Math 113 Homework # 8, due 3/9/01 at 5:00 PM

- 0. (optional, don't hand in) If you haven't seen eigenvectors and eigenvalues before, section 5.1, problem 3 is good practice.
- 1. Section 5.1 problem 4.
- 2. Let A be an $n \times n$ matrix. Recall that $\det(A \lambda I) = (-1)^n (\lambda \lambda_1) \cdots (\lambda \lambda_n)$, where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A. Show that

 $det(A) = \lambda_1 \lambda_2 \cdots \lambda_n, \qquad tr(A) = \lambda_1 + \lambda_2 + \cdots + \lambda_n.$

- 3. Let O(n) denote the set of invertible $n \times n$ real matrices A such that $A^t = A^{-1}$.
 - (a) Show that if $A \in O(n)$ then $det(A) = \pm 1$.
 - (b) Show that if $A \in O(n)$, then $\langle Ax, Ay \rangle = \langle x, y \rangle$ for all $x \in \mathbb{R}^n$. Deduce that ||Ax|| = ||x||.
 - (c) Show that if $A \in O(n)$, then the columns of A are orthonormal.
- 4. Suppose $A \in O(2)$ and det(A) = -1.
 - (a) Let $p(z) = a_n z^n + \dots + a_0$ be a polynomial with a_0, \dots, a_n real and $a_n \neq 0$. Show that if $z \in \mathbb{C}$ and p(z) = 0, then $p(\overline{z}) = 0$ also.
 - (b) Show that the eigenvalues of A are real.
 - (c) Show that the eigenvalues of A have absolute value 1.
 - (d) Show that A has eigenvalues 1 and -1.
 - (e) Show that if v and w are eigenvectors with eigenvalues 1 and -1 respectively, then $v \perp w$.
 - (f) Show that A is the reflection across a line in \mathbb{R}^2 .
- 5. (a) Let $A = \begin{pmatrix} 5/2 & -3 & 3/2 \\ 3 & -5 & 3 \\ 4 & -8 & 5 \end{pmatrix}$. Find an invertible matrix B and a diagonal matrix Λ such that $A = B\Lambda B^{-1}$.
 - (b) Show that $\lim_{n\to\infty} A^n$ exists, and calculate it without using a computer.