Math H53 homework #4, suggested due date 11/3

The following exercises are suggested to help you understand the material.
This homework will not be collected or graded.

1. Let (X,d) be a metric space. Recall that a function g : X — X is a
contraction if there exists a constant C' < 1 such that d(g(x), g(z")) <
Cd(x,2") for all ;2" € X. Recall that the contraction mapping
theorem asserts that every contraction on a nonempty complete metric
space has a unique fixed point.

(a) Show that if we replace the contraction condition by
(*) d(g(z), g(2")) < d(z,2') for all z,2" € X with x # 2,
then ¢ might not have a fixed point. Hint: Find a differentiable

function g : R — R such that |¢/(z)| < 1 for all  and the graph
of g does not touch the line y = z.

(b) Let (X, d) be a nonempty complete metric space and let f : X —
X and g : X — X be two contractions. Show that there is a
unique pair of points p,q € X such that f(p) = ¢ and g(q) = p.

2. Let U C R"™ be an open set, let f : R® — R™ be a function, and let
p € U. Recall that f is differentiable at p if there exists an m x n
matrix A such that if h € R"™ is sufficiently small that p + h € U, then

fp+h)=f(p) +Ah +e(h) (1)
where ()]
N TR .

(a) Show that if f is differentiable at p, then f is continuous at p, i.e.
lim f(p +h) = f(p).
—0

(b) Show that if f is differentiable at p, then the matrix A is unique,
i.e. there is only one matrix A for which (1) and (2) hold.



(c) Let f: R? — R. Show that if the partial derivatives df/dz and
Jf /0y are defined and continuous in a ball of radius ¢ containing 0,
then f is differentiable at 0. Hint: Let h = (hq, hy) with ||h]| < 0.
Use the mean value theorem to show that there are real numbers
tl, t2 with 0 S tz S hz such that

of

f(h1,0) — f(0,0) = hl%(tho):
f(hi, ho) — f(hy,0) = hg%(hl,tg).

3. Let f: R™ — R. The second partial derivatives are defined by
*f _ 0 (of
3:61-8:6]' N (9:@ 8xj

when the corresponding limit exists. If © = 7 we denote this by %.

For example, when n = 2, we have

o f G (h,0) = 3L(0,0)

when this limit exists.
02

8xi8xj

are defined and continuous in a neighborhood of a point, then

Clairaut’s theorem asserts that if the second partial derivatives

02 f
and Ox;0x;

they are equal.

Prove this theorem in the two-dimensional case, i.e. if B C R? is an

2 2
open ball centered at the origin, if f : B — R, and if ;m—afy and a(z;aj; are
defined and continuous in B, then

0*f o0 f
(0) = (0).
0xdy 0yox
Moreover, both of these second partial derivatives agree with the limit

o F(hh) = f(R,0) — f(0.h) + £(0,0)
h—0 h2

Hint: Assume that A > 0 is sufficiently small so that the rectangle with
vertices (0,0), (h,0), (0,h), and (h, h) is contained in B. For 0 <t <h
define

g(t) = f(h,t) = f(0,1).
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Use the mean value theorem to show that there exists ¢ € [0, h] such

that
g(h) — 9(0) = b (Z—j;(h, - g—gm,w) |

Use the mean value theorem again to show that there exists s € [0, h]
such that
of of

_,
oy (o0 = 5,00 = h o (5.0)

. Let p be a real number, and define a function f : R3\ {0} — R by
fla,y,2) = (@ +y* + 7).
Find p such that f satisfies the Laplace equation

02f  O*f Of
Ox? * Oy * 022 0

. Let a be a constant, and define a function f:R?* — R by
1 2
t,x) = —=e " /00,
ft2) Vit

Find a such that f satisfies the heat equation

of  0*f

ot 0x?
. Show that if f,g : R — R are differentiable functions, and if a is a
constant, then the function u : R? — R defined by

u(t,z) = f(x +at) + g(x — at)
is a solution of the wave equation

Pu 0%

— =a"—.
ot? ox?

. Suppose that z,y, z are related by the equation
z=xy.

Use this equation to regard z as a function of x and y, to regard y as
a function of x and z, and to regard x as a function of y and z. Show

that
Ox Oy 0z

0y 0z Ox
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10.

11.

Let v : [0,1] — R? be a smooth function (a parametrized curve), and
write y(t) = (z(t), y(t), 2(t)). Suppose that the equation

zx'(t) + yy'(t) + z2'(t) = 0

holds for all ¢. If (0) = y(0) = 2(0) = 3 and z(1) = y(1) = 2, find
[2(1)]-

. A particle moves along the intersection of the surfaces

2?4 y? 4222 =4, z=u1xy

in R3. Let (z(t),y(t), 2(t)) denote the location of the particle at time
t, and assume that this is a differentiable function of ¢t. Suppose that
((0),4(0), 2(0)) = (1,1,1) and 2'(0) = 1. Calculate y'(0) and 2’(0).

Suppose that z is implicitly defined as a function of z and y by the
equation

ryz + 2° = 33.
in a neighborhood of the point (1,2,3). Show that z is differentiable
at (x,y) = (1,2), and calculate 0z/0z and 0z/0y at (x,y) = (1,2).

Suppose we are given some data points (z1,y1),..., (Tn,ys) in the
plane. We would like to find a “best fit” line y = ax + b approxi-
mately going through these points. The method of least squares is
to find @ and b minizing the total squared error

n

e(a,b) = (y; — (ax; +b))*.

i=1

Show that the minimum is given by a and b solving the two linear
equations

azn:xz+bn = zn:yu
i=1 i=1
i=1 =1 i=1



12. (a) Find the point on the plane {(z,y,2) € R® | z + 2y + 3z = 4}
which minimizes the distance to the point (5,6, 7), assuming that
a distance minimizer exists.

(b) Find the point or points on the surface
{(z,y,2) R |z =2" + ¢ - 3/2}

that minimize the distance to the origin, assuming that a distance
minimizer exists.

(c) Prove that the distance minimizers in (a) and (b) exist.

13. Find the minimum and maximum values of the function
flx,y,2) =z +y+=z
subject to the constraint

22 4+ 9%+ 22° < 10.

14. Let v € R™ be a nonzero vector. Use Lagrange multipliers to show
that if w € R™ is a unit vector, then v - w is maximized when w is a
positive scalar multiple of v, and v-w is minimized when w is a negative
scalar multiple of v. This gives another proof of the Cauchy-Schwarz

inequality.
15. Show that if x4, ..., xz, are positive real numbers, then
J/’ .« .. :I;n
(@1 -z < L
n
with equality if and only if z; = --- = z,,. Hint: Use Lagrange multi-

pliers to maximize the left hand side while fixing the right hand side.



