Math 113 Homework # 6, due 2/23/01 at 5:00 PM

Feel free to use MATLAB for questions 1, 2, and 3.

- 1. Find the matrix of $d/dx : P_2(\mathbb{R}) \to P_2(\mathbb{R})$ with respect to the basis $1 + x, x + x^2, x^2 + 2$ of $P_2(\mathbb{R})$.
- 2. Let $W = \text{span}((1,2,3),(4,5,6)) \subset \mathbb{R}^3$. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the reflection across W.
 - (a) Find a nonzero vector $v \in W^{\perp}$.
 - (b) Consider the basis $\beta = ((1,2,3), (4,5,6), v)$ of \mathbb{R}^3 . What is the matrix $[T]^{\beta}_{\beta}$?
 - (c) Find the matrix A of T with respect to the standard basis of \mathbb{R}^3 . Your answer should satisfy $A^t = A^{-1} = A$. (Why?)
- 3. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a 60 degree rotation around (1, 1, -1).
 - (a) Find an orthonormal basis v_1, v_2 of $(1, 1, -1)^{\perp}$.
 - (b) Consider the basis $\beta = (v_1, v_2, (1, 1, -1))$ of \mathbb{R}^3 . What should the matrix $[T]^{\beta}_{\beta}$ be?
 - (c) Find the matrix A of T with respect to the standard basis of \mathbb{R}^3 . Your answer should satisfy $A^6 = I$, $A^{-1} = A^t$, and A(1, 1, -1) = (1, 1, -1). (Why?)

(For parts (b) and (c) there are two possible answers.)

- 4. Let V, W be FDIPS's and let $T: V \to W$ be linear.
 - (a) For $x \in V$, show that x = 0 if and only if $\langle x, y \rangle = 0$ for all $y \in V$.
 - (b) Show that $\operatorname{Im}(T)^{\perp} = \operatorname{Ker}(T^*)$.
 - (c) Show that $(T^*)^* = T$.
- 5. Let W be a subspace of \mathbb{R}^n . Let w_1, \ldots, w_m be any basis for W. Let A be the $n \times m$ matrix whose columns are w_1, \ldots, w_m . We can regard A as a linear map $\mathbb{R}^m \to \mathbb{R}^n$.
 - (a) Show that $A^t A$ is injective. Conclude that $A^t A$ is invertible.
 - (b) Show that $P_W = A(A^t A)^{-1} A^t$. Hint: for $x \in \mathbb{R}^n$, show that $P_W(x) = Ay$ for some $y \in \mathbb{R}^m$ and $x P_W(x) \in \text{Im}(A)^{\perp}$, and use problem 4(b).