
Notes on singular value decomposition for Math 54

Recall that if A is a symmetric n×n matrix, then A has real eigenvalues
λ1, . . . , λn (possibly repeated), and Rn has an orthonormal basis v1, . . . , vn,
where each vector vi is an eigenvector of A with eigenvalue λi. Then

A = PDP−1

where P is the matrix whose columns are v1, . . . , vn, and D is the diagonal
matrix whose diagonal entries are λ1, . . . , λn. Since the vectors v1, . . . , vn are
orthonormal, the matrix P is orthogonal, i.e. P TP = I, so we can alternately
write the above equation as

A = PDP T . (1)

A singular value decomposition (SVD) is a generalization of this where
A is an m× n matrix which does not have to be symmetric or even square.

1 Singular values

Let A be an m× n matrix. Before explaining what a singular value decom-
position is, we first need to define the singular values of A.

Consider the matrix ATA. This is a symmetric n × n matrix, so its
eigenvalues are real.

Lemma 1.1. If λ is an eigenvalue of ATA, then λ ≥ 0.

Proof. Let x be an eigenvector of ATA with eigenvalue λ. We compute that

‖Ax‖2 = (Ax) · (Ax) = (Ax)TAx = xTATAx = xT (λx) = λxTx = λ‖x‖2.

Since ‖Ax‖2 ≥ 0, it follows from the above equation that λ‖x‖2 ≥ 0. Since
‖x‖2 > 0 (as our convention is that eigenvectors are nonzero), we deduce
that λ ≥ 0.

Let λ1, . . . , λn denote the eigenvalues of ATA, with repetitions. Order
these so that λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Let σi =

√
λi, so that σ1 ≥ σ2 ≥

· · · ≥ σn ≥ 0.

Definition 1.2. The numbers σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 defined above are
called the singular values of A.

Proposition 1.3. The number of nonzero singular values of A equals the
rank of A.
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Proof. The rank of any square matrix equals the number of nonzero eigen-
values (with repetitions), so the number of nonzero singular values of A
equals the rank of ATA. By a previous homework problem, ATA and A
have the same kernel. It then follows from the “rank-nullity” theorem that
ATA and A have the same rank.

Remark 1.4. In particular, if A is an m × n matrix with m < n, then A
has at most m nonzero singular values, because rank(A) ≤ m.

The singular values of A have the following geometric significance.

Proposition 1.5. Let A be an m× n matrix. Then the maximum value of
‖Ax‖, where x ranges over unit vectors in Rn, is the largest singular value
σ1, and this is achieved when x is an eigenvector of ATA with eigenvalue
σ21.

Proof. Let v1, . . . , vn be an orthonormal basis for Rn consisting of eigenvec-
tors of ATA with eigenvalues σ2i . If x ∈ Rn, then we can expand x in this
basis as

x = c1v1 + · · ·+ cnvn (2)

for scalars c1, . . . , cn. Since x is a unit vector, ‖x‖2 = 1, which (since the
vectors v1, . . . , vn are orthonormal) means that

c21 + · · ·+ c2n = 1.

On the other hand,

‖Ax‖2 = (Ax) · (Ax) = (Ax)T (Ax) = xTATAx = x · (ATAx).

By (2), since vi is an eigenvalue of ATA with eigenvalue σ2i , we have

ATAx = c1σ
2
1v1 + · · ·+ cnσ

2
nvn.

Taking the dot prodoct with (2), and using the fact that the vectors v1, . . . , vn
are orthonormal, we get

‖Ax‖2 = x · (ATAx) = σ21c
2
1 + · · ·+ σ2nc

2
n.

Since σ1 is the largest singular value, we get

‖Ax‖2 ≤ σ21(c21 + · · ·+ c2n).

Equality holds when c1 = 1 and c2 = · · · = cn = 0. Thus the maximum
value of ‖Ax‖2 for a unit vector x is σ21, which is achieved when x = v1.

One can similarly show that σ2 is the maximum of ‖Ax‖ where x ranges
over unit vectors that are orthogonal to v1 (exercise). Likewise, σ3 is the
maximum of ‖Ax‖ where x ranges over unit vectors that are orthogonal to
v1 and v2; and so forth.
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2 Definition of singular value decomposition

Let A be an m × n matrix with singular values σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.
Let r denote the number of nonzero singular values of A, or equivalently the
rank of A.

Definition 2.1. A singular value decomposition of A is a factorization

A = UΣV T

where:

• U is an m×m orthogonal matrix.

• V is an n× n orthogonal matrix.

• Σ is an m× n matrix whose ith diagonal entry equals the ith singular
value σi for i = 1, . . . , r. All other entries of Σ are zero.

Example 2.2. If m = n and A is symmetric, let λ1, . . . , λn be the eigenval-
ues of A, ordered so that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. The singular values of A
are given by σi = |λi| (exercise). Let v1, . . . , vn be orthonormal eigenvectors
of A with Avi = λivi. We can then take V to be the matrix whose columns
are v1, . . . , vn. (This is the matrix P in equation (1).) The matrix Σ is
the diagonal matrix with diagonal entries |λ1|, . . . , |λn|. (This is almost the
same as the matrix D in equation (1), except for the absolute value signs.)
Then U must be the matrix whose columns are ±v1, . . . ,±vn, where the sign
next to vi is + when λi ≥ 0, and − when λi < 0. (This is almost the same
as P , except we have changed the signs of some of the columns.)

3 How to find a SVD

Let A be an m×n matrix with singular values σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, and
let r denote the number of nonzero singular values. We now explain how to
find a SVD of A.

Let v1, . . . , vn be an orthonormal basis of Rn, where vi is an eigenvector
of ATA with eigenvalue σ2i .

Lemma 3.1. (a) ‖Avi‖ = σi.

(b) If i 6= j then Avi and Avj are orthogonal.
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Proof. We compute

(Avi) · (Avj) = (Avi)
T (Avj) = vTi A

TAvj = vTi σ
2
j vj = σ2j (vi · vj).

If i = j, then since ‖vi‖ = 1, this calculation tells us that ‖Avi‖2 = σ2j ,
which proves (a). If i 6= j, then since vi · vj = 0, this calculation shows that
(Avi) · (Avj) = 0.

Theorem 3.2. Let A be an m × n matrix. Then A has a (not unique)
singular value decomposition A = UΣV T , where U and V are as follows:

• The columns of V are orthonormal eigenvectors v1, . . . , vn of ATA,
where ATAvi = σ2i vi.

• If i ≤ r, so that σi 6= 0, then the ith column of U is σ−1i Avi. By
Lemma 3.1, these columns are orthonormal, and the remaining columns
of U are obtained by arbitrarily extending to an orthonormal basis for
Rm.

Proof. We just have to check that if U and V are defined as above, then
A = UΣV T . If x ∈ Rn, then the components of V Tx are the dot products
of the rows of V T with x, so

V Tx =


v1 · x
v2 · x

...
vn · x

 .

Then

ΣV Tx =



σ1v1 · x
σ2v2 · x

...
σrvr · x

0
...
0


.

When we multiply on the left by U , we get the sum of the columns of U ,
weighted by the components of the above vector, so that

UΣV Tx = (σ1v1 · x)σ−11 Av1 + · · ·+ (σrvr · x)σ−1r Avr

= (v1 · x)Av1 + · · ·+ (vr · x)Avr.
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Since Avi = 0 for i > r by Lemma 3.1(a), we can rewrite the above as

UΣV Tx = (v1 · x)Av1 + · · ·+ (vn · x)Avn

= Av1v
T
1 x+ · · ·+Avnv

T
nx

= A(v1v
T
1 + · · · vnvTn )x

= Ax.

In the last line, we have used the fact that if {v1, . . . , vn} is an orthonormal
basis for Rn, then v1v

T
1 + · · ·+ vnv

T
n = I (exercise).

Example 3.3. (from Lay’s book) Find a singular value decomposition of

A =

(
4 11 14
8 7 −2

)
.

Step 1. We first need to find the eigenvalues of ATA. We compute that

ATA =

 80 100 40
100 170 140
40 140 200

 .

We know that at least one of the eigenvalues is 0, because this matrix can
have rank at most 2. In fact, we can compute that the eigenvalues are
λ1 = 360, λ2 = 90, and λ3 = 0. Thus the singular values of A are σ1 =√

360 = 6
√

10, σ2 =
√

90 = 3
√

10, and σ3 = 0. The matrix Σ in a singular
value decomposition of A has to be a 2× 3 matrix, so it must be

Σ =

(
6
√

10 0 0

0 3
√

10 0

)
.

Step 2. To find a matrix V that we can use, we need to solve for an
orthonormal basis of eigenvectors of ATA. One possibility is

v1 =

1/3
2/3
2/3

 , v2 =

−2/3
−1/3
2/3

 , v3 =

 2/3
−2/3
1/3

 .

(There are seven other possibilities in which some of the above vectors are
multiplied by −1.) Then V is the matrix with v1, v2, v3 as columns, that is

V =

1/3 −2/3 2/3
2/3 −1/3 −2/3
2/3 2/3 1/3

 .
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Step 3. We now find the matrix U . The first column of U is

σ−11 Av1 =
1

6
√

10

(
18
6

)
=

(
3/
√

10

1/
√

10

)
.

The second column of U is

σ−12 Av2 =
1

3
√

10

(
3
9

)
=

(
1/
√

10

−3/
√

10

)
.

Since U is a 2×2 matrix, we do not need any more columns. (If A had only
one nonzero singular value, then we would need to add another column to
U to make it an orthogonal matrix.) Thus

U =

(
3/
√

10 1/
√

10

1/
√

10 −3/
√

10

)
.

To conclude, we have found the singular value decomposition(
4 11 14
8 7 −2

)
=

(
3/
√

10 1/
√

10

1/
√

10 −3/
√

10

)(
6
√

10 0 0

0 3
√

10 0

)1/3 −2/3 2/3
2/3 −1/3 −2/3
2/3 2/3 1/3

T

.

4 Applications

Singular values and singular value decompositions are important in analyz-
ing data.

One simple example of this is “rank estimation”. Suppose that we have
n data points v1, . . . , vn, all of which live in Rm, where n is much larger
than m. Let A be the m × n matrix with columns v1, . . . , vn. Suppose the
data points satisfy some linear relations, so that v1, . . . , vn all lie in an r-
dimensional subspace of Rm. Then we would expect the matrix A to have
rank r. However if the data points are obtained from measurements with
errors, then the matrix A will probably have full rank m. But only r of the
singular values of A will be large, and the other singular values will be close
to zero. Thus one can compute an “approximate rank” of A by counting
the number of singular values which are much larger than the others, and
one expects the measured matrix A to be close to a matrix A′ such that the
rank of A′ is the “approximate rank” of A.

For example, consider the matrix

A′ =

 1 2 −2 3
−4 0 1 2
3 −2 1 −5
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The matrix A′ has rank 2, because all of its columns are points in the
subspace x1 +x2 +x3 = 0 (but the columns do not all lie in a 1-dimensional
subspace). Now suppose we perturb A′ to the matrix

A =

 1.01 2.01 −2 2.99
−4.01 0.01 1.01 2.02
3.01 −1.99 1 −4.98


This matrix now has rank 3. But the eigenvalues of ATA are

σ21 ≈ 58.604, σ22 ≈ 19.3973, σ23 ≈ 0.00029, σ24 = 0.

Since two of the singular values are much larger than the others, this suggests
that A is close to a rank 2 matrix.

For more discussion of how SVD is used to analyze data, see e.g. Lay’s
book.

5 Exercises (some from Lay’s book)

1. (a) Find a singular value decomposition of the matrix A =

(
2 −1
2 2

)
.

(b) Find a unit vector x for which ‖Ax‖ is maximized.

2. Find a singular value decomposition of A =

(
3 2 2
2 3 −2

)
.

3. (a) Show that if A is an n × n symmetric matrix, then the singular
values of A are the absolute values of the eigenvalues of A.

(b) Give an example to show that if A is a 2 × 2 matrix which is
not symmetric, then the singular values of A might not equal the
absolute values of the eigenvalues of A.

4. Let A be an m×n matrix with singular values σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.
Let v1 be an eigenvector of ATA with eigenvalue σ21. Show that σ2 is
the maximum value of ‖Ax‖ where x ranges over unit vectors in Rn

that are orthogonal to v1.

5. Show that if {v1, . . . , vn} is an orthonormal basis for Rn, then

v1v
T
1 + · · ·+ vnv

T
n = I.

6. Let A be an m×n matrix, and let P be an orthogonal m×m matrix.
Show that PA has the same singular values as A.
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