood that
surprisingly many of the groups studied in combinatorial group theory, actually act prop-
erly and cocompactly on CAT(0) cube complexes, and are thus approachable through
these results.

Theorem 1.4. Let C be a compact nonpositively curved cube complex, and suppose that
π1C is word-hyperbolic. Then C is virtually special if and only if π1D is separable in
π1C for each immersed hyperplane D → C.

Using the already known properties of virtually special cube complexes we get the
following corollary:

Theorem 1.5. Let C be a compact nonpositively curved cube complex. Suppose that
π1C is word-hyperbolic and that π1D is separable in π1C for each immersed hyperplane
D → C. Then π1C ⊂ GL(n,Z) for some large n, and every quasiconvex subgroup of
π1C is separable.

In a final application we apply Theorem 1.4 to obtain an interesting structural result
about certain arithmetic hyperbolic lattices:

Theorem 1.6. Let G be a uniform arithmetic hyperbolic lattice of “simple type”. Then
G has a finite index subgroup F that is the fundamental group of a compact special cube
complex.

Hidden inside Theorem 1.6 is the claim that every such lattice acts properly and co-
compactly on a CAT(0) cube complex, which was not known previously. But combining
with results from [HW08], we obtain the following subgroup separability consequence:

Corollary 1.7. Let G be a uniform arithmetic hyperbolic lattice of “simple type”, then
every quasiconvex subgroup of G is a virtual retract, and is hence closed in the profinite
topology.

Partial results were made towards separability of arithmetic hyperbolic lattices in
low dimensions in [ALR01]. Their method is similar to ours in that they virtually
embed such groups into right-angled hyperbolic Coxeter groups. The results have been
substantially extended by Ian Agol to deal with various lattices in up to 11 dimensions
which satisfy an orthogonality condition on certain of their hyperplanes [Ago06]. Perhaps
the paucity of hyperbolic reflection groups has limited the scope of Scott’s method.

The application towards uniform arithmetic lattices was not the original intention
of this research, but it emerged as a consequence of our combination theorem. This
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application does not require the full strength of our main theorem, and in a future
paper, using a method more specific to the situation, we will give an account of the
virtual specialness of nonuniform simple arithmetic hyperbolic lattices.

As an application of the cubulation of uniform lattices of the real hyperbolic space we
get the following result:

Theorem 1.8. Every word-hyperbolic group is quasi-isometric to a uniformly locally
finite CAT(0) cube complex.

Proof. Let Γ be a word-hyperbolic group. Then by the work of Bonk and Schramm (see
[BS00]) there exists a quasi-isometric embedding Γ → Hn for n large enough. Consider
any standard arithmetic uniform lattice G of Hn we let G act freely cocompactly on
a locally finite CAT(0) cube complex X. Then Hn is quasi-isometric to G, which is
quasi-isometric to X.

We thus get a quasi-isometric embedding of Γ into X. The image of Γ in X is a
quasiconvex subset Y ⊂ X. Now X is a uniformly locally finite, Gromov-hyperbolic
CAT(0) cube complex and Y ⊂ X is quasiconvex. Thus by Theorem 4.2 the combina-
torial convex hull Z of Y inside X stays at finite Hausdorff distance of Y , and we are
done.

�

It is not very difficult to prove that a Gromov-hyperbolic uniformly locally finite
CAT(0) cube complex embeds in a product of finitely many trees (see for example
[Hag07]), and the embedding is isometric on the 1-skeleton equipped with the combina-
torial distance. Thus as a corollary of Theorem 1.8 we see that every word-hyperbolic
group has a quasi-isometric embedding in a product of finitely many trees, a result which
was first proved by Buyalo, and Schroeder (see [BS05]).

2. Special Cube Complexes

2.A. Nonpositively curved cube complex.

Definition 2.1. A 0-cube is a single point. A 1-cube is a copy of [−1, 1], and has a cell
structure consisting of 0-cells {±1} and a single 1-cell.

An n-cube is a copy of [−1, 1]n, and has the product cell structure, so each closed cell
of [−1, 1] is obtained by restricting some of the coordinates to +1 and some to −1.

A cube complex is obtained from a collection of cubes of various dimensions by iden-
tifying certain subcubes. We shall often call 0-cubes vertices and 1-cubes edges. A map
between cube complexes is combinatorial if it sends homeomorphically open cubes to
open cubes.

A flag complex is a simplicial complex with the property that every finite set of pairwise
adjacent vertices spans a simplex.

Let X be a cube complex. The link of a vertex v in X is a complex built from simplices
corresponding to the corners of cubes adjacent to v. One can think of link(v) as being
the “ε-sphere” about v in X.

The cube complex X is nonpositively curved if link(v) is a flag complex for each
v ∈ X0. A (finite dimensional) simply-connected nonpositively curved cube complex has
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a CAT(0) metric in which each n-cube is isometric to the subspace [−1, 1]n ⊂ En (see
[Gro87]). We thus refer to such cube complexes as CAT(0) cube complexes. Similarly, a
(finite dimensional) nonpositively curved cube complex admits a locally CAT(0) metric,
and hence the choice of terminology for the combinatorial flag complex condition.

A combinatorial map f : X → Y of nonpositively curved cube complexes is a local
isometry if f(link(v,X)) is a full subcomplex of link(f(v), Y ) for each v ∈ X0.

2.B. Hyperplanes.

Definition 2.2. A hypercube D in a cube C is the subspace obtained by restricting
exactly one coordinate to 0. For instance [−1, 1]× [−1, 1]× {0} × [−1, 1] is a hypercube
in [−1, 1]4.

Given a cube complex X, consider the disjoint union of all hypercubes of X, and
let Y be the cube complex obtained by identifying lower dimensional hypercubes which
are subspaces of higher dimensional hypercubes. The connected components of Y are
hyperplanes of X.

It is not difficult to check that when X is nonpositively curved, then each hyperplane
of X is nonpositively curved. Moreover, using the metrics of nonpositive curvature, the
natural map H → X is a local-isometry. When this local-isometry is an embedding we
say that H embeds.

When X is simply-connected, each hyperplane of X is simply-connected, and embeds.

2.C. Right angled Artin groups.

Definition 2.3. The right-angled Artin group presentation associated to a simplicial
graph Γ is defined to be:〈

a : a ∈ V(Γ) | [a, b] : {a, b} ∈ E(Γ)
〉

The associated right-angled Artin group will be denoted by A = A(Γ).

For each cluster of n pairwise adjacent vertices in Γ, we add an n-cube to the standard
2-complex of the presentation above, to obtain a nonpositively curved cube complex,
which we shall denote by R = R(Γ).

Specifically, for each vertex a of V(Γ) let Sa denote a graph with a single vertex and
a single edge. Then R is the subcomplex of the combinatorial torus

∏
a∈V(Γ) Sa, union

of all subtori corresponding to complete subgraphs of Γ. In order to get an isomorphism
A→ π1R we just need to choose an orientation for the edges of the circles Sa.

We call any such complex R an Artin cube complex.

2.D. Special cube complex.

Definition 2.4. A special cube complex is a cube complex C such that there exists a
combinatorial local-isometry C → R where R = R(Γ) for some simplical graph Γ.

We give below an intrinsic combinatorial characterization of the special property. We
first introduce the adapted notations and definitions.

We denote with an arrow the oriented edges of a cube complex. The (unoriented)
edge associated with an oriented edge −→a will always be denoted by a. We denote by
ι(−→a ) and τ(−→a ) the initial vertex and terminal vertex of the oriented edge −→a .
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Figure 1. From left to right, the diagrams above correspond to the
pathologies enumerated in Lemma 2.6. The third and fourth diagrams
illustrate direct self-osculation and indirect self-osculation.

Definition 2.5 (parallelism). Two oriented edges of a euclidean unit square are parallel
if the associated unit vectors are the same. Then the parallelism of oriented edges in a
cube complex C is the equivalence relation generated by parallelism inside a square. By
forgetting orientation we also get a parallelism relation on (unoriented) edges of C. Note
that two edges of C are parallel iff their midpoints belong to the same hyperplane.

An embedded hyperplane Y in X is 2-sided if its open cubical neighborhood is iso-
morphic to the product Y × (−1, 1), where we identify Y with Y ×{0}. For each y ∈ Y 0,
the 1-cell in X whose open 1-cell corresponds to y × (−1, 1) is dual to Y . An ori-
ented edge −→a is dual to Y if a is dual to Y . When Y is 2-sided, the projection map
Y × (−1, 1) → (−1, 1) allows us to choose an orientation on each 1-cell dual to Y , so
that all corresponding oriented edges are parallel. In other words no oriented edge dual
to Y is parallel to its opposite edge.

The 2-sided hyperplane Y directly self-osculates if there are distinct oriented dual
edges −→a and

−→
b such that ι(−→a ) = ι(

−→
b ). The hyperplane Y self-osculates if there

are distinct dual edges a and b that share a vertex. Thus self-osculation of 2-sided
hyperplanes consists of direct self-osculation, and also indirect self-osculation, where
there are distinct oriented dual edges −→a and

−→
b such that ι(−→a ) = τ(

−→
b ).

Consider two distinct oriented edges −→a ,
−→
b with origin a given vertex v. Identify

−→a ,
−→
b with vertices of link(v). When −→a ,

−→
b span an edge of link(v) we say that −→a ,

−→
b are

perpendicular at v. When −→a ,
−→
b are not joined in link(v) we say that −→a ,

−→
b osculate at

v. We say that two edges a, b are perpendicular (or osculate) when there are orientations
−→a ,
−→
b such that −→a ,

−→
b are perpendicular (or osculate) at some vertex.

Two hyperplanes A and B inter-osculate if they have perpendicular dual edges a, b
that are parallel to osculating edges a′, b′.

We refer the reader to Figure 1 for some simplistic diagrams suggesting these patholo-
gies:

Lemma 2.6. A nonpositively curved cube complex is special if and only if:
(S1) Each hyperplane embeds.
(S2) Each hyperplane is two-sided.
(S3) No hyperplane directly self-osculates.
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(S4) No two hyperplanes interosculate.

Sketch. For a nonpositively curved cube complex C satisfying conditions (S1), (S2), (S3), (S4),
let V = VC denote the set of hyperplanes of C. Let Γ = ΓC denote the graph on V
such that vertices are adjacent if and only if the corresponding hyperplanes cross (i.e.
intersect).

Let R = R(Γ), which we shall also denote later by R = R(C). Choose arbitrary
orientations for the edges of R. Then there is a map C → R induced by sending an
oriented edge −→a of C to the oriented edge of R corresponding to the hyperplane −→a is
dual to. It is not difficult to verify that conditions (S1), (S2), (S3), (S4) imply that this
map is a local-isometry.

Conversely, if C → D is a local-isometry of nonpositively curved cube complexes, then
it is easy to verify that if D satisfying conditions (S1), (S2), (S3), (S4) then C does. The
Lemma follows since it is easy to check that an Artin cube complex R(Γ) always satisfies
conditions (S1), (S2), (S3), (S4). �

In the sequel, given any special cube complex C we will denote by R = R(C) the Artin
complex R = R(Γ), where Γ = ΓC denotes the graph on the set V = VC of hyperplanes
in C that we considered in the first part of the proof above.

3. Canonical Completion and Retraction and Wall Projections

3.A. Canonical Completion and Retraction. In this section we recall how to fac-
torize some combinatorial immersions X → Y as an inclusion composed with a covering
map (see [Sta83]). The key point here is to give a canonical construction, that can be
used as an elementary machinery in more elaborate constructions. Due to its naturality,
the construction will enjoy many nice formal properties.

The possibility of lifting an immersion X → Y to an inclusion X → Y ′ in a finite
cover Y ′ → Y is related to the separability of π1X < π1Y . In a residually finite group,
any virtual retract is separable (in a very strong way). We show below that in the
context of special cube complexes it is possible to lift a local isometry X → Y to an
inclusion X → C(X,Y ), where C(X,Y ) → Y is a “canonically” defined covering, and
furthermore C(X,Y ) “canonically” retracts to X. This construction has been made for
graph immersions in [Wis02] and generalized to arbitrary local isometries of special cube
complexes in [HW08]. We first recall the case of graphs.

Definition 3.1 (canonical completion and retraction for immersions of graphs in a
bouquet). Let A → b be an immersion of graphs where b consists of a single loop, and
A is finite. Each component of A is either a cover of b, or can be completed to a cover
of b by the addition of a single edge. We define C(A, b)→ b to be the resulting covering
space. Note that A ⊂ C(A, b) and that there is a retraction map C(A, b)→ A defined by
sending each new open edge to the component of A it was attached along.

Let A→ B be an immersion of graphs where B is a bouquet of circles, and A is finite.
For each loop b in B, let Ab denote the preimage of b in A. We define C(A,B) to be
the union of C(Ab, b) amalgamated along A0. Then the induced map C(A,B) → B is a
covering. Note that A ⊂ C(A,B) and that the retraction maps C(Ab, b) → Ab induce a
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retraction map C(A,B)→ A. In other words we have completed A to a (finite) covering
of B, that furthermore retracts onto A.

We also note that the retraction map C(A,B)→ A is cellular (it sends cells to cells),
unless there is some loop b such that Ab contains a component isomorphic to a linear
graph with ≥ 3 vertices.

Definition 3.2 (canonical completion and retraction for local isometries of cube com-
plexes in an Artin complex). Let X → R be a local isometry of cube complexes where
R is an Artin cube complex and X is finite. We have already defined canonical com-
pletions and retractions of graphs to obtain: X1 ← C(X1, R1) → R1. Using the local
isometry assumption, a case by case inspection shows that the boundary of a square
in R always lifts to a closed curve in C(X1, R1). Thus we can extend the previous
covering C(X1, R1) → R1 to a covering map of square complexes C(X,R)2 → R2. Now
the 2-skeleton of higher dimensional cubes of R lift immediately to C(X,R)2, and we
attach the corresponding cubes. The resulting space C(X,R) covers R and contains X.

Furthermore the retraction map X1 ← C(X1, R1) extends to a (non necessarily combi-
natorial) retractionX2 ← C(X,R)2 and thus to a retractionX ← C(X,R) by asphericity
of X.

Note that when X and R are compact then so is C(X,R).

Definition 3.3 (fiber product). Given a pair of combinatorial mapsX →W and Y →W
(between cube complexes), we define their fiber product X ⊗W Y to be a cube complex,
whose i-cubes are pairs of i-cubes in X,Y that map to the same i-cube in W . There is
a commutative diagram:

X ⊗W Y → Y
↓ ↓
X → W

Note that X ⊗W Y is the complex in X × Y which is the preimage of the diagonal
D ⊂ W ×W under the map X × Y → W ×W . Recall that D has a natural structure
of cube complex since for any cube Q, the diagonal of Q2 is isomorphic to Q by either
of the projections.

We will use several times the universal property of X ⊗W Y , which is that any com-
mutative diagram:

C → Y
↓ ↓
X → W

is the pull-back under some combinatorial map C → X ⊗W Y of the diagram with
X ⊗W Y (which is thus minimal).

Definition 3.4 (canonical completion and retraction of local isometries). Let A → B
be a local isometry of cube complexes, where A is finite, B is special, and let R = R(B).
By composition we get a local isometry A → R, and we already know how to complete
A to a cover C(A,R)→ R. Since we have a local isometry B → R we just induce on B
the cover C(A,R) → R, so that A → B will lift to an inclusion. In order to investigate
the formal properties of this completion we rather use the fiber product language.
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Figure 2. The figure corresponds to the following commutative diagram:
C(A,B) → C(A,R) ⊃ C(A1, R1)

↗ ↓ ↓ ↓
A → B → R ⊃ R1

We thus set C(A,B) := B ⊗R C(A,R). The local isometry A → B and the inclusion
map coincide on R, thus define an inclusion A → C(A,B). The map C(A,B) → B is
a covering because C(A,R) → R is a covering. We define the canonical retraction map
C(A,B)→ A to be the composition C(A,B)→ C(A,R)→ A.

We will now explain when it is possible to choose among all possible retractions a
more combinatorial, uniquely defined one.

Definition 3.5 (projection-like map). A map f : X → Y between cube complexes is
projection-like provided for each cube Q of X there is a face Q′ < Q such that f is
combinatorial on Q′, and for any x ∈ Q we have f(x) = f(x′) where x′ is the orthogonal
projection of x onto Q′.

Remark 3.6. Being projection-like is detected on the 2-skeleton. Indeed if f : X → Y
is projection-like then so is f : X2 → Y . Conversely, if Y is nonpositively curved, then
any projection-like map f : X2 → Y extends to a unique projection-like map f : X → Y .

Note also that projection-like maps preserve parallelism. More precisely, let f : X → Y
be projection-like, and let a, b denote parallel edges of X. If f(a) is an edge, then so is
f(b), and furthermore f(a), f(b) are parallel edges of Y .
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Lemma 3.7 (projection-like retraction). Let A → B be a local isometry of cube com-
plexes, where A is finite, B is special, and let R = R(B). Assume that B has no indirect
self-osculation. Then the retraction map A1 ← C(A1, R1) is cellular, and it extends
to a unique projection-like retraction map A ← C(A,R). The induced retraction map
A← C(A,B) is also projection-like.

Proof. Since B has no indirect self-osculation, the components of the preimage of a loop
b in R under A → R consists of vertices or edges. It follows that the retraction map
A1 ← C(A1, R1) is cellular. A case by case inspection shows that the attaching map
of squares in C(A,R) retract on A in a projection-like manner. Thus the retraction
A2 ← C(A,R)2 is projection-like, and by Remark 3.6 it extends to a unique projection-
like retraction map A← C(A,R). It follows that A← C(A,B) is also projection-like. �

Definition 3.8 (directly special cube complexes). A cube complex B is directly special
if B is special and has no indirect self-osculation.

Note that the first cubical subdivision of a special cube complex is always directly
special. And any compact special cube complex has a directly special finite cover.

Lemma 3.9 (retraction of walls). Let B be a directly special cube complex and let A→ B
be a local isometry. Then any edge e′ of C(A,B) parallel with an edge e of A is retracted
onto an edge e′′ of A which is parallel to e.

Proof. By Remark 3.6, projection-like maps preserve parallelism.
�

Definition 3.10. A combinatorial map D → C of (special) cube complexes always sends
a hyperplane inside a well defined-hyperplane, thus induces a map VD → VC between the
set of hyperplanes. We say that the map D → C is wall-injective if the map VD → VC
is injective.

As an immediate consequence of Lemma 3.9 we get:

Corollary 3.11 (wall-injective in completion). Let C be a directly special cube complex
and let D → C be a local isometry. Then D is wall-injective in C(D,C).

Lemma 3.12. Suppose D → C is a wall-injective local-isometric embedding of cube
complexes with D finite and C special. Then there is a natural embedding of C(D,D) in
C(D,C) which is consistent with the inclusion, retraction and covering maps, so that we
have the following diagram:

D = D
l l

C(D,D) ⊂ C(D,C)
↓ ↓
D → C

Proof. The wall-injective local isometry D → C induces an embedding VD → VC , and
thus a combinatorial embedding R(D) ⊂ R(C) (not necessarily a local isometry).

We first check that there is a well-defined map C(D,R(D))→ C(D,R(C)), and start
at the level of 1-skeleta.
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First D1 is a common subgraph of both C(D1, R(D)1) and C(D1, R(C)1). Let a be an
edge of C(D1, R(D)1) not contained in D1, and let b denote the image of a inside R(D)1.
We let Db denote the subgraph of D1 such that Db ∪ a is a circle. Then b is also an edge
of R(C), and Db is also a connected component of the preimage of b under D → RC .
Thus by construction there is a unique edge a′ in C(D1, R(C)1) such that Db ∪ a′ is a
circle. We then map a to a′ by the unique homeomorphism compatible with a→ b and
a′ → b.

We have now extended D1 ⊂ C(D1, R(C)1) to a cellular map C(D1, R(D)1) →
C(D1, R(C)1), which by construction is compatible with retractions onto D1, and such
that the following diagram commutes :

C(D1, R(D)1) → C(D1, R(C)1)
↓ ↓

R(D)1 ⊂ R(C)1

The map C(D1, R(D)1)→ C(D1, R(C)1) is injective on the 0-skeleton and it is locally
injective, thus it is injective. It sends the boundary of a square of C(D,R(D)) onto the
boundary of a square of C(D,R(C)), by the very definition of the squares in canonical
completion. The same happens for higher dimensional cubes. Thus we get an injective
combinatorial map C(D,R(D))→ C(D,R(C)), compatible with retractions onto D, and
such that the following diagram commutes :

C(D,R(D)) ⊂ C(D,R(C))
↓ ↓

R(D) ⊂ R(C)
Now the composition maps C(D,D)→ D → C, C(D,D)→ C(D,R(D))→ C(D,R(C))

are compatible with the projections onto C. Thus we get a map C(D,D) → C(D,C).
Injectivity follows from the injectivity of the maps C(D,D)→ D×C(D,R(D)), D → C
and C(D,R(D)) → C(D,R(C)). Chasing around diagrams, one easily checks that this
map has the other desired properties. �

Lemma 3.13. Let C be a special cube complex, and let D ⊂ C be a wall-injective locally
convex subcomplex.

Then the preimage of D in C(D,C) is (isomorphic to) C(D,D).

Proof. By definition the preimage of D in C(D,C) is D ⊗R(C) C(D,R(C)). The image
of a cube Q ⊂ D in R(C) is in fact a cube of the subcomplex R(D). It follows that
D ⊗R(C) C(D,R(C)) = D ⊗R(D) C(D,R(D)) = C(D,D). �

3.B. Wall projections. We now study the notion of a wall projection of one subcomplex
onto another. This will play the role of the intersection between subgraphs of a graph.

Definition 3.14 (parallel cubes and wall-projection). Let X denote a cube complex.
Recall that 1-cubes a, b are parallel in X provided they are dual to the same immersed
hyperplane.

Let A and B be subcomplexes of X. We define WProjX(A→ B), the wall projection
of A onto B in X, to equal the union of B0 together with all cubes of B whose 1-cubes
are all parallel to 1-cubes of A.
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Figure 3. The above examples illustrate a length 3 interval A whose wall
projection onto B is all of B. On the left B is circle and on the right it is
a 3-cube. The reader can show that for any B, there is a cube complex X
containing B and a subcomplex A ∼= I, such that WProjX(A→ B) = B.

We say the wall projection WProjX(A → B) is trivial when any closed loop of
WProjX(A→ B) is homotopically trivial inside X.

Remark 3.15 (locally convex wall projection). Assume that B is a locally convex sub-
complex of a nonpositively curved cube complex X. Let A be any subcomplex. Then
WProjX(A → B) is locally convex. Indeed let Q denote a cube of B, and let v be a
vertex of Q, then by definition Q ⊂ WProjX(A→ B) iff each edge of Q at v belongs to
WProjX(A→ B).

Lemma 3.16 (wall-projection controls retraction). Let A and D be subcomplexes of a
directly special cube complex B. Assume A is locally convex. Let D̂ denote the preimage
of D in C(A,B), and let r : C(A,B)→ A be the canonical retraction map.

Then r(D̂) ⊂WProjB(D → A).

Proof. Consider an edge b̂ of D̂. By definition b̂ consists of a pair (b, b′) where b is an
edge of D ⊂ B, b′ is an edge of C(A,R(B)), and these edges map to the same edge e in
R(B). Then r(b̂) is the image of b′ under the retraction A← C(A,R(B)).

Assume that r(b̂) is not a vertex but an edge a. Then a is contained in the preimage of
e under A→ R(B). This means that a and b are parallel in B. Thus r(b̂) ⊂WProjB(D →
A).

The Lemma follows, since WProjB(D → A) contains all vertices of A, and r is
projection-like. �

3.C. Elevation. We now indicate some terminology related to covering spaces.

Definition 3.17 (elevations). Let X̄ → X denote a covering map. Let A ⊂ X denote a
connected subspace. An elevation of A to X̄ is a connected component of the preimage
of A under X̄ → X.
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Now let A → X denote any map with A connected. Consider two commutative
diagrams

(D1) :
Ā1 → X̄
↓ ↓
A → X

(D2) :
Ā2 → X̄
↓ ↓
A → X

where Āi → A are connected covers, and write (D1) ≤ (D2) if there is a map Ā2 → Ā1

whose composition with Ā1 → X̄, Ā1 → A gives Ā2 → X̄, Ā2 → A. Say two diagrams
(D1), (D2) are equivalent if (D1) ≤ (D2) and (D2) ≤ (D1). Then, up to equivalence, ≤ is
a partial order. An elevation of A→ X to X̄ is a minimal diagram.

Here is a more concrete description. Let Ā be a connected component of the fiber
product A ⊗X X̄. The projections induce two maps Ā → X̄, Ā → A, the latter is a
covering map, so we get a diagram as above:

(E) :
Ā → X̄
↓ ↓
A → X

Then any elevation is equivalent to such a diagram (E), and any such (E) is an elevation.
When the map A→ X is injective the associated map A⊗X X̄ → X̄ is also injective.

More generally we say that a map A → X has embedded elevations w.r.t. a cover
X̄ → X if the associated map A ⊗X X̄ → X̄ is injective. In this case each elevation is
injective, and two distinct components of A⊗X X̄ have disjoint images, so that connected
components of A⊗X X̄ are in 1-to-1 correspondence with equivalence classes of elevations.
We may thus identify the elevations with their images inside X̄, and we recover the case
of connected subspaces A ⊂ X.

For example let A ⊂ X denote a locally convex subcomplex, with A compact and
X special. Then the subcomplex A ⊂ C(A,X) is an elevation of A to C(A,X). By
Lemma 3.13, the other elevations of A are the remaining components of C(A,A) ⊂
C(A,X).

4. Connected intersection theorem.

4.A. Some geometric lemmas on cubical complexes.
The distance d(u, v) between two vertices in a connected cube complex X is the

length of the shortest combinatorial path joining them. A geodesic between u and v is a
combinatorial path whose length is d(u, v). For subcomplexes U, V we let d(U, V ) denote
the length of the shortest geodesic connecting points u ∈ U, v ∈ V . For a subset S ⊂ X
its cubical neighborhood N(S) is defined to be the union of closed cubes intersecting S.

We recall the following concerning the combinatorial geometry of a CAT(0) cube
complex X̃ (for details see for example [Hag08]).

- A combinatorial path of X̃ is a geodesic iff the sequence of hyperplanes it crosses
has no repetition. A path σ of a nonpositively curved cube complex X whose lift σ̃ is a
combinatorial geodesic of the universal cover X̃ will be called a local geodesic.

- A full subcomplex Y ⊂ X̃ is convex iff it is combinatorially convex, in the sense
that any combinatorial geodesic of X̃ with endpoints in Y has all of its vertices inside
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Y . We say that a subcomplex A in a cubical complex Z is full provided that a cube of
Z belongs to A iff its vertices do.

- For any convex subcomplex Y ⊂ X̃ its cubical neighborhood N(Y ) is again a convex
subcomplex.

Let S be a subset of X. We define S+0 to be the smallest subcomplex of X containing
S. For R ≥ 1, we define S+R = N(S+(R−1)) to be the cubical R-thickening of S in X.
When Y is a convex subcomplex we have Y +0 = Y , and consequently Y +R is convex
for each R. For a 0-cell v the subcomplex v+R is called the cubical ball with center v
and radius R. We note that each cubical ball about v is convex whereas combinatorial
metric balls are often not convex. Note that H+0 = N(H) when H is a hyperplane, and
in this case, N(H) is actually a convex subcomplex, and consequently H+R is convex
for each R.

- Every combinatorial path with initial point v and length ≤ R is contained in v+R.
- The convex hull of a subcomplex Y ⊂ X̃ is the intersection of all convex subcomplexes

containing Y .

Remark 4.1. If X has dimension ≤ D, then any vertex x in v+R is joined to v by an
edge-path of length ≤ DR. In particular v+R has diameter ≤ 2DR.

A fundamental result is then:

Theorem 4.2 (convex hull). Let X denote a CAT(0) cube complex. Assume that X
is uniformly locally finite, in the sense that there is a uniform bound on the number
of edges containing a given vertex. Then there exists a function L 7→ R(L) with the
following property.

For any subcomplex Y ⊂ X if Y is L-quasiconvex then the convex hull of Y is
contained inside Y +R(L).

Here we say that Y is L-quasiconvex if any vertex of a combinatorial geodesic with
endpoints inside Y is at combinatorial distance ≤ L of some vertex in Y . For a proof of
Theorem 4.2, see for instance [Hag08].

We will also make use of the following fundamental fact, which the reader can find in
[Ger97] and [Rol]:

Theorem 4.3. Let Y1, . . . , Yr be convex subcomplexes of the CAT(0) cube complex X.
Suppose that Yi ∩ Yj is nonempty for each i, j. Then ∩r1Yi is nonempty.

Definition 4.4 (R-embeddings). Let X be a nonpositively curved, connected cube com-
plex. Let Y → X denote any local isometry with Y connected. There is an induced equi-
variant isometric embedding Ỹ → X̃. We have already defined the cubical R-thickening
Ỹ +R of Ỹ in the simply-connected X̃. For any integer R ≥ 0, the cubical R-thickening
of Y is Y +R := π1(Y )\Ỹ +R.

The map Y → X induces a local isometry Y +R → X which will play an important
role below. When Y +R → X is an embedding, we say that Y → X is an R-embedding,
In particular, a locally convex subcomplex Y ⊂ X is R-embedded when the inclusion
Y ↪→ X is R-embedding. In this case, we identify Y +R with its image in X, and refer
to this locally convex subcomplex as the R-thickening of Y in X.
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The embedding radius of Y ⊂ X is the supremum of the integers R ≥ 0 for which
Y ⊂ X is R-embedded. The injectivity radius of X is the minimum of the embedding
radii of vertices, denoted by InjRad(X). In other words InjRad(X) ≥ R iff v+R → X is
injective for any vertex v.

When H → X is a hyperplane we likewise define the R-thickening of H → X to be
H+R := π1(H)\H̃+R, there is an induced local isometry H+R → X, and when it embeds
we identify H+R with its image and call it the R-thickening of H in X.

The hyperplane embedding radius of X is the minimum of the embedding radii of
hyperplane neighborhoods, denoted by HEmbRad(X). In other words HEmbRad(X) ≥ R
iff for any hyperplane H of X with cubical neighborhood N(H), we have H+R embeds
in X.

Note that Y +R is compact provided Y is compact and X is locally finite.

Lemma 4.5. Let B,C be locally convex connected subcomplexes of the connected non-
positively curved cube complex X. Suppose that B and C are R-embedded and that B∩C
is connected.

(1) B ∩ C is R-embedded.
(2) (B ∩ C)+R equals the component of B+R ∩ C+R containing B ∩ C.

Proof. We first prove the first statement. Choose a basepoint x in D = B ∩ C and let
Ã, B̃, D̃ be the based elevations at x̃ ∈ X̃, and note that D̃ = Ã ∩ B̃. Let p ∈ D̃+R

and g ∈ π1D such that gp ∈ D̃+R. We show that g ∈ π1D = Stabilizer(D̃). Observe
that gp ∈ Ã+R and so since A is R-embedded we see that g ∈ Stabilizer(Ã). Likewise
g ∈ Stabilizer(B̃). Thus g ∈ Stabilizer(D̃) as claimed.

We now prove the second statement. Let σ be a path in B+R ∩ C+R from d ∈ B ∩ C
to p. Let B̃, C̃, D̃, σ̃ be elevations of B,C,D, σ at some point d̃ projecting to d. And let
p̃ be the endpoint of σ̃.

Observe that σ̃ lies entirely in B̃+R, and consequently p̃ ∈ B̃+R. Thus p̃+R ∩ B̃ is
nonempty.

Similarly, p̃+R ∩ C̃ is nonempty.
Applying Helly’s Theorem 4.3 we see that p̃+R ∩ D̃ = p̃+R ∩ B̃ ∩ C̃ is nonempty and

so taking the images in X we see that p ∈ (B ∩ C)+R. �

Lemma 4.6. Let X be a nonpositively curved cube complex with InjRad(X) ≥ R Let
Y ⊂ X be any connected subcomplex where any vertex is joined by a path with ≤ R edges
to some fixed vertex y: then Y is null-homotopic in X.

Proof. Indeed the CAT(0) complex y+R embeds in X and contains Y . �

Lemma 4.7 (short self-connections ⇒ small embedding radius). Let H denote a hyper-
plane of a nonpositively curved cube complex X. Let β be a local geodesic of length ≤ 2R
between two vertices of N(H). If β is not contained in N(H), then the embedding radius
of H is < R.

Proof. Any lift of β = β1 . . . βk to the universal cover X̃ is a combinatorial geodesic
β̃ = β̃1 . . . β̃k connecting the cubical neighborhoods of hyperplanes H̃, H̃ ′ projecting
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onto H in X. Note that H̃ 6= H̃ ′, otherwise by convexity of cubical neighborhood of
hyperplanes, the curve β would stay inside N(H).

By assumption there is a vertex x (on β̃) at distance ≤ R of both N(H̃) and N(H̃ ′).
Let g ∈ π1X denote an element sending H̃ to H̃ ′, so that g 6∈ π1H. Then the vertex
x′ = gx is not identified with x in H+R = π1N(H)\H̃+R, but it is in X. �

Using the fundamental group interpretation for elevations and the fact that the natural
map Y → Y +R is a π1-isomorphism, we get:

Lemma 4.8 (elevations of neighborhoods). Let X denote a connected, nonpositively
curved cube complex, and let Y → R denote a local isometry with Y connected. Assume
X ′ → X is a cover and let R ≥ 0 denote some integer. For any elevation Y ′ → X ′ of
Y → X, the map Y ′+R → X ′ is an elevation of Y +R → X.

In particular any elevation of an R-embedding is an R-embedding. And for any cover
X ′ → X we always have InjRad(X ′) ≥ InjRad(X) and HEmbRad(X ′) ≥ HEmbRad(X).

Lemma 4.9 (virtually high embedding radius). Let X denote a compact, connected,
nonpositively curved special cube complex. Let Y → X denote any local isometry of a
compact cube complex. Then for any integer R ≥ 0, there is a finite cover XY,R → X
such that for any further cover X ′ → XY,R, any elevation Y ′ → X ′ of Y → X is an
R-embedding.

Note that for R = 0 the Lemma provides a finite cover where each elevation is injective.

Proof in the compact case. We canonically complete the local isometry Y +R → X. We
thus get a finite cover C(Y +R, X)→ X, such that Y → C(Y +R, X) is an R-embedding.
We now let XY,R → X denote any regular finite cover factoring through C(Y +R, X)→ X.
By Lemma 4.8 some elevation of Y ⊂ X to XY,R is an R-embedding. But by regularity
all elevations are. Thus the Lemma holds for X ′ = XY,R. Applying again Lemma 4.8
we deduce that the Lemma holds for arbitrary X ′ → XY,R. �

Corollary 4.10 (noncompact virtually high embedding radius). Let Y → X denote
a local isometry of nonpositively curved cube complexes. Suppose that Y → X factors
through a local isometry Ȳ → X̄ where Ȳ and X̄ are connected nonpositively curved
cube complexes, Ȳ is compact and X̄ is virtually special. And suppose that the preimage
of π1Ȳ equals π1Y . Then for any integer R ≥ 0, there is a finite cover XY,R → X
such that for any further cover X ′ → XY,R, any elevation Y ′ → X ′ of Y → X is an
R-embedding.

Proof. Apply Lemma 4.9 to Ȳ ′ → X̄ ′, where X̄ ′ → X̄ is a special cover, and Ȳ ′ is the
induced finite cover of Ȳ . Let X̄ ′

Ȳ ′,R
→ X̄ ′ be the resulting space. This induces a finite

cover of X such that the based elevation of Y is R-embedded. A finite regular cover
factoring through this has the desired property. �

Corollary 4.11 (virtually high (hyperplane) injectivity radius). Let X denote a com-
pact, connected, nonpositively curved special cube complex. Then for any integer R ≥ 0,
there is a finite cover X ′ → X such that for any further cover X ′′ → X ′, we have
InjRad(X ′′) ≥ R and HEmbRad(X ′′) ≥ R
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Proof. For Y any singleton {v} or any hyperplane neighborhood we consider a finite
cover XY,R → X as in Lemma 4.9. We then let X ′ → X denote any finite cover
factoring through the finitely many finite covers XY,R → X. We conclude as above with
Lemma 4.8. �

Lemma 4.12 (embedding radius of amalgams). Let A,B be connected, locally convex
subcomplexes of a connected, nonpositively curved cube complex X, such that A ∪ B is
connected and locally convex.

Assume the embedding radius of A,B is ≥ R and each component of A+R ∩ B+R

intersects a component of A ∩B. Then the embedding radius of A ∪B is ≥ R.

Proof. Set Y = A ∪ B. Let Ỹ be some lift of Y to the universal cover X̃. Let γ ∈ π1X

map p̃ ∈ Ỹ +R to p̃′ ∈ Ỹ +R, and let us show that γ stabilizes Ỹ .
We fix a base vertex x̃ in Ỹ mapping inside A∩B and denote by Ã, B̃ the lifts of A,B

at x̃. The subspace Ỹ is covered by the translates gÃ, hB̃ for g, h ∈ π1Y , thus Ỹ +R is
covered by the translates gÃ+R, hB̃+R. The stabilizer of Ỹ is identified with π1Y .

We may assume that p̃ ∈ (gÃ)+R. There are two possibilities for p̃′. Either there
exists h ∈ π1Y s.t. p̃′ ∈ (hÃ)+R. In this case we note that h−1γg self-intersects Ã+R.
Since the embedding radius of A is ≥ R it follows that h−1γg ∈ π1A ⊂ π1Y and thus
γ ∈ π1Y .

Otherwise there exists h ∈ π1Y s.t. p̃′ ∈ (hB̃)+R, and to show that γ ∈ π1Y we may
assume g = h = 1. Then p̃ maps in X to a vertex p contained in A+R ∩ B+R. By the
relative connectedness assumption there is a path σ inside A+R ∩ B+R connecting p to
q ∈ A ∩B. Choose a path α̃ ⊂ Ã+R connecting x̃ to p̃, then compose its image α inside
x with σ. Since A ⊂ A+R is a π1-isomorphism the product ασ is homotopic with fixed
endpoints inside A+R to a path a contained in A. Thus up to translating by an element
of Stabilizer(Ã) the point p̃ is the endpoint of the lift at x̃ of the path aσ−1. Similarly,
up to translating by the element of Stabilizer(B̃) there is a path b ⊂ B connecting x to
the endpoint of σ such that p̃′ is the endpoint of the lift at x̃ of the path bσ−1. It follows
that γ ∈ π1Aa

−1bπ1B so γ ∈ π1Y . �

4.B. Quasiconvex amalgams.

Lemma 4.13 (Quasiisometric Line of Spaces). Let X be a δ-hyperbolic CAT(0) cube
complex. There exists R0 ≥ 0 and L0 > 0 with the following property:

Let Y0, . . . , Ym be a sequence of convex subcomplexes of X, such that Zi+1 := Yi∩Yi+1

is nonempty for each 0 ≤ i < m. Let Y = Y0 tZ1 Y1 tZ2 · · · tZm Ym, and note that there
is an induced map φ : Y → X.

If d(Zi, Zi+1) > R0 for each 0 ≤ i < m then for y0 ∈ Y0, ym ∈ Ym, we have
dX(φ(y0), φ(ym)) ≤ dY (y0, ym) ≤ L0dX(φ(y0), φ(ym)).

Proof. This is implicit in the proof of the quasiconvex amalgam theorem proven in
[HW08]. �

Lemma 4.14 (Quasiisometric Tree of Spaces). Let X be a δ-hyperbolic CAT(0) cube
complex. There exists R0 ≥ 0 and L0 > 0 with the following property:
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Let Γ be a graph. For each v ∈ Γ0, let Yv denote a convex subcomplex of X. For each
edge {u, v} of Γ, we let Y{u,v} = Yu ∩ Yv. Suppose that each such Y{u,v} is nonempty.

Let YΓ denote the abstract union of the Yv along their pairwise intersections, and
consider the map YT → X.

If d(Y{u,v}, Y{v,w}) > R0 for each pair of distinct adjacent edges {u, v}, {v, w} then
YT → X is an (L0, 0)-quasiisometric embedding.

It follows in particular that Γ is a tree!

Proof. This follows from Lemma 4.13. �

Lemma 4.15 (immersed quasiconvex amalgam). Let X be a compact nonpositively
curved cube complex. Assume the universal cover X̃ is δ-hyperbolic. Then there are
constants R0,K0 depending only on X̃ such that the following holds.

Let A,B,C be (nonempty) connected locally convex subcomplexes of X such that C
is a connected component of A ∩ B. Consider the space S = A ∪C B and the natural
map f : S → X. If both A and B are R0-embedded , then S → X factors through an
embedding S → T and a local isometry T → X, such that S → T is a π1-isomorphism
and every point p ∈ T is at distance ≤ K0 of a point of S.

Proof. The universal cover S̃ consists of a collection of copies of universal covers of Ã
and B̃. The nerve of this covering of S̃ by this collection of subspaces is a tree Γ. The
map S → X induces a map S̃ → X̃, putting us in the framework of Lemma 4.14. We
can thus conclude that S → X is an (L0, 0)-quasiisometric embedding.

We now regard S̃ as a subcomplex of X̃. Since (L0, 0)-quasigeodesics κ-fellowtravel
geodesics for some K0 = K0(L0, δ) we see that S̃ is actually K0-quasiconvex.

Apply Theorem 4.2 to S̃ ⊂ X̃ to obtain a convex π1S-invariant subcomplex T̃ that is
contained in the combinatorial K0-neighborhood of S̃ and is thus π1S-cocompact. We
let T = π1S\T̃ and note that S → X factors as S → T → X to satisfy our claim. �

Corollary 4.16 (embedded quasiconvex amalgam). Let X be a compact nonpositively
curved special cube complex. Assume the universal cover X̃ is Gromov-hyperbolic. Then
there are constants R ≥ K, such that the following holds.

Let A,B,C be (nonempty) connected locally convex subcomplexes of X such that C is
a connected component of A ∩ B. Consider the space S = A ∪C B and the natural map
f : S → X.

If the embedding radius of both A and B are ≥ R, then S → X can be completed to
a finite cover S ⊂ X ′ → X, so that there is a connected, wall-injective locally convex
subcomplex T of X ′ that contains S, with every point p ∈ T at distance ≤ K of S, and
S ⊂ T is a π1-isomorphism.

Furthermore T is the union of two locally convex subcomplexes A,B such that:
(1) A ⊂ A ⊂ A+K and B ⊂ B ⊂ B+K

(2) A ∩ B is connected and A ∩ B ⊂ (A ∩B)+K = C+K ⊂ X ′.
We say that T ⊂ X ′ is an embedded locally convex thickening of the amalgam S → X.

Remark 4.17. Note that C → X ′ is an R-embedding by Lemma 4.5.1, so in particular
C+K ⊂ X ′ is really an embedding.
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Note also that C → A ∩ B is a π1-isomorphism. Indeed by local convexity any
path with endpoints in A can be homotoped to a local geodesic inside A. It follows
π1(A ∩ B) = π1A ∩ π1B.

Proof of Corollary 4.16. LetR0,K be the constants of Lemma 4.15. LetR = max (R0,K).
We first apply Lemma 4.15 to X,A,B,C, to extend the amalgam S → X to a local isom-
etry that we denote by T̄ → X.

We will now perform some computations in X̄ = C(T̄ ,X).
Let A be the component of T̄ ∩A+K containing A, let B be the component of T̄ ∩B+K

containing B, and let T = A ∪ B.
We claim that T is locally convex. Indeed, for p ∈ A−B we have linkT (p) = linkA(p)

and thus T is nonpositively curved at p. Likewise T is nonpositively curved at each
p ∈ B − A. Consider now p ∈ A ∩ B. We will show that linkT (p) = linkT̄ (p) which
we already know is a flag complex since T̄ is locally convex in X̄. Indeed, let Q be a
cube of T̄ containing p, then Q ⊂ A+K ∪ B+K . So for example if Q ⊂ A+K we have
Q ⊂ A+K ∩ T̄ and Q intersects A at p so Q ⊂ A.

Note that T is connected as it is the union of connected sets with nonempty intersec-
tion.

We now show that A∩B is connected. Consider S → T → T̄ and note that S → T̄ is
a π1-isomorphism, and so S → T is a π1-isomorphism since T is connected and locally
convex in T̄ . Let C denote the connected component of C inside A∩B. Form the space
S := A ∪C B. Since S → T is π1-surjective, the composition S → S → T shows that
S → T is π1-surjective. If A ∩ B is not connected, then there are non-trivial connected
covers of T to which S lifts isomorphically. But this implies that the image of π1S inside
π1T is a proper subgroup which is impossible.

Since we have shown thatA∩B is connected it follows from Lemma 4.5.2 that (A∩B) ⊂
(A ∩B)+K .

Finally, since T → X is a local isometry we let X ′ = C(T,X). Then X ′ → X is a
finite cover and T ⊂ X ′ is wall-injective by Corollary 3.11. �

4.C. Virtually Connected Intersection.

Lemma 4.18 (à la Helly). Suppose the nonpositively curved cube complex C deformation
retracts to the locally convex connected subcomplex C. Let B1, . . . , Bn be locally convex
connected subcomplexes of C such that Bi ∩ C is nonempty for each i. Then:

(1) Bi ∩ C is connected.
(2) Each component of B1 ∩B2 contains a point of C.
(3) If ∩i(Bi ∩ C) is connected then ∩iBi is connected.

Proof. We first prove the first claim. Let γ be a local geodesic in Bi that starts and
ends on Bi ∩ C. Let γ̃ be a lift of γ. Let B̃i be the lift of Bi that contains γ̃. Note that
since C deformation retracts onto C, there is only one component C̃ in the preimage of
C. It follows that the geodesic path γ̃ is contained in the convex subcomplex C̃. Thus
γ̃ ⊂ B̃i ∩ C̃ and so γ ⊂ Bi ∩ C.

We now prove the second claim.
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For i ∈ {1, 2} let σi be a path in Bi from Bi ∩C to p ∈ B1 ∩B2. Since C deformation
retracts to C, we can let σ be a path in C that is path homotopic to σ1σ

−1
2 , and so

σσ2σ
−1
1 lifts to a closed path σ̃σ̃2σ̃

−1
1 in C̃. Let Σ̃i be the smallest convex subcomplex

of C containing σ̃i, and note that Σ̃i ⊂ B̃i. Similarly, let Σ̃ be the smallest convex
subcomplex containing σ̃ and note that Σ̃ ⊂ C̃. The closed path σ̃σ̃2σ̃

−1
1 shows that

the convex subcomplexes Σ̃1, Σ̃2, Σ̃ have nonempty pairwise intersection, and so Helly’s
Theorem 4.3 shows that Σ̃1 ∩ Σ̃2 ∩ Σ̃ is nonempty. Its image lies in a component of
B1 ∩B2 ∩C that contains the image of the connected set Σ̃1 ∩ Σ̃2 which is contained in
the component of B1 ∩B2 containing p.

The third claim follows from the following statement:
(3’) Each component of ∩iBi contains a point of C

This follows from (2) by induction on n. Indeed given any family of subcomplexes
B1, . . . , Bn, Bn+1 satisfying the assumption of the Lemma, let B′n be any component of
Bn ∩Bn+1. By (2) the inductive hypothesis applies to B1, . . . , Bn−1, B

′
n.

�

Lemma 4.19 (Separating D from stuff). Let X be a based nonpositively curved connected
cube complex. Suppose B1, . . . , Bn,D are locally convex connected subcomplexes of X
containing the basepoint. Suppose π1Dgπ1Bi is separable in π1X for each g ∈ π1X and
each i.

Then there is a finite cover X̂ with D̂ ∼= D such that the based elevations B̂1, . . . , B̂n
have connected intersection with D̂ in X̂.

Proof. For each i we shall produce below a finite index normal subgroup Ni ⊂ π1X such
that for any normal subgroup N ⊂ Ni the cover X̂i corresponding to Nπ1D has D̂ ∩ B̂i
connected. We then let N = ∩iNi, and let X̂ be the cover corresponding to Nπ1D.

Let p denote the basepoint of X, and let pk denote a point in each other component
Ck of Bi ∩ D. For each k let βk denote a local geodesic in Bi from p to pk, and let δk
denote a local geodesic in D from p to pk.

Observe that 1 6∈ π1Dδkβ−1
k π1Bi. Indeed, suppose biβk is homotopic to dδk for some

bi ∈ π1Bi and d ∈ π1D. Their lifts to X̃ are homotopic to geodesic paths δ, β. But then
δ = β by uniqueness of geodesics, so pk and p must lie in the same component of Bi∩D.

By separability, let Ni be a finite index normal subgroup of π1X such that for each k
we have Niπ1Dδkβ−1

k π1Bi is disjoint from Niπ1Dπ1Bi. Observe that for any N ⊂ Ni we
consequently have Niπ1Dδkβ−1

k π1Bi is disjoint from Nπ1Dπ1Bi for each k. Equivalently,
(Nπ1D)π1Dδkβ

−1
k π1Bi is disjoint from (Nπ1D)π1Dπ1Bi. The cover corresponding to

Nπ1D has the desired property. �

Definition 4.20. Let V,U,U be connected based subspaces of X. We say V,U has
connected intersections relative to V,U , if for each cover X̂ and based elevations V̂ , Û , Û :
each component of V̂ ∩ Û contains a component of V̂ ∩ Û .

Lemma 4.21 (Obtaining Relative Connectivity). Let V,U,U be connected based sub-
spaces of X. Suppose U ⊂ U and π1U → π1U is surjective and that V ∩U is connected.
Then V,U has connected intersection relative to V,U .
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Proof. Let f : X̂ → X be a cover whose basepoint p̂ maps to the basepoint p of X, and
V̂ , Û , Û be the based elevations. Note that Û ∩ V̂ is the disjoint union of components
covering U ∩ V , and by the connectivity of U ∩ V , each of these contains a point of
f−1(p)∩ Û . But since π1U → π1U is surjective, f−1(p)∩ Û = f−1(p)∩ Û . Consequently
each component of Û ∩ V̂ contains a component of Û ∩ V̂ . �

Lemma 4.22 (Intermediate Relative Connectivity). Let V and U ⊂ U ⊂ U+ be con-
nected locally convex based subcomplexes of X, and assume that U → U+ is π1-surjective.
If V,U+ has connected intersections relative to V,U then V,U has connected intersections
relative to V,U .

Proof. Let X̂ be a connected cover and note that V̂ and Û ⊂ Û ⊂ Û+ are connected and
locally convex. Let q ∈ V̂ ∩Û . Applying relative connectivity of V,U+ relative to V,U we
see that there is a path σ in Û+ from q to p ∈ Û . By π1-surjectivity σ can be homotoped
to a local geodesic γ in Û . By local convexity γ lies in V̂ . Thus the component of V̂ ∩ Û
containing q also contains p ∈ V̂ ∩ Û . �

Theorem 4.23 (Virtually Connected Intersection). Let X be a compact special cube
complex with X̃ δ-hyperbolic. Let (B0, . . . , Bn, A) be connected locally convex subcom-
plexes containing the basepoint of X. Suppose that A ⊂

⋂
j∈{0,1,...,n}Bj.

Then there is a based finite cover X̄ and based elevations B̄0, . . . , B̄n with Ā ∼= A, such
that ∩j∈J B̄j is connected for each J ⊂ {0, . . . , n}.

The p-component of S denoted by [S]p, is the component of S containing the point p,
and we use the notation [S] = [S]b where b is the basepoint.

When indices are clear from the context we will use the notation BJ = ∩j∈JBj ,
B̈J = ∩j∈J B̈j etc.

Given a subspace A ⊂ X containing the basepoint, and a based cover X̂, we will
employ the notation Â to denote the based elevation of A. Likewise Ẍ, Ä, and X̄, Ā etc.

Proof. Step 0: Relative Connectedness Preparation. Let R ≥ K be the constants
in Corollary 4.16. For each I ⊂ {0, . . . , n}, since each π1[BI ] is separable, and [BI ]+R is
compact and embeds in the cover of X corresponding to π1[BI ], we can pass to a finite
cover Ẍ of X such that each [B̈I ] ∼= [BI ] (in particular Ä ∼= A) and each [B̈I ]+R embeds.

Let I, J ⊂ {0, . . . , n}, and apply Lemma 4.19 to B̈I , B̈+R
J to obtain a finite cover

./
X

such that [
./
BJ ] ∼= [B̈J ] and [

./
BI ]+R have connected intersection, indeed since π1X is word-

hyperbolic, double (quasiconvex) cosets are separable as prove in [HW08]. In particular
./
A∼= A. By Lemma 4.21, in any further cover Ẋ →

./
X, the subspaces [ḂI ]+R, [ḂJ ] have

connected intersection relative to [ḂI ], [ḂJ ], and the same holds if we replace [ḂI ]+R by
a deformation retract containing [ḂI ].

For each I, J ⊂ {0, . . . , n} we apply the above construction to obtain a finite cover
./
XIJ→ X. Let Ẋ be a finite cover that factors through each

./
XIJ with Ȧ ∼= A, for

instance the based fiber product of the
./
XIJ→ X. We complete the proof by applying

the following claim to Ẋ with (Ḃ0, . . . , Ḃn, Ȧ). The remainder of the proof will focus on
verifying this claim.
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Claim. LetX be a compact special cube complex with X̃ δ-hyperbolic. Let (B0, . . . , Bn, C)
be locally convex connected subcomplexes containing the basepoint of X. Suppose that
C ∩BJ is connected for each J ⊂ {0, . . . , n}.

Suppose that each [BI ]+R embeds in X, and suppose that [BI ], [BJ ]+R has connected
intersection relative to [BI ], [BJ ] for each I, J ⊂ {0, . . . , n}.

Then there is a based cover X̄ with C̄ ∼= C, such that B̄J = ∩j∈J B̄j is connected for
each J ⊂ {0, . . . , n}.

The claim holds for n = 0 with X̄ = X, and will be proven by induction on n.
Step 1: Embedding neighborhoods of C and insuring connected intersec-

tions with each ~Bj: We first pass to a finite cover of X such that C+R embeds, and
then apply Lemma 4.19 several times to obtain a finite cover ~X such that:

(1) C+R ∼= ~C+R embeds in ~X.
(2) ~C+R ∩ ~Bj is connected for each j.
(3) ~C+K ∩ ~B+K

j is connected for each j.
As a consequence the following holds by Lemma 4.5 since we have just enforced that C
is R-embedded, and ~C ∩ ~B0 is connected and B0 is R-embedded by hypothesis of the
claim

(4) (~C ∩ ~B0)+R embeds

Step 2: Making intersections connected in B0: Consider the subspaces [ ~B0∩ ~Bi]
for i ∈ {1, . . . , n}. We claim that

(
∩j∈J [ ~B0∩ ~Bj ]

)
∩ ~C is connected for any J ⊂ {1, . . . , n}.

Indeed, using the connectivity hypothesis we have the following inclusions, which are thus
equalities:
~BJ∪{0}∩ ~C ⊆

(
∩j∈J [ ~B0∩ ~Bj ]

)
∩ ~C ⊆ ∩j∈J [ ~B0∩ ~Bj ]∩ ~C = ∩j∈J ~B0∩ ~Bj∩ ~C = ~BJ∪{0}∩ ~C

Observe that
[
∩j∈J [ ~B0∩ ~Bj ]

]
= [∩j∈J∪{0} ~Bj ]. Indeed

[
∩j∈J [ ~B0∩ ~Bj ]

]
⊂ [∩j∈J∪{0} ~Bj ]

because ∩j∈J [ ~B0 ∩ ~Bj ] ⊂ ∩j∈J( ~B0 ∩ ~Bj) ⊂ ∩j∈J∪{0} ~Bj . The reverse inclusion
[∩j∈J∪{0} ~Bj ] ⊂

[
∩j∈J [ ~B0 ∩ ~Bj ]

]
holds because ∩j∈J∪{0} ~Bj ⊂ ~B0 ∩ ~Bj for each

j ∈ J and so [∩j∈J∪{0} ~Bj ] ⊂ [ ~B0 ∩ ~Bj ] and so [∩j∈J∪{0} ~Bj ] ⊂ ∩j∈J∪{0}[ ~B0 ∩ ~Bj ].
The above two observations show that the hypotheses of our claim hold for the family(

[ ~B0 ∩ ~B1], . . . , [ ~B0 ∩ ~Bn], ~C
)
. Thus, by induction there is a finite covering space X̂ → ~X

and an isomorphic based elevation Ĉ → ~C such that the collection of subspaces ̂[ ~B0 ∩ ~Bj ] =
[B̂0∩ B̂j ] have the connected multiple intersection property: ∩j∈J [B̂0∩ B̂j ] is connected
for each J ⊂ {1, . . . , n}.

Step 3: Formation of D: Let D = B̂0 ∪ Ĉ, and since B̂0 and Ĉ are R-embedded,
let D be the locally convex thickening of D provided by Corollary 4.16. Furthermore D
decomposes as D = B0∪C, where B̂0 ⊂ B0 ⊂ B̂+K

0 and Ĉ ⊂ C ⊂ Ĉ+K (Corollary 4.16.1).
The inclusions B̂0 ⊂ B0 ⊂ B̂+K

0 and Ĉ ⊂ C ⊂ Ĉ+K are homotopy equivalence by local
convexity, and we shall soon use this. Moreover (B̂0 ∩ Ĉ) ⊂ B0 ∩ C ⊂ (B̂0 ∩ Ĉ)+K where
the locally convex intersection B0 ∩ C is connected. Since the intermediate subcomplex
B0 ∩ C is locally convex and connected it deformation retracts to B̂0 ∩ Ĉ, indeed the
inclusion is a π1-isomorphism by Remark 4.17.
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Step 4: Making D have connected intersection with each of B̂1, . . . , B̂n: Apply
Lemma 4.19 to pass to a finite cover X̌ such that Ď ∼= D and such that each B̌j ∩ Ď is
connected.

Step 5: Multiple intersections are connected in Ď: Recall that B̌J denotes
∩j∈J B̌j . Our goal now is to show that Ď∩ B̌J is connected for each J ⊂ {1, . . . , n}. This
intersection can be expressed as the union of two sets containing the basepoint p:

Ď ∩ B̌J = (Č ∪ B̌0) ∩ B̌J = (Č ∩ B̌J) ∪ (B̌0 ∩ B̌J)

and it therefore suffices to verify the connectivity of both (Č ∩ B̌J) = (Č ∩ (∩j∈J B̌j)) and
(B̌0 ∩ B̌J) = (B̌0 ∩ (∩j∈J B̌j)).

To reach this goal we aim to apply Lemma 4.18.3 to the families (Č ∩ B̌j)j∈J and
(B̌0 ∩ B̌j)j∈J , respectively contained in Č, B̌0 where Č deformation retracts to Č and B̌0

deformation retracts to B̌0 (as we have seen in Step 3).
We will be done after verifying the connectedness of each of the following:

(a) Č ∩ B̌j ,
(b) Č ∩ B̌J ,
(c) B̌0 ∩ B̌j ,
(d) B̌0 ∩ B̌J .

(a) We now show that Č ∩ B̌j is connected. By choice of ~X we know that ~C+K ∩ ~Bj is
connected. Since ~C ⊂ ~C+K is a homotopy equivalence it follows by Lemma 4.18.1 that
~C ∩ ~Bj is connected and we are done.

(b) By assumption Č ∩ B̌J is connected. At this point we already have that each
Č ∩ B̌J is connected.

(c) We now show that B̌0∩B̌j is connected for each j. Let q ∈ B̌0∩B̌j . By assumption
B̌j , B̌

+R
0 has connected intersection relative to B̌j , B̌0. Thus by Lemma 4.22, [B̌0 ∩ B̌j ]q

intersects B̌0. Since B̌j ∩ Ď is connected, we see that [B̌0 ∩ B̌j ]q intersects B̌0 ∩ Č at
some point r. Recall that (B̌0 ∩ Č) ∼= (B0 ∩ C) ⊂ (B+K

0 ∩ C+K) is connected: Apply
Lemma 4.18.2 to see that the r-component of (B̌0 ∩ Č) ∩ [B̌0 ∩ B̌j ]q contains a point s
of (B̌0) ∩ (B̌0 ∩ Č) ∩ [B̌0 ∩ B̌j ]q. But s ∈ B̌0 ∩ B̌j ∩ Č which we proved is connected and
which contains p.

(d) We now show that ∩j∈J(B̌0∩B̌j) is connected. Since B̌0∩B̌j is connected it follows
from Lemma 4.18.1 that B̌0 ∩ B̌j is connected, and so [B̌0 ∩ B̌j ] = B̌0 ∩ B̌j . We thus see
that ∩j∈J(B̌0 ∩ B̌j) = ∩j∈J [B̌0 ∩ B̌j ], but the latter is connected since ∩j∈J [B̂0 ∩ B̂j ] is
connected by choice of X̂.

Step 6: Applying induction again: We now apply the inductive assumption to
the family (B̌1, . . . , B̌n, Ď). There is a finite covering space X̄ → X and an isomorphic
based elevation D̄ ∼= Ď such that: letting B̄j denote the based elevation of B̌j , then for
any nonempty subset J ⊂ {1, . . . , n} the intersection B̄J is connected.

For any subset J = {0} ∪ I with I ⊂ {1, . . . , n}, we have B̄J = ∩i∈I(B̄0 ∩ B̄i). Since
B̄0 ⊂ D̄, the map B̄0 → B̌0 is an isomorphism and we have already shown in step (5d)
that ∩i∈I(B̌0 ∩ B̌i) is connected. �
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Corollary 4.24 (Virtually Connected Intersection for Local Isometries). Let X be a
compact special cube complex with X̃ δ-hyperbolic. Let (B0 → X, . . . , Bn → X,A→ X)
be local isometries of connected complexes. Suppose that A→ X is injective and factors
as A→ Bj → X for each j.

Then there is a finite cover X̄ with an elevation Ā ∼= A such that the elevations
B̄0 → X̄, . . . , B̄n → X̄ at Ā → X̄ are injective, and the intersection ∩j∈J B̄j of each
subcollection of their images is connected.

Proof. For each i, let Xi = C(Bi, X), and let X̂ denote the component of the fiber-
product of X0 → X, . . . ,Xn → X that contains Ā ∼= A. Each elevation B̂i embeds in X̂

and contains A. We may thus apply Theorem 4.23 to (B̂0, . . . , B̂n, A). �

5. Trivial Wall Projections

5.A. Introduction. This section is devoted to proving Corollary 5.8, which is a higher-
dimensional generalization of the following:

Proposition 5.1. Let A → X,B → X be immersions of finite connected graphs to the
connected graph X. Suppose that all conjugates of π1A and π1B have trivial intersection
in π1X. Then there is a finite cover X̂ → X, such that each pair of distinct elevations
Â, B̂ embed and intersect in a forest.

In Corollary 5.8 we have a similar statement for local isometries of complexes of (virtu-
ally) special cube complexes (with word hyperbolic fundamental groups), by substituting
“trivial wall projection” for “forest intersection”. In the case of graphs the wall projec-
tion of A onto B equals B0 ∪ (A ∩B), so that the statement in Proposition 5.1 is really
about trivial wall projections. While the proof of Proposition 5.1 is rather simple (see for
example [Wis02]), we found the extension to special cube complexes to be a very chal-
lenging part of the proof. The reader might choose to skip this lengthy section at first
reading, after becoming familiar with Corollary 5.8 which of course uses the language of
elevations from Definition 3.17.

The conclusion of Proposition 5.1 still holds in any further cover X ′ → Ẍ. Trivial
wall projection is also preserved under covering:

Lemma 5.2. Suppose X ′ → Ẋ is a covering map of connected cube complexes. Let
Ȧ, Ḃ ⊂ Ẋ denote connected subcomplexes, and let A′, B′ ⊂ X ′ denote elevations of
those. If WProjẊ(Ḃ → Ȧ) is trivial then WProjX′(B′ → A′) is trivial.

Proof. This holds since WProjX′(B′ → A′) maps to WProjẊ(Ḃ → Ȧ) under the map
X ′ → Ẋ. �

The main work in proving Corollary 5.8 will be to prove the following theorem which
focuses on a single local isometry. In fact this is a special case of Corollary 5.8 when
B consist of single 0-cell. Observe that the following result is immediate when A → X
is an injection of graph. The difficulty in higher dimensions comes from the reach of
wall-projections, even when A→ X is injective.
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Theorem 5.3 (Trivial Wall Projections). Let X be a compact virtually special cube
complex, and let A → X be a compact local isometry with π1A ⊂ π1X malnormal.
Assume π1X is word hyperbolic.

Then there exists a finite cover A0 → A such that any further finite cover Ā → A0

can be completed to a finite special cover X̄ → X with the following properties:

(1) all elevations of A→ X to X̄ are injective
(2) Ā is wall-injective in X̄
(3) every elevation of A distinct from Ā has trivial wall-projection onto Ā.

One of the difficulties in proving Theorem 5.3 is that the triviality of WProj
X̂

(B → Â)
for elevations B, Â of A is certainly not stable under taking further covers. Lemma 5.2
gives no control in the case that Ȧ = Ḃ. For then WProjẊ(Ḃ → Ȧ) = Ȧ can be
nontrivial, and indeed, there can be elevations B′ 6= A′ with nontrivial wall projection
onto A′. This behavior is exhibited in the following example which illustrates the delicacy
of Theorem 5.3. This example shows that in general there does not exist a finite cover
X̂ → X with the property that we have trivial wall projections in any further cover.

Example 5.4. Let X denote the standard 2-complex of 〈a, b, c | a−1b−1ac〉 so X is
obtained from a cylinder by identifying two points on distinct bounding circles. Let A
denote the subcomplex consisting of the 0-cell and the 1-cell labeled by a.

Consider any based finite cover X̂ → X. Let Â denote the based elevation of A, and
let d denote the degree of Â→ A. Observe that for some n there is an immersion D → X

where D is formed from Â by attaching a distinct strip In × I to each 1-cell of Â along
both {0} × I and {n} × I. For instance, we could let n denote the order of the image of
π1X in the left coset representation on π1X̂.

Let D̂ denote any double cover of D in which the preimage of Â consists of two
isomorphic components Â1, Â2. It is easy to see that WProj

D̂
(Â1 → Â2) consists of

all of Â2. Now let X̄ denote a cover of X̂ which contains D̂, and we see that Â2 =
WProj

D̂
(Â1 → Â2) ⊂WProjX̄(Â1 → Â2) ⊂ Â2.

5.B. Narrow wall-projection. We say hyperplanesH,K ofX areM -close if d(N(H), N(K)) ≤
M where we recall that d(U, V ) is the length of the shortest combinatorial path with
endpoints on U, V .

Lemma 5.5 (narrow implies trivial). Suppose X is virtually special with finitely many
hyperplanes. Let A→ X be a compact local isometry and let M > 0 be a positive number.
There exists a finite cover X0 → X with a based elevation A0 such that all elevations of
A to X0 are injective and for any further cover (X̄, Ā)→ (X0, A0) we have the following:

If Ā′ 6= Ā is another elevation of A to X̄, and any two hyperplanes from Ā to Ā′ are
M -close then Ā′ has trivial wall-projection onto Ā.

Proof. By Lemma 4.9 and Corollary 4.11 there is a finite special cover X ′ → X such
that all elevations of A to X ′ are injective and all hyperplanes of X ′ have embedding
radius > M . Let N denote the number of hyperplanes in X ′. Let A0 → A be a finite
cover factoring through X ′ such that the finite CAT(0) complex v+(N+1) → A0 embeds
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as a subcomplex for each vertex v ∈ A0, and such that v+(N+1) is wall-injective in A0.
Let X0 = C(A0, X

′). Note that each v+(N+1) is then wall-injective in X0.

Remark 5.6. The hypothesis that A is compact can be relaxed to the following hy-
pothesis: A → X factors through a local isometry Ā → X̄ such that the preimage of
π1Ā equals π1A, and Ā is compact, and X̄ is virtually special.

Let ˆ̄X be a finite special cover of X̄. Let Ā0 → Ā be a finite cover factoring through
the base elevation of Ā to ˆ̄X, such that each v+(N+1) is injective and wall-injective. Now
let X̄0 = C(Ā0,

ˆ̄X), and observe that Ā0 is wall-injective in X̄0 and thus each subspace
v+(N+1) of Ā0 is wall-injective in X̄0.

Note that the v+(N+1) is contained and is wall-injective in v̄+(N+1) for each v, since
it is a convex subcomplex of a CAT(0) cube complex.

We now let X0 be the fiber product of X ′ and X̄0, and we let A0 be the fiber product
of A′ and Ā0, where A′ is the based elevation of A to X ′.

Let (X̄, Ā)→ (X0, A0) be any further cover. For each v̄ of Ā the CAT(0) cubical ball
v̄+(N+1) is still a CAT(0) and wall-injective subcomplex of X̄.

Consider any edge-path σ̄ in Ā of length N + 1, and assume that any two dual hyper-
planes are M -close. Then σ̄ has two distinct edges dual to hyperplanes H̄1, H̄2 which are
M -close but project to the same hyperplane H ′ of X ′. Since σ̄ projects to a short path
σ′ from N(H ′) to itself, we see by Lemma 4.7 that σ′ is homotopic into N(H ′) and thus
H̄1 = H̄2. The cubical (N + 1)-ball B̄ of Ā centered at the origin of σ̄ is wall-injective in
X̄, and thus there is a B̄-hyperplane dual to two distinct edges of σ̄. Since B̄ is CAT(0)
it follows that σ̄ is not a local geodesic.

By the local convexity of wall projections (Remark 3.15), the above argument shows
that for any distinct elevation Ā′ whose common hyperplanes with Ā are M -close, each
connected component of WProjX̄(Ā′ → Ā) is contained in a cubical N -ball, thus it is
trivial. �

Lemma 5.7 (nearby elevations). Let A→ X be a compact local isometry of special cube
complexes. Assume π1A → π1X is malnormal and the universal cover X̃ is Gromov-
hyperbolic.

Then for any positive number D > 0 there is a finite cover X1 → X with a based
elevation A1 with the following properties.

All elevations of A → X to X1 are injective, and for any further cover (X̂, Â) →
(X1, A1) and any elevation Â′ 6= Â, if d(Â′, Â) ≤ D then Â′ has trivial wall-projection
onto Â.

Proof. By Lemma 4.9, we may pass to an initial finite cover Ẋ → X we may assume
that all elevations of A→ X are embedded, and have embedding radius > D+R, where
R is the constant of Corollary 4.16. Let Ȧ be a fixed elevation of A to Ẋ. Since the
embedding radius of Ȧ is > D + R we see that Ȧ+D embeds in Ẋ. Let Ȧi be an
elevation intersecting Ȧ+D, and let Cij be the various components of this intersection.
Let M = maxij

(
diameter(C+K

ij )
)

which is obviously finite.
We apply Lemma 5.5 to Ȧ ⊂ Ẋ with the constant M in order to obtain the finite cover

X̄ and elevation Ā, such if Ā′ 6= Ā is an elevation whose common hyperplanes with Ā
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are M -close, then Ā′ has trivial wall projection onto Ā in X̄, and this persists in further
covers.

Since the embedding radius of Ā is > D +R the space (Ā)+D embeds in X̄. For any
distinct elevation Āk within distance D of Ā we choose a connected component C̄k` of
the nonempty intersection Ā+D ∩ Āk, and we form a space Sk` by attaching Ā+D with
Āk along C̄k`. By malnormality of π1A, each Cij is simply-connected and thus each C̄k`
factors isomorphically through some Cij . Consequently diameter(C̄+K

k` ) ≤ M always
holds.

The embedding radius of Āk inside X̄ is > D+R ≥ R. The embedding radius of Ā+D

inside X̄ is > (D+R)−D = R. Thus by Corollary 4.16 the natural map S → X̄ factors
as Sk` → Tk` ↪→ Xk` → X̄, where Xk` → X̄ is a finite cover, Sk` → Tk` is an injective
π1-isomorphism, Tk` ⊂ Xk` is a connected, wall-injective locally convex subcomplex, and
any path of Tk` connecting Āk to Ā+K enters C̄+K

k` .
Since Tk` ⊂ Xk` is wall-injective it follows that any hyperplane of Xk` from Āk to

Ā enters C̄+K
k` , and thus any two such hyperplanes are M -close. Consequently the wall

projection from Āk to Ā is trivial.
We consider the various covers Xk` → X̄ associated to the finitely many choices of

Ck`. Each finite cover Xk` contains an isomorphic elevation of Ā and we denote by
(X1, A1) → (X̄, Ā) the Ā-component of the fiber-product of the various covers {Xk` →
X̄}. Note that A1

∼= Ā.
The cover X1 → X has the desired properties. Indeed consider any further cover

(X̂, Â)→ (X1, A1) and any elevation Â′ 6= Â with d(Â′, Â) ≤ D.
In X̄ the embedding radius of Ā is > D. Thus since Â′ 6= Â and d(Â′, Â) ≤ D the

image of Â′ inside X̄ is distinct from Ā and thus equals one of the Āk discussed above.
Let A′1 be the image of Â′ in X1, and again note that A′1 6= A′ - indeed it maps to
Āk 6= Ā in X̄.

Observe that X1 → X̄ factors through Xk` and A′1 maps onto Āk ⊂ Tk` ⊂ Xk`. Since
the wall-projection of Āk onto Ā inside Xk` is trivial, it follows that WProjX1

(A′1 → A1)
is trivial, and hence so is WProj

X̂
(Â′ → Â). �

5.C. Proof of Theorem 5.3.
Step 1: Preparation. Let R ≥ K be the constants of Corollary 4.16. Choose constants
D > (3K + 1)dim(X), and M ≥ 4Kdim(X), and R1 ≥ max (K +R, 4K + 2). We first
pass to a finite cover (X0, A0)→ (X,A) such that:

(1) X0 is special
(2) each elevation of A to X0 is injective
(3) each elevation of A to X0, each hyperplane of X0 has embedding radius > R1

(4) each elevation A′0 6= A0 with d(A0, A
′
0) ≤ D has trivial wall projection

(5) Let (X̄, Ā) → (X0, A0) be any further cover, then for any other elevation Ā′ of
A, if the hyperplanes between Ā, Ā′ are M -close then WProjX̄(Ā′ → Ā) is trivial.

(The adequate values of the constants D,M,R1 will be adjusted later.)
These properties are stable under covers, so we obtain them consecutively. First we

choose a finite special cover X1 → X. Let A1 be an elevation of A→ X to X1. We form
the canonical completion C(A1, X1) → X and note that its based elevation is injective.
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Let X2 → X be a finite regular cover factoring through C(A1, X1)→ X, and note that all
elevations of A to X2 are injective. Then we apply Lemma 4.9 and Corollary 4.11 to get a
finite cover X3 → X2 with arbitrarily high embedding radii of the desired subcomplexes.
To get the two last properties we consecutively apply Lemmas 5.7 and 5.5.

Let Ā → A0 be any finite cover. Using separability we complete Ā → X0 to a finite
cover Ẋ → X0.

Step 2: Connected intersection of thickened elevations and hyperplanes.
We claim that there is a further finite cover Ẍ → Ẋ with an isomorphic elevation of
Ā, such that the following holds: for any hyperplane Ḧ of Ẍ dual to an edge of Ā and
for any pair of connected locally convex subcomplexes Ÿ , Z̈ ⊂ Ẍ satisfying Ā ⊂ Ÿ ⊂
(Ā)+R1 , N(Ḧ) ⊂ Z̈ ⊂ N(Ḧ)+R1 , the intersection Ÿ ∩ Z̈ is connected.

Indeed for any hyperplane Ḣ of Ẋ dual to an edge e of Ā and for any pair of connected
locally convex subcomplexes Ẏ , Ż ⊂ Ẋ satisfying Ā ⊂ Ẏ ⊂ (Ā)+R1 , N(Ḣ) ⊂ Ż ⊂
N(Ḣ)+R1 , let CẎ Ż denote the component of Ẏ ∩ Ż containing e. By Lemma 4.19, there
is a finite cover ẊḢ,Ẏ ,Ż → Ẋ with an isomorphic elevation of Ā such that the elevations
of Ẏ , Ż at e intersect connectedly. The fiber product of the various covers ẊḢ,Ẏ ,Ż → Ẋ

contains a natural isomorphic elevation of Ā that is contained in a connected component
Ẍ of the fiber product.

We claim that Ẍ has the required connectedness property. This is clear for Ÿ arbitrary
and Z̈ = N(Ḧ) or Z̈ = N(Ḧ)+R1 , because in that case Ÿ , Z̈ cover subcomplexes Ẏ , Ż.
The result follows for an intermediate N(Ḧ) ⊂ Z̈ ⊂ N(Ḧ)+R1 using Lemma 4.18.

Step 3: Geometric properties of the union of Ā and a hyperplane.
We now consider the collection of spaces Ü1, . . . , Ük, V̈1, . . . , V̈` arising in the following

two ways:

• the union Üi of Ā and a hyperplane H passing through it;
• the union V̈j of Ā, a distant elevation Ä′, and a hyperplane H passing through

both.

Each Üi, V̈j is quasiconvex and we consider their locally convex thickenings B̈i →
Ẍ, C̈j → Ẍ. Below we describe precisely these constructions.

Observe that Ā, and more generally any intermediate subcomplex Ā ⊂ Ÿ ⊂ (Ā)+R1 ,
is wall-injective in Ẍ. Indeed, let e1, e2 be 1-cells of Ÿ dual to a hyperplane Ḧ. Since
Ÿ ∩N(Ḧ) is connected by Step 2, there is a path p in Ÿ ∩N(Ḧ) from e1 to e2. By local
convexity, e1pe2 travels on a sequence of squares of Ÿ dual to Ḧ. Thus any hyperplane
Ḧ that intersects Ā actually meets Ā along a single hyperplane of Ā, which we denote
by ḦĀ.

We then form the space Ü by gluing Ā and N(Ḧ) along their connected intersection.
By construction the embedding radii of both Ā and H in Ẍ are > R1. In the sequel we
denote by R,K the constant of Corollary 4.16, and we assume from now on that R1 ≥ R.
By Corollary 4.16 the map Ü → Ẍ factors through a local isometry B̈ → Ẍ, so that
Ü → B̈ is an injective π1-isomorphism. Furthermore there are connected locally convex
subcomplexes AḦ , Ḧ of B̈ such that Ā ⊂ AḦ ⊂ (Ā)+K , N(Ḧ) ⊂ Ḧ ⊂ (N(Ḧ))+K ,
B̈ = AḦ ∪Ḧ, the intersection AḦ ∩Ḧ is connected and contained inside

(
Ā∩N(Ḧ)

)+K .
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We note that since R1 ≥ R ≥ K the map B̈ → Ẍ is injective on both AḦ , Ḧ. We claim
that in fact B̈ → Ẍ is injective. We prove this by checking that AḦ ∩ Ḧ is connected.
This follows from Step 2 where we established the connectedness of AḦ ∩ Ḧ provided
Ā ⊂ AḦ ⊂ (Ā)+R1 , N(Ḧ) ⊂ Ḧ ⊂ N(Ḧ)+R1 (recall that K ≤ R1).

Since AḦ ⊂ Ā+K we see that the embedding radius of AḦ is ≥ R1 − K ≥ R, and
likewise Ḧ has embedding radius ≥ R. Since Ā ⊂ (AḦ)+R ⊂ (Ā)+R1 and N(Ḧ) ⊂
Ḧ+R ⊂ (N(Ḧ))+R1 , step 2 implies that (AḦ)+R ∩Ḧ+R is connected. We can now apply
Lemma 4.12 to see that the embedding radius of B̈ is ≥ R.

Assume now that Ḧ cuts an elevation Ä′ with d(Ä′, Ā) > D. Let γ be a connected
component of B̈ ∩ Ä′ that contains an edge dual to Ḧ. Let Ẅ be the space obtained by
attaching B̈ to Ä′ along γ. We denote by V̈ ⊂ Ẅ the subspace Ü ∪ Ä′, which supports
all of the fundamental group. By Corollary 4.16 the map Ẅ → Ẍ factors through a
local isometry C̈ → Ẍ, so that Ẅ → C̈ is an injective π1-isomorphism. Furthermore
there are connected locally convex subcomplexes B,A′γ of C̈ such that B̈ ⊂ B ⊂ B̈+K ,
Ä′ ⊂ A′γ ⊂ (Ä′)+K , C̈ = B ∪ A′γ , the intersection B ∩ A′γ is connected and contained
inside γ+K .

Step 4: Construction of X̄ → X. The inclusion Ā → Ẍ factors through the
various local isometries B̈i, C̈j → Ẍ. We apply Corollary 4.24 to the collection of local
isometries {B̈i → Ẍ}, {C̈j → Ẍ} relative to Ā. This yields a cover (X̄, Ā) in which their
elevations {B̄i, C̄j} are injective and have pairwise connected intersection.

Step 5: Verifying that wall projections are trivial. Let Ā′ 6= Ā be an elevation
of A, and let Ä′ denote the image of Ā′ inside Ẍ.

If d(Ä′, Ā) ≤ D and Ä′ 6= Ā then WProjẌ(Ä′ → Ā) is already trivial and we are done
by Lemma 5.2.

Otherwise either Ä′ = Ā or Ä′ is distant from Ā. In each of these cases we will deduce
the triviality of the wall-projection by showing M -closeness of the hyperplanes cutting
through both Ā and Ā′.

In the first case consider any two hyperplanes H̄1, H̄2 that are common to Ā and Ā′.
Their images in Ẍ are Ḧ1, Ḧ2. For each i, let Üi and B̈i be the spaces from step 3
associated to (Ā, Ḧi).

Since Ā′ maps to Ā and H̄1, H̄2 map to Ḧ1, Ḧ2 we have Ā′ ⊂ Ū1∩ Ū2 ⊂ B̄1∩ B̄2 where
Ūi ⊂ B̄i denotes the elevation of Üi that contains Ā.

There is an edge-path σ̄ inside the connected subcomplex B̄1 ∩ B̄2 that starts at Ā
and ends in Ā′. Since B̈1 = (AḦ1

∪Ḧ1) ⊂ (Ā+K ∪ Ḧ+K
1 ), the locally convex subcomplex

B̄1 is contained in a union of elevations of Ā+K and Ḧ+K
1 . Since R1 ≥ K + 1 we

have Ā+K ∩ Ā′ = ∅, thus there is a first vertex p̄ on σ̄ which is not in Ā+K . Note
that p̄ ∈ Ā+(K+1). Since R1 ≥ 2K + 1 this vertex p̄ does not belong to any elevation
of Ā+K ⊂ Ẍ to X̄. Thus p̄ ∈ (ē′1)+K where ē′1 is an edge dual to a hyperplane H̄ ′1
mapping to the hyperplane Ḧ1 and contained inside B̄1. Given an edge ē1 dual to H̄1

and contained in Ā, we have ē′1, ē1 ⊂ Ā+(2K+2). The images of these edges under X̄ → Ẍ

are both dual to Ḧ1. Since R1 ≥ 2K + 2 we have already seen that Ā+(2K+2) is wall-
injective in Ẍ. Since X̄ → Ẍ induces an isomorphism Ā+(2K+2) → Ā+(2K+2) it follows
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that ē′1, ē1 are dual to the same hyperplane of Ā+(2K+2), and so H̄ ′1 = H̄1. Similarly
p̄ ∈ H̄+K

2 . It follows that there is a path of length ≤ 2Kdim(X) from N(H̄1) to N(H̄2).
See Remark 4.1 for the relationship between combinatorial neighborhoods and cubical
thickenings.

The second case (when Ä′ is a distant elevation) is similar except that we use locally
convex thickenings C̈1, C̈2 of the spaces built from Ā, Ä′, together with Ḧ1, Ḧ2 respec-
tively. There is no difference from the previous explanation at the vertex of σ̄ leaving
the K-thickening of Ā: it comes within a uniform distance of both H̄1 and H̄2. And such
a vertex exists provided D is large enough. We shall now provide the details:

Consider any two hyperplanes H̄1, H̄2 cutting both Ā and Ā′. Choose an edge ā′i of
Ā′ dual to H̄i, and denote by a′i the image of ā′i inside Ẍ. The images of H̄1, H̄2 in Ẍ

are Ḧ1, Ḧ2. For each i, let B̈i be the locally convex thickening of Ā ∪ N(Ḧi). We let
γi denote the connected component of a′i inside B̈i ∩ Ä′. Let V̈i, Ẅi, C̈i be the immersed
spaces associated to B̈i, Ä′, γi that we constructed in Step 3.

Since Ā′ maps to Ä′ and H̄1, H̄2 map to Ḧ1, Ḧ2 we have Ā′ ⊂ W̄1 ∩ W̄2 ⊂ C̄1 ∩ C̄2.
There is an edge-path σ̄ inside the connected subcomplex C̄1 ∩ C̄2 that starts at Ā

and ends in Ā′.
The following inclusion shows that the locally convex thickening C̄1 is contained in

the union of elevations of Ä′+K , elevations of Ā+2k ⊂ Ẍ, and elevations of Ḧ+2K
1 :

C̈1 = B1 ∪ A′1 ⊂ (AḦ1
∪ Ḧ)+K ∪ (Ä′)+K ⊂ Ā+2K ∪ Ḧ+2K

1 ∪ (Ä′)+K .

Since D > (2K)dim(X) we have Ā+2K ∩ Ā′ = ∅, thus there is a first vertex p̄ on
σ̄ which is not in (Ā)+2K . Since R1 ≥ 4K + 1 this vertex p̄ does not belong to the
2K-thickening of any elevation of Ā ⊂ Ẍ. Since D > (3K + 1)dim(X) the point p̄ does
not belong to the K-thickening of any elevation of Ä′ contained in C̄1. It follows that
p̄ belongs to the 2K-thickening of an elevation of N(Ḧ1). Equivalently p̄ ∈ (ē′1)+2K for
some edge ē′1 dual to a hyperplane H̄ ′1 mapping to the hyperplane Ḧ1 and contained
inside B̄1. The argument ends in the same manner as in the first case: if R1 ≥ 4K + 2
then H̄ ′1 = H̄1, and so any two hyperplanes between Ā and Ā′ are within a distance
4Kdim(X). �

5.D. A variation on the theme. We will need later the following result, which is a
consequence of Theorem 5.3.

Corollary 5.8. Let X be a compact virtually special cube complex, and let A,B → X be
compact local isometries with π1A ⊂ π1X malnormal, π1B ⊂ π1X malnormal, and each
conjugate of π1A has trivial intersection with π1B. More precisely if a→ A and b→ B
are immersed circles that are homotopic to each other in X, then they are null-homotopic.

Assume π1X is word hyperbolic.
Then there exists a finite cover A0 → A such that any further finite cover Ā → A0

can be completed to a finite special cover X̄ → X with the following properties:
(1) all elevations of A→ X,B → X to X̄ are injective.
(2) Ā is wall-injective.
(3) every elevation of A distinct from Ā has trivial wall-projection onto Ā.
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(4) every elevation of B has trivial wall-projection onto Ā.

Proof. Step 1: The auxiliary pair C → Y . We choose base points ā, b̄ in A,B, and
let a, b be their images inside X. We then consider the space Y obtained by adding a
single 1-cube e to X with origin at a and with endpoint at b. We also form a connected
cube complex C by setting C = At [0, 1]tB/ā=0,b̄=1. We denote by ē the image of [0, 1]
inside C. Mapping ē to e we get a natural map C → Y .

Step 2: Geometric properties of Y . Observe that Ỹ is a hyperbolic CAT(0) cube
complex and C → Y is a local isometry. Indeed the universal cover Ỹ is a tree-like space,
where the vertex spaces are disjoint copies of X̃, connected by the edges mapping to e.

Step 3: π1C ⊂ π1Y is malnormal. This can be proven by either simple disc diagram
arguments, combinatorial group theory arguments involving normal forms, or geometric
considerations in the universal cover. We leave the details to the reader.

Step 4: Y is virtually special. Let X̂ → X be a special cover of finite degree d. The
preimage of a consists of d points, and the preimage of b consists of d points. We then
choose a one-to-one correspondence between preimages of a and preimages of b, and glue
d edges accordingly. The resulting cube complex Ŷ covers Y , and it is special. Indeed
the union of a special special cube complexes meeting along vertices is itself special since
it straightforwardly satisfies the condition of Lemma 2.6.

Step 5: Constructing A0. We can now apply Theorem 5.3 to the local isometry
C → Y . We thus obtain a finite cover C0 → C such that any further finite cover C̄ → C0

extends to a finite special cover Ȳ → Y where all elevations of C → Y are injective and
have trivial wall-projection onto C̄, provided they are distinct from C̄, and moreover
C̄ ⊂ Ȳ is wall-injective. We choose A0 ⊂ C0 to be a fixed elevation of A ⊂ C to the
covering space C0 → C.

Step 6: Conclusion. We now verify that A0 → A has the desired property. Let
Ā→ A0 be any finite cover. C0 is special since it is a locally convex subcomplex of the
special complex Y0, and thus A→ A0 ⊂ C0 extends to a finite cover C̄ → C0.

We next further complete C̄ → C0 to a finite special cover Ȳ → Y with the properties
of Theorem 5.3. We denote by X̄ the elevation of X ⊂ Y that contains Ā, and we claim
that X̄ has the desired properties.
X̄ is special since it is a locally convex subcomplex of the special cube complex Ȳ .
Note that Ā is wall-injective in C̄, thus also in Ȳ and a fortiori in X̄.
Each elevation of A → X or B → X to X̄ extends to an elevation of C → Y , and is

thus injective.
Consider an elevation E 6= Ā of either A or B to X̄. Let C̄ ′ be the elevation of C

containing E. We first treat the case that C̄ ′ = C̄. Observe that E and Ā have no
common hyperplane in C̄ since C̄ is the disjoint union of covers of A and B attached
together along isolated 1-cells. The wall injectivity of C̄ ⊂ X̄ implies that E and Ā have
no common hyperplane in X̄ either. Thus WProjX̄(E → Ā) = Ā0 and is thus trivial.

In the other case where C̄ ′ 6= C̄, we see that WProjX̄(E → Ā) is contained in
WProjȲ (C̄ ′ → C̄) and is thus trivial. �
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6. The Main Technical Result: A Symmetric Covering Property

Let P be an embedded 2-sided hyperplane in the cube complex Q. We define Q− P
to be the complex obtained by first subdividing along P , then cutting along P to obtain
one or two components in Q − P , and then attaching exactly two copies of P in the
obvious manner.

Theorem 6.1. Let Q be a compact connected nonpositively curved cube complex, and
let P be a hyperplane in Q such that the following hold:

(1) π1Q word-hyperbolic.
(2) P is an embedded, nonseparating, 2-sided hyperplane in Q.
(3) π1P is malnormal in π1Q.
(4) Q− P is virtually special.

Let X = Q−P . For any finite cover X̂ of X, there is a finite regular cover
./
X factoring

through X̂, such that
./
X→ X induces the same cover on each side A,B of P .

Proof. Let α : P → X and β : P → X denote the two maps corresponding to the two
sides of P in Q, so Q is the quotient of X obtained by identifying α(p) = β(p) for p ∈ P .
Let A = α(P ) and B = β(P ).

We will show that for each finite cover X̂ there is a finite regular cover
./
X such that

the isomorphism γ = βα−1 from A to B, lifts to an isomorphism
./
γ from some elevation

./
A to some elevation

./
B.

Step 1: (Covers with trivial wall projection onto Âa and B̂b)
There exists finite special connected covers X̂a and X̂b factoring through X̂ such that:
(1) The base elevation Âa of A to X̂a is wall injective in X̂a.
(2) The base elevation B̂b of B to X̂b is wall injective in X̂b.
(3) The isomorphism γ : A→ B lifts to an isomorphism γ̂ : Âa → B̂b.
(4) WProj

X̂a
(B̆ → Âa) is trivial for each elevation B̆ of B to X̂a.

(5) WProj
X̂a

(Ă→ Âa) is trivial for each elevation Ă of A to X̂a with Ă 6= Âa.

(6) WProj
X̂b

(Ă→ B̂b) is trivial for each elevation Ă of A to X̂b.

(7) WProj
X̂b

(B̆ → B̂b) is trivial for each elevation B̆ of B to X̂b with B̆ 6= B̂b.
This follows by Corollary 5.8.
Step 2: We form the following canonical completions and note the inclusion maps

hold by Lemma 3.12 and the isomorphism is obtained from the isomorphism Âa ∼= B̂b.

C(Âa, X̂a)←↩ C(Âa, Âa) ∼= C(B̂b, B̂b) ↪→ C(B̂b, X̂b)

Step 3: There exist based covers Ā→ A and B̄ → B such that:
(1) the isomorphism γ : A → B lifts to an isomorphism γ̄ : Ā → B̄ so we have the

following commutative diagram:

Ā → B̄
↓ ↓
Âa → B̂b
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(2) Ā factors through each elevation of A to C(Âa, X̂a) and to C(B̂b, X̂b).
(3) B̄ factors through each elevation of B to C(Âa, X̂a) and to C(B̂b, X̂b).

Indeed, we simply choose based covers of A and B that factor through all elevations,
and then a common cover using the isomorphism γ : A→ B.

Step 4: The canonical retraction map C(Âa, X̂a) together with the cover Ā→ Aa in-

duces the covers ̂
C(Âa, X̂a) and ̂

C(Âa, Âa). Similarly, we obtain ̂
C(B̂b, X̂b) and ̂

C(B̂b, B̂b)
so we have the following commutative diagrams:

̂
C(Âa, X̂a) → Ā
↓ ↓

C(Âa, X̂a) → Âa

̂
C(Âa, Âa) → Ā
↓ ↓

C(Âa, Âa) → Âa

̂
C(B̂b, B̂b) → B̄
↓ ↓

C(B̂b, B̂b) → B̂b

̂
C(B̂b, X̂b) → B̄
↓ ↓

C(B̂b, X̂b) → B̂b

Because of the isomorphism between Ā→ Âa and B̄ → B̂b above, we have the following
commutative diagrams:

̂
C(Âa, X̂a) ←↩ ̂

C(Âa, Âa) ∼= ̂
C(B̂b, B̂b) ↪→ ̂

C(B̂b, X̂b)
↓ ↓ ↓ ↓

C(Âa, X̂a) ←↩ C(Âa, Âa) ∼= C(B̂b, B̂b) ↪→ C(B̂b, X̂b)

Step 5:

Let
./
Xa denote the smallest regular cover factoring through each component of X̄a.

Let
./
Xb denote the smallest regular cover factoring through each component of X̄b.

Let
./
X denote the smallest regular cover factoring through

./
Xa and

./
Xb.

Let
./
A denote the smallest regular cover factoring through each component of Āa.

Let
./
B denote the smallest regular cover factoring through each component of B̄b.

Let
./
Aa, and

./
Ab denote the elevations of A to

./
Xa and

./
Xb.

Let
./
Ba, and

./
Bb denote the elevations of B to

./
Xa and

./
Xb.

It is clear that the isomorphism γ : A→ B lifts to an isomorphism
./
γ :
./
A→

./
B.

We will show that
./
A∼=

./
Aa since they factor through each other, and that

./
A factors

through
./
Ab. It will follow that each elevation of A to

./
X is isomorphic to

./
A. An analogous

argument shows that
./
B∼=

./
Bb and that

./
B factors through

./
Ba. Consequently, each elevation

of B to
./
X is isomorphic to

./
B.

Since ̂C(Aa, Aa) ⊂ ̂C(Aa, Xa), it is obvious that
./
Aa factors through

./
A.

Since
./
Xa is the smallest regular cover induced by ̂C(Xa, Aa), to see that

./
A fac-

tors through
./
Aa, it is enough to check that

./
A factors through each elevation of A to

̂C(Xa, Aa).
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There are two cases to consider, according to the history of A as it follows a sequence
of elevations indicated below:

A3 → A2 → A1 → A
↓ ↓ ↓ ↓

̂
C(Âa, X̂a) → C(Âa, X̂a) → X̂a → X

If A1 = Âa is the base elevation of A, then by Lemma 3.13 A2 ⊂ C(Âa, Âa) ⊂
C(Âa, X̂a). Since A3 is contained in ̂

C(Âa, Âa) we see that
./
A factors through A3.

If A1 6= Âa, then WProj
X̂a

(A2 → Âa) is trivial, and so by Lemma 3.16 A2 is nullho-

motopic in the retraction map C(Âa, X̂a)→ Âa. Thus A3
∼= A2. But

./
A factors through

Ā which factors through A2 which is isomorphic to A3.
To see that

./
A factors through

./
Ab, we show that Ā factors through

./
Ab by showing Ā

factors through each elevation of A to ̂
C(B̂b, X̂b). Again consider the history of elevations

of A to ̂
C(B̂b, X̂b)

A3 → A2 → A1 → A
↓ ↓ ↓ ↓

̂
C(B̂b, X̂b) → C(B̂b, X̂b) → X̂b → X

Observe that A1 has trivial wall projection onto Bb, and so by Lemma 3.16, A2 is
nullhomotopic in the retraction map C(B̂b, X̂b) → X̂b. Thus A3

∼= A2. But Ā factors

through A2 and hence
./
A factors through Ā which factors through A3

∼= A2. �

7. Subgroup Separability of Quasiconvex Subgroups

Without hyperbolicity, the hypothesis of Theorem 6.1 permits a proof of residual
finiteness of π1Q using the normal form theorem for graphs of groups. In this section we
prove the following stronger property from this hypothesis together with hyperbolicity:

Theorem 7.1. Let Q be a compact nonpositively curved cube complex. Let P be an
embedded nonseparating 2-sided hyperplane in Q. Let X be the cube complex obtained
from Q by deleting an open regular neighborhood of P , and assume X is connected.
Suppose that Q has the cocompact convex core property. Suppose that for each finite
cover X̂ → X, there is finite regular cover

./
X→ X factoring through X̂, such that

./
X

induces the same cover on each side A,B of P . Assume that π1X has separable double
cosets of quasiconvex subgroups.

Then every quasiconvex subgroup of π1Q is separable.

Definition 7.2. The space Y has the cocompact convex core property if for each quasi-
convex subgroup H of π1Y , and each compact subset C ⊂ Ỹ , there is a convex subset S
of Ỹ such that C ⊂ S and S is H-stable and H-cocompact.

By Lemma 7.5, the compact nonpositively curved cube complex X has this property
if π1X is δ-hyperbolic.
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Remark 7.3. It is likely that we can relax the hypothesis to assume that X has the
compact core property for CAT(0) quasiconvex subgroups.

Double quasiconvex coset separability always for word-hyperbolic groups provided
that quasiconvex subgroups are separable. Double coset separability implies virtual
specialness for finite type cube complexes.

The proof follows the scheme for proving subgroup separability given in [Wis00].

Proof. We will consider on Q a structure of graph of spaces whose open edge space is
the open cubical neighborhood of P , and whose vertex space is its complement X.

Let Q̇ denote the based cover corresponding to a quasiconvex subgroup of π1Q. Let
σ ∈ π1Q−π1Q̇, and let S be a compact subspace of Q̇ containing the based lift of σ. By
the cocompact convex core property for Q, let Y be a compact core of Q̇ containing S.
Y has an induced graph of space structure whose vertex spaces are components of the

preimage of X in Y , and whose open edge spaces are components of the preimage of
the open edge space of Q. Since vertex and edge spaces of Q̇ are connected and locally
convex, the intersection of Y with each vertex and edge space of Q̇ is a connected and
locally convex subcomplex by Lemma 4.18.1. These intersections correspond precisely
to the induced vertex and edge spaces of Y . Let Yi = Y ∩Xi denote the vertex spaces
of Y where X1, . . . , Xn denote the vertex spaces of Q̇ that have nonempty intersection
with Y . We emphasize that Yi ↪→ Xi induces a π1-isomorphism.

For each i, we shall now use the separability of certain double cosets to produce a
finite cover X̂i → X with the following injectivity properties:

(1) Ẋi → X factors as Ẋi → X̂i → X and Yi ⊂ Ẋi embeds in X̂i under this map.
(2) The distinct elevations Ȧij → Ẋi of A → X whose images intersect Yi ⊂ Ẋi

factor through distinct elevations in X̂i.
(3) The distinct elevations Ḃik → Ẋi of B → X whose images intersect Yi ⊂ Ẋi

factor through distinct elevations in X̂i.
For each i, the finitely many intersecting elevations correspond to double cosets of

the form π1Yiαijπ1A and π1Yiβikπ1B. Without loss of generality, we can add a tail to
B so that A,B,X are based spaces, and the maps are basepoint preserving. Consider
the A-type cosets, each αij is a closed based path, and the elevation Ȧij → Ẋi is the
based elevation at the endpoint of the lift α̇ij to Ẋi. We note that right-concatenating
αij with an element of π1A doesn’t change the choice of elevation. Left-multiplication
by elements of π1Yi = π1Xi lead to no change either.

Enumerate the finitely many pairs p`, q` of distinct vertices of Yi that map to the same
vertex of X, and for each ` let ω` be a path from the basepoint to p` and let σ` be a path
from p` to q`. Note that the projections of the paths ω`, σ`, ω−1

` to X are concatenable
to a closed path γ` = ω`σ`ω

−1
` . A based lift of Yi embeds in a based cover of Ẍ of X

precisely if each path γ` 6∈ π1Ẍ.
By double coset separability (note that these compact local isometries have quasicon-

vex fundamental groups), for each i we are able to choose a finite index normal subgroup
Ni such that the Niπ1Yiαijπ1A are all disjoint from each other, and the Niπ1Yiβikπ1A are
all disjoint from each other, and finally each Niπ1Yiγi` is disjoint from Niπ1Yi. It follows
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that the based covering space X̂i with π1X̂i = Niπ1Yi has the properties enumerated
above.

Let Z denote the space obtained from Y by extending each Yi to X̂i, so Z is the quo-
tient of the disjoint union Y ∪ (∪iX̂i) obtained by identifying each Yi with its embedded
image in X̂i. Note that there is an induced map Z → Q.

Let X̂ denote a finite cover factoring through each X̂i. By hypothesis, let
./
X→ X̂

be a finite connected regular cover, such that
./
X induces the same cover

./
A,

./
B on each

side A,B of P . Choose a one-to-one correspondence between the elevations of A and

the elevations of B and attach a copy of
./
P ×[−1, 1] to form a finite cover

./
Q→ Q whose

vertex space is
./
X.

Let
./
Z= Z⊗Q

./
Q denote the fiber product of

./
Q→ Q and Z → Q.

Note that each vertex space of
./
Z is isomorphic to

./
X, since it is a component of the

fiber product of X̂i and
./
X. Moreover, note that for each edge space of

./
Z, its two ends

are contained in copies of
./
A and

./
B. We extend this edge space to a copy of

./
P ×I.

Finally, we choose a one-to-one correspondence between remaining copies of
./
A and

./
B

that do not have incident edge spaces. A simple count shows that there are the same
number of each. And we attach edge spaces according to this one-to-one correspondence.

The result is a finite cover Q̄ of Q. Indeed, the construction gives a natural combinato-
rial map Q̄→ Q that is a local isomorphism. This related to the enumerated properties
that kept the edge space attachments disjoint from each other.

Finally, observe that the element σ is separated from π1Q̇ in the right representation
on cosets of π1Q̄. Indeed, the endpoint of σ is not in the preimage in

./
Z⊂ Q̄ of the

basepoint of Y in
./
Z⊂ Q̄. Thus π1Y is separated from σ in the right coset representation,

since they act differently on the base coset. �

Combining this and Theorem 6.1 we obtain the following:

Corollary 7.4. Let Q be a compact connected nonpositively curved cube complex, and
let P be a hyperplane in Q such that the following hold:

(1) π1Q word-hyperbolic.
(2) P is an embedded 2-sided hyperplane in Q.
(3) π1P is malnormal in π1Q.
(4) Q− P is virtually special.

Then every quasiconvex subgroup of π1Q is separable.

Proof. The Corollary follows in case when P is not separating by combining Theorem 7.1
and Theorem 6.1. Note that the hypotheses of these Theorems hold as in Remark 7.3.

Assume now P is separating. Let Q′ be obtained from Q by adding a new 1-cube which
connects the components of X. Observe that Q → Q′ is a local isometry. Obviously
π1Q

′ is word-hyperbolic. It is easy to verify that π1P is still malnormal in π1Q
′. And

Q′ − P is virtually special: the disjoint union of connected special finite covers of the
two connected components with a collection of 1-cubes provides a special cover. We
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conclude using the non-separating case since any quasiconvex subgroup of π1Q maps to
a quasiconvex subgroup of π1Q

′. �

Lemma 7.5. Let X̂ → X be a covering space of a nonpositively curved cube complex
X with π1X word-hyperbolic. Suppose π1X̂ is quasiconvex. Then each compact subspace
K ⊂ X̂ is contained in a compact locally convex subcomplex Y ⊂ X̂.

Proof. This follows from Theorem 4.2. �

8. Main Theorem: Virtual Specialness of Malnormal Cubical Amalgams

In [HW08] we proved the following criterion:

Proposition 8.1. Let C be a compact nonpositively curved cube complex, and suppose
that π1C is word-hyperbolic. Then C is virtually special if and only if every quasiconvex
subgroup of π1C is separable.

Combining Corollary 7.4 and Proposition 8.1 we obtain the following result:

Theorem 8.2. Let Q be a compact connected nonpositively curved cube complex, and
let P be a hyperplane in Q such that the following hold:

(1) π1Q word-hyperbolic.
(2) P is an embedded 2-sided hyperplane in Q.
(3) π1P is malnormal in π1Q.
(4) Q− P is virtually special.

Then Q is virtually special.

Theorem 8.3. Let C be a compact nonpositively curved cube complex such that:
(1) π1C is word-hyperbolic
(2) each hyperplane of C is 2-sided and embeds
(3) π1D is malnormal in π1C for each hyperplane D of C.

Proof. We repeatedly cut along hyperplanes and apply Theorem 8.2. Here it is convenient
to remove open regular neighborhoods of hyperplanes when cutting. The base case where
Q consists of a single vertex is reached after finitely many cuts. �

Remark 8.4. We note that a “malnormal hyperplane hierarchy” gives a more general
formulation using Theorem 8.2.

9. Virtually special ⇔ separable hyperplanes

A subgroup H of K is almost malnormal if Hk ∩H is finite for each k ∈ K −H.

Lemma 9.1. Let H be a separable quasiconvex subgroup of a word-hyperbolic group G.
Then G has a finite index subgroup K containing H such that H is almost malnormal
in K.

Proof. As proven in [GMRS98], (see also [HWb]) there are finitely many cosets giH such
that giHg−1

i ∩ H is infinite. By separability, we can choose K containing H but not
containing any gi. Thus H is almost malnormal in K. �
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We are now able to obtain the following characterization of virtual specialness in the
word-hyperbolic case. It remains an open problem whether such a characterization holds
in general. See [HW08] for a characterization using double hyperplane cosets.

Theorem 9.2. Let C be a compact nonpositively curved cube complex such that π1C is
word-hyperbolic. Then C is virtually special if and only π1D is separable in π1C for each
immersed hyperplane D of C.

Proof. For each hyperplane Di apply Lemma 9.1 to obtain a finite cover Ci → C such
that π1Di is malnormal in π1Ci. Then let C ′ be a regular cover factoring through all
the Ci’s, and observe that each hyperplane of Ci has malnormal fundamental group.

We can then pass to a finite cover C̄ such that each hyperplane is embedded.
Indeed for each immersed hyperplane D → C, let N → C denote its immersed cubical

regular neighborhood. By convexity of Ñ ⊂ C̃, we see that N embeds in the cover ĈN
with π1Ĉ ∼= π1N . By separability, we see that N embeds in a finite cover C̄N of C.

We now let C̄ be a finite regular cover factoring through C̄N as N varies over all
regular neighborhoods of immersed hyperplanes.

At this stage producing a further cover in which hyperplanes are 2-sided is easily done
[HW08]. We conclude by applying Theorem 8.3. �

10. Uniform arithmetic hyperbolic manifolds of simple type

The main goal of this section is to show that certain arithmetic lattices in Hn =
Isom(Hn) are virtually special. In the first subsection, we describe conditions on a
hyperbolic lattice which imply virtual specialness. Assuming that there are sufficiently
many codimension-1 immersed closed geodesic submanifolds, we can cubulate the group
and then apply Theorem 9.2 to obtain virtual specialness. In the second subsection,
we verify that uniform arithmetic hyperbolic lattices of simple type satisfy this geodesic
submanifold criterion and are thus virtually special.

Our application to subgroup separability of quasiconvex subgroups generalizes earlier
results in [ALR01] as well as more recent work of Agol [Ago06] who has remarkably
pushed Scott’s original reflection group idea to handle many arithmetic examples up to
dimension 11.

10.A. Criterion for virtual specialness of closed hyperbolic manifolds.

Theorem 10.1. Let G be a uniform lattice in Hn. Let H1, . . . ,Hk be isometric copies
of Hn−1 in Hn. Suppose that StabilizerG(Hi) acts cocompactly on Hi for each i. Suppose
there exists D such that any length D geodesic intersects gHi for some g ∈ G and
1 ≤ i ≤ k.

Then G acts properly and cocompactly on a CAT(0) cube complex C. Moreover, G
contains a finite index subgroup F such that F\C is a special cube complex.

The cubulation utilizes Sageev’s construction, and can be deduced from the following
formulation which we quote from [HWc]:

Proposition 10.2. Let G act cocompactly on a δ-hyperbolic CAT(0) space X. Let
H1, . . . Hk in X be a set of convex hyperplanes in X. Suppose that the union of their
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translates T = {gHi : g ∈ G, 1 ≤ i ≤ k} is locally finite in X. Suppose there exists
D such that any geodesic segment of length D, crosses some hyperplane gHi. Then G
acts properly and cocompactly on a CAT(0) cube complex C. Moreover, the distinct
hyperplanes Y of C are in one-to-one correspondence with distinct hyperplanes gHi, and
Stabilizer(Y ) = Stabilizer(gHi).

Lemma 10.3. Let G be a finitely generated subgroup of Hn. Let H be an isometric copy
of Hn−1 in Hn. Then Stabilizer(H) is a separable subgroup of G.

Proof. Let r be the reflection along H. Let G′ = 〈G, r〉, and observe that G′ is finitely
generated, and hence residually finite since it is linear. Observe that the centralizer
CentG′(r) is a separable subgroup of G′. Indeed, if k 6∈ CentG′(r) then [r, k] 6= 1. Let
G′ → Ḡ′ be a finite quotient in which [r̄, k̄] 6= 1̄. Then the preimage of CentḠ′(r̄) in
G′ separates k from CentG′(r). Finally, observe that StabilizerG(H) = CentG′(r) ∩G is
separable in G. Indeed, StabilizerHn(H) = CentHn(r). �

Proof of Theorem 10.1. The proper and cocompact action of G on a CAT(0) cube com-
plex C follows immediately from Proposition 10.2. The stabilizer of each hyperplane of C
equals the stabilizer of a hyperplane gHi in Hn, and is therefore separable by Lemma 10.3.
Since G is residually finite, and there are finitely many torsion elements, we can pass
to a finite index subgroup G′ which is torsion-free. We can then apply Theorem 9.2 to
G′\C to obtain a finite index subgroup F of G′ such that F\C is special. �

10.B. Uniform Arithmetic Hyperbolic Lattices of “Simple” or “Standard”
Type. The results in this subsection were motivated by a lecture of Alex Lubotzky,
who mentioned that arithmetic hyperbolic manifolds of simple type have many totally
geodesic lattices. We are very grateful to Nicolas Bergeron for pointing out to us that
the density of the commensurator was an easy way to see that there are sufficiently
many such sublattices to apply our criterion. After we developed this point of view on
the virtual specialness of these lattices, an alternate treatment has been developed in
[BHW] which uses the double coset separability criterion very much along the lines of
the proof of virtual specialness of Coxeter groups [HWa].

Theorem 10.4. Let G be a uniform arithmetic lattice in Hn of simple type. Then:
(1) G acts properly and cocompactly on a CAT(0) cube complex C.
(2) G contains a finite index subgroup F such that F\C is special.

Proof. This follows from Lemma 10.10 where we verify the criterion of Theorem 10.1. �

Combining with [HW08], we obtain the following consequence:

Corollary 10.5. Every quasiconvex subgroup of G is a virtual retract, and is hence
separable.

To prove Theorem 10.4, we will show that G contains sufficiently many subgroups
acting on codimension-1 hyperplanes. Before embarking on the proof, it will be helpful
to state an explicit characterization of a simple arithmetic lattice, and to note two of
their elementary properties.



A COMBINATION THEOREM FOR SPECIAL CUBE COMPLEXES 40

Remark 10.6 (Simple Arithmetic Lattices in SO(1, n)). Up to commensurability and
conjugation, the “simple lattices” are described precisely in the following formulation
which we quote from [Wit06]. Aside from some exceptional families that appear for
n = 3, 7, these simple lattices are the only arithmetic lattices inHn for odd n. For even n,
there is an additional families of uniform lattices arising from quaternion algebras.

Let F be a totally real algebraic number field. Let O be the ring of integers in F, and
let a1, . . . , an ∈ O be such that:

(1) each aj is positive.
(2) each σ(aj) is negative for every place σ 6= 1.

Let G = SO(a1x
2
1 + · · ·+ anx

2
n − x2

n+1; R) ∼= SO(n, 1). Then:
(1) GO is an arithmetic lattice in G.
(2) GO is uniform if and only if (0, . . . , 0) is the only solution in On+1 of the equation

a1x
2
1 + · · ·+ anx

2
n − x2

n+1 = 0

By imposing the restriction xj = 0 for some 1 ≤ j ≤ n, and noting that the corre-
sponding equation xn+1 =

∑
i 6=j aix

2
i still admits only the trivial solution, we obtain the

following immediate corollary of the result specified in Remark 10.6.

Corollary 10.7. Let GO be a uniform arithmetic lattice of simple type in SO(1, n).
Then GO contains a subgroup K ′ which stabilizes an isometric copy of Hn−1 in Hn, and
is itself a uniform arithmetic lattice (of simple type).

Definition 10.8. The commensurator of a subgroup H in a group G is the following
subgroup of G:

Comm(H,G) = {g ∈ G : [H : H ∩ gHg−1] <∞ and [gHg−1 : H ∩ gHg−1]}

Since Comm(GO,Hn) obviously contains SO(1, n; Q), the following result is obvious
for arithmetic lattices of simple type:

Proposition 10.9. Let G be an arithmetic lattice in Hn. Then Comm(G,Hn) is dense
in Hn.

Dense means that Hn is the closure of the subspace Comm(G,Hn), where we view
Hn as a topological space in the ordinary way as a lie group. In fact, the converse to
Proposition 10.9 holds and is a deeper result of Margulis which we do not need.

Lemma 10.10. Let G be a uniform arithmetic hyperbolic lattice in Hn of simple type.
There are totally geodesic codimension one submanifolds H1, . . . ,Hk (which we call hy-
perplanes) such that:

(1) StabilizerG(Hi) acts cocompactly on Hi.
(2) The set of hyperplanes {gHi : g ∈ G, 1 ≤ i ≤ k} is locally finite.
(3) There exists D such that any length D geodesic crosses some gHi.

Proof. By Corollary 10.7, there is an (n− 1)-dimensional hyperplane H ⊂ Hn, such that
StabilizerG(H) acts properly and cocompactly on H.

Let c ∈ Comm(G). We claim that StabilizerG(cH) acts cocompactly on cH. Indeed let
S denote the stabilizer of H in Hn. Since [G : G ∩Gc] < ∞ we have [StabilizerG(cH) :
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StabilizerG(cH) ∩ Gc] < ∞, and it is enough to prove that StabilizerG(cH) ∩ Gc is
cocompact on cH. Now StabilizerG(cH) ∩Gc = Sc ∩G ∩Gc. By assumption G ∩Gc is
of finite index in Gc, thus Sc ∩G ∩Gc is of finite index in Sc. Since S is cocompact on
H it follows that Sc - the stabilizer of cH in Gc - is also cocompact on cH, which ends
the argument.

By choosing various elements ci ∈ Comm(G), we are thus able to produce a collection
of hyperplanes Hi = ciH each of which has cocompact stabilizer in G.

Let us check that the cocompactness of StabilizerG(H) on H implies the local finiteness
of the family of subsets {gH}g∈G. By cocompactness there is a ball A centered at some
point of H such that for any p ∈ H there exists h ∈ StabilizerG(H) with h−1p ∈ A. For
any ball B of Hn and any g such that gH∩B 6= ∅ there exists an h ∈ StabilizerG(H) such
that ghA ∩B = ∅. Since G acts properly it follows that the set {g ∈ G, gH ∩B 6= ∅} is
the union of finitely many cosets g1 StabilizerG(H) ∪ · · · ∪ gk StabilizerG(H). Thus only
finitely many translates of H meet B.

It thus remains to verify that the third property holds for an appropriate choice of
c1, . . . , ck.

Since G is uniform, we can choose a closed radius r ball A such that GA = Hn. Let
B,C denote the balls with same center as A and with radius r + 1, r + 2.

As any closed convex subset of Hn, B is the intersection of the closed half-spaces
containing B. In this intersection we may restrict to the family of half-spaces whose
complement meets the sphere ∂C in a nonempty open subset. By compactness of ∂C
there is a finite collection of half-spaces K1, . . . ,Km containing B and such that the
union of the complements of Kj covers ∂C. In other words the polytope Π0 = ∩iKi is
contained in the interior of C.

We now approximate the polyhedron Π (containing B) by a polyhedron Π′ whose
faces span hyperplanes which are translates of H by elements of the commensurator,
and such that A ⊂ Π′ ⊂ C. The complements of the Ki provide an open covering of the
sphere ∂C. By density of the commensurator there exists c1, . . . , cm ∈ Comm(G) such
that Hi := ciH is so near to ∂Ki that each Hi is disjoint of A, and the complements
of the half-spaces K ′i of Hn bounded by Hi and containing A provide a covering of ∂C.
This exactly means that we have A ⊂ Π′ ⊂ C.

We now show that any geodesic γ of length D = 2(r+2) intersects some gHi. Since D
is the diameter of C, any geodesic with initial point in A ⊂ Π′ ⊂ C and length > D has
its terminal point outside C, thus crosses the boundary of Π′, which means it intersects
some bounding hyperplane Hi. Now by the choice of A the initial point of any geodesic
may be translated into A by an element of G, thus the geodesic intersects some translate
of some Hi. �
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