
Math H53 homework #4, suggested due date 11/3

The following exercises are suggested to help you understand the material.
This homework will not be collected or graded.

1. Let (X, d) be a metric space. Recall that a function g : X → X is a
contraction if there exists a constant C < 1 such that d(g(x), g(x′)) ≤
Cd(x, x′) for all x, x′ ∈ X. Recall that the contraction mapping
theorem asserts that every contraction on a nonempty complete metric
space has a unique fixed point.

(a) Show that if we replace the contraction condition by

(*) d(g(x), g(x′)) < d(x, x′) for all x, x′ ∈ X with x ̸= x′,

then g might not have a fixed point. Hint: Find a differentiable
function g : R → R such that |g′(x)| < 1 for all x and the graph
of g does not touch the line y = x.

(b) Let (X, d) be a nonempty complete metric space and let f : X →
X and g : X → X be two contractions. Show that there is a
unique pair of points p, q ∈ X such that f(p) = q and g(q) = p.

2. Let U ⊂ Rn be an open set, let f : Rn → Rm be a function, and let
p ∈ U . Recall that f is differentiable at p if there exists an m × n
matrix A such that if h ∈ Rn is sufficiently small that p+ h ∈ U , then

f(p+ h) = f(p) + Ah+ e(h) (1)

where

lim
h→0

∥e(h)∥
∥h∥

= 0. (2)

(a) Show that if f is differentiable at p, then f is continuous at p, i.e.

lim
h→0

f(p+ h) = f(p).

(b) Show that if f is differentiable at p, then the matrix A is unique,
i.e. there is only one matrix A for which (1) and (2) hold.
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(c) Let f : R2 → R. Show that if the partial derivatives ∂f/∂x and
∂f/∂y are defined and continuous in a ball of radius δ containing 0,
then f is differentiable at 0. Hint: Let h = (h1, h2) with ∥h∥ < δ.
Use the mean value theorem to show that there are real numbers
t1, t2 with 0 ≤ ti ≤ hi such that

f(h1, 0)− f(0, 0) = h1
∂f

∂x
(t1, 0),

f(h1, h2)− f(h1, 0) = h2
∂f

∂y
(h1, t2).

3. Let f : Rn → R. The second partial derivatives are defined by

∂2f

∂xi∂xj

=
∂

∂xi

(
∂f

∂xj

)
when the corresponding limit exists. If i = j we denote this by ∂2f

∂x2
i
.

For example, when n = 2, we have

∂2f

∂x∂y
(0, 0) = lim

h→0

∂f
∂y
(h, 0)− ∂f

∂y
(0, 0)

h

when this limit exists.

Clairaut’s theorem asserts that if the second partial derivatives ∂2f
∂xi∂xj

and ∂2f
∂xj∂xi

are defined and continuous in a neighborhood of a point, then

they are equal.

Prove this theorem in the two-dimensional case, i.e. if B ⊂ R2 is an
open ball centered at the origin, if f : B → R, and if ∂2f

∂x∂y
and ∂2f

∂y∂x
are

defined and continuous in B, then

∂2f

∂x∂y
(0) =

∂2f

∂y∂x
(0).

Moreover, both of these second partial derivatives agree with the limit

lim
h→0

f(h, h)− f(h, 0)− f(0, h) + f(0, 0)

h2
.

Hint: Assume that h > 0 is sufficiently small so that the rectangle with
vertices (0, 0), (h, 0), (0, h), and (h, h) is contained in B. For 0 ≤ t ≤ h
define

g(t) = f(h, t)− f(0, t).
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Use the mean value theorem to show that there exists t ∈ [0, h] such
that

g(h)− g(0) = h

(
∂f

∂y
(h, t)− ∂f

∂y
(0, t)

)
.

Use the mean value theorem again to show that there exists s ∈ [0, h]
such that

∂f

∂y
(h, t)− ∂f

∂y
(0, t) = h

∂2f

∂x∂y
(s, t).

4. Let p be a real number, and define a function f : R3 \ {0} → R by

f(x, y, z) = (x2 + y2 + z2)p.

Find p such that f satisfies the Laplace equation

∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
= 0.

5. Let a be a constant, and define a function f : R2 → R by

f(t, x) =
1√
t
e−x2/(at).

Find a such that f satisfies the heat equation

∂f

∂t
=

∂2f

∂x2
.

6. Show that if f, g : R → R are differentiable functions, and if a is a
constant, then the function u : R2 → R defined by

u(t, x) = f(x+ at) + g(x− at)

is a solution of the wave equation

∂2u

∂t2
= a2

∂2u

∂x2
.

7. Suppose that x, y, z are related by the equation

z = xy.

Use this equation to regard z as a function of x and y, to regard y as
a function of x and z, and to regard x as a function of y and z. Show
that

∂x

∂y

∂y

∂z

∂z

∂x
= −1.
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8. Let γ : [0, 1] → R3 be a smooth function (a parametrized curve), and
write γ(t) = (x(t), y(t), z(t)). Suppose that the equation

xx′(t) + yy′(t) + zz′(t) = 0

holds for all t. If x(0) = y(0) = z(0) = 3 and x(1) = y(1) = 2, find
|z(1)|.

9. A particle moves along the intersection of the surfaces

x2 + y2 + 2z2 = 4, z = xy

in R3. Let (x(t), y(t), z(t)) denote the location of the particle at time
t, and assume that this is a differentiable function of t. Suppose that
(x(0), y(0), z(0)) = (1, 1, 1) and x′(0) = 1. Calculate y′(0) and z′(0).

10. Suppose that z is implicitly defined as a function of x and y by the
equation

xyz + z3 = 33.

in a neighborhood of the point (1, 2, 3). Show that z is differentiable
at (x, y) = (1, 2), and calculate ∂z/∂x and ∂z/∂y at (x, y) = (1, 2).

11. Suppose we are given some data points (x1, y1), . . . , (xn, yn) in the
plane. We would like to find a “best fit” line y = ax + b approxi-
mately going through these points. The method of least squares is
to find a and b minizing the total squared error

e(a, b) =
n∑

i=1

(yi − (axi + b))2 .

Show that the minimum is given by a and b solving the two linear
equations

a
n∑

i=1

xi + bn =
n∑

i=1

yi,

a

n∑
i=1

x2
i + b

n∑
i=1

xi =
n∑

i=1

xiyi.
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12. (a) Find the point on the plane {(x, y, z) ∈ R3 | x + 2y + 3z = 4}
which minimizes the distance to the point (5, 6, 7), assuming that
a distance minimizer exists.

(b) Find the point or points on the surface

{(x, y, z) ∈ R3 | z = x2 + y2 − 3/2}

that minimize the distance to the origin, assuming that a distance
minimizer exists.

(c) Prove that the distance minimizers in (a) and (b) exist.

13. Find the minimum and maximum values of the function

f(x, y, z) = x+ y + z

subject to the constraint

x2 + y2 + 2z2 ≤ 10.

14. Let v ∈ Rn be a nonzero vector. Use Lagrange multipliers to show
that if w ∈ Rn is a unit vector, then v · w is maximized when w is a
positive scalar multiple of v, and v ·w is minimized when w is a negative
scalar multiple of v. This gives another proof of the Cauchy-Schwarz
inequality.

15. Show that if x1, . . . , xn are positive real numbers, then

(x1 · · ·xn)
1/n ≤ x1 + · · ·+ xn

n

with equality if and only if x1 = · · · = xn. Hint: Use Lagrange multi-
pliers to maximize the left hand side while fixing the right hand side.
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