Math 113 Homework # 4, due 2/9/01 at 5:00 PM

- 1. Let W be a subspace of an inner product space V. Show that W^{\perp} is a subspace of V.
- 2. Let W be a subspace of \mathbb{R}^n .
 - (a) Let A be a matrix whose rows are a basis for W. Show that $W^{\perp} = N(A)$.
 - (b) Show that $\dim(W^{\perp}) = n \dim(W)$.
 - (c) Show that $(W^{\perp})^{\perp} = W$. Hint: first give a simple argument that $W \subset (W^{\perp})^{\perp}$, then use dimensional considerations.
 - (d) Let n = 4 and $W = \operatorname{span}((1, 1, 2, 3), (2, 3, 5, 8))$. Find a basis for W^{\perp} .
- 3. Section 2.1, problems 11,12.
- 4. Let W be a finite dimensional subspace of an inner product space V. Recall that for $x \in V$, the orthogonal projection $P_W(x)$ of x onto W is characterized by $P_W(x) \in W$ and $x - P_W(x) \in W^{\perp}$.
 - (a) Show that $P_W: V \to V$ is a linear transformation.
 - (b) Let e_1, \ldots, e_m be an orthonormal basis for W. Show that

$$P_W(x) = \sum_{i=1}^m \langle x, e_i \rangle e_i.$$

5. Consider the data points $(x_1, y_1) = (-1, 1), (x_2, y_2) = (0, 2), (x_3, y_3) = (1, 3), (x_4, y_4) = (2, 5)$. Find the quadratic function $f(x) = ax^2 + bx + c$ that minimizes the "error"

$$E(a,b,c) = \sum_{i=1}^{4} (y_i - f(x_i))^2.$$

- 6. Section 6.2, problem 19.
- 7. (extra credit) When does equality hold in the triangle inequality? Prove your answer.