Notes on singular value decomposition for Math 54

Recall that if A is a symmetric n X n matrix, then A has real eigenvalues
AL,y A (possibly repeated), and R™ has an orthonormal basis vy, ..., vy,
where each vector v; is an eigenvector of A with eigenvalue A;. Then

A=PDP!
where P is the matrix whose columns are vy, ...,v,, and D is the diagonal
matrix whose diagonal entries are Ay, ..., \,. Since the vectors vy, ..., v, are

orthonormal, the matrix P is orthogonal, i.e. PT P = I, so we can alternately
write the above equation as

A= PDPT. (1)

A singular value decomposition (SVD) is a generalization of this where
A is an m X n matrix which does not have to be symmetric or even square.

1 Singular values

Let A be an m x n matrix. Before explaining what a singular value decom-
position is, we first need to define the singular values of A.

Consider the matrix ATA. This is a symmetric n X n matrix, so its
eigenvalues are real.

Lemma 1.1. If )\ is an eigenvalue of AT A, then A > 0.

Proof. Let x be an eigenvector of AT A with eigenvalue \. We compute that
|Az|? = (Az) - (Az) = (Az)T Az = 2T AT Az = 2T (\z) = ATz = \||z)°.

Since ||Az||? > 0, it follows from the above equation that A|[z||?> > 0. Since
|lz]|> > 0 (as our convention is that eigenvectors are nonzero), we deduce
that A > 0. O

Let Aq,..., A\, denote the eigenvalues of AT A, with repetitions. Order
these so that A\y > Ay > -+ > A\, > 0. Let g, = /A, so that g1 > g9 >
>0, > 0.

Definition 1.2. The numbers o1 > o9 > --- > 0, > 0 defined above are
called the singular values of A.

Proposition 1.3. The number of nonzero singular values of A equals the

rank of A.



Proof. The rank of any square matrix equals the number of nonzero eigen-
values (with repetitions), so the number of nonzero singular values of A
equals the rank of ATA. By a previous homework problem, ATA and A
have the same kernel. It then follows from the “rank-nullity” theorem that
AT A and A have the same rank. O

Remark 1.4. In particular, if A is an m x n matrix with m < n, then A
has at most m nonzero singular values, because rank(A) < m.

The singular values of A have the following geometric significance.

Proposition 1.5. Let A be an m x n matriz. Then the mazimum value of
|Az||, where x ranges over unit vectors in R™, is the largest singular value
o1, and this is achieved when x is an eigenvector of AT A with eigenvalue
o2.

Proof. Let v1,...,v, be an orthonormal basis for R" consisting of eigenvec-
tors of AT A with eigenvalues o2. If x € R", then we can expand z in this
basis as

T =cv] + -+ Ccruy (2)
for scalars ci,...,c,. Since x is a unit vector, ||z]|> = 1, which (since the
vectors vy, . .., v, are orthonormal) means that

On the other hand,

|Az|? = (Az) - (Az) = (Ax)T (Az) = 2T AT Az = ¢ - (AT Ax).
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By (2), since v; is an eigenvalue of AT A with eigenvalue o2, we have

AT Az = cla%vl 4t cnoivn.

Taking the dot prodoct with (2), and using the fact that the vectors vy, ..., vy,
are orthonormal, we get

|Az||? = = - (AT Az) = o3t + - - 4+ 022

n-n*

Since o is the largest singular value, we get

[Az|*> < of(c] + - + ).

n

Equality holds when ¢; = 1 and ¢g = -+ = ¢, = 0. Thus the maximum
value of ||Az||? for a unit vector z is o7, which is achieved when x = v;. [

One can similarly show that o9 is the maximum of ||Az|| where x ranges
over unit vectors that are orthogonal to v; (exercise). Likewise, o3 is the
maximum of ||Az| where x ranges over unit vectors that are orthogonal to
v1 and v9; and so forth.



2 Definition of singular value decomposition

Let A be an m x n matrix with singular values o4 > 09 > --- > 0, > 0.
Let r denote the number of nonzero singular values of A, or equivalently the
rank of A.

Definition 2.1. A singular value decomposition of A is a factorization
A=UxvT
where:
e U is an m x m orthogonal matrix.
e I/ is an n x n orthogonal matrix.

e Y is an m X n matrix whose i** diagonal entry equals the i** singular
value o; for i = 1,...,r. All other entries of X are zero.

Example 2.2. If m = n and A is symmetric, let A,..., A, be the eigenval-
ues of A, ordered so that [A1| > |\a| > -+ > |\,|. The singular values of A
are given by o; = |\;| (exercise). Let vy, ..., v, be orthonormal eigenvectors
of A with Av; = \;jv;. We can then take V to be the matrix whose columns
are v1,...,0n. (This is the matrix P in equation (1).) The matrix ¥ is
the diagonal matrix with diagonal entries |A1],...,|A,|. (This is almost the
same as the matrix D in equation (1), except for the absolute value signs.)
Then U must be the matrix whose columns are twv1, ..., +v,, where the sign
next to v; is + when )\; > 0, and — when \; < 0. (This is almost the same
as P, except we have changed the signs of some of the columns.)

3 How to find a SVD

Let A be an m x n matrix with singular values o1 > 09 > -+ > g, > 0, and
let r denote the number of nonzero singular values. We now explain how to
find a SVD of A.

Let v1,...,v, be an orthonormal basis of R", where v; is an eigenvector
of AT A with eigenvalue o2

P

Lemma 3.1. (a) ||Avi|| = o;.

(b) If i # j then Av; and Av; are orthogonal.



Proof. We compute

(Av;) - (Avj) = (Avi)T(Avj) = viTATAUj = UZ-TJJQ-vj = a?-(vi “vj).

If i = j, then since ||v;]| = 1, this calculation tells us that ||Av;||? = 0]2-,
which proves (a). If i # j, then since v; - v; = 0, this calculation shows that
(Av;) - (Avj) = 0. O

Theorem 3.2. Let A be an m x n matriz. Then A has a (not unique)
singular value decomposition A = UXVT, where U and V are as follows:

e The columns of V are orthonormal eigenvectors vi,...,v, of ATA,
where AT Av; = O'?UZ'.

o Ifi < r, so that o; # 0, then the it" column of U is al-_lAvi. By
Lemma 3.1, these columns are orthonormal, and the remaining columns
of U are obtained by arbitrarily extending to an orthonormal basis for
R™.

Proof. We just have to check that if U and V are defined as above, then
A =UXVT. If x € R", then the components of V'z are the dot products
of the rows of VT with z, so

V1%
VIig = v
Up - T

Then

o101 T
o2U9 * T

YTy = OrUp - T

0
When we multiply on the left by U, we get the sum of the columns of U,
weighted by the components of the above vector, so that

USVTz = (o101 - 2)oy P Avy + -+ + (0,0, - 7)o, H A,
= (Ul . JJ)A’Ul + -+ (Ur : IL‘)AUT-
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Since Av; = 0 for ¢ > r by Lemma 3.1(a), we can rewrite the above as
USVTg = (vy - x)Avy + -+ - + (v - ) Aoy,
= Aviviz + - + Avyolx

= A(vio] + - vpv])a

= Azx.
In the last line, we have used the fact that if {vy,...,v,} is an orthonormal
basis for R™, then v1vf + -+ + vl = I (exercise). O

Example 3.3. (from Lay’s book) Find a singular value decomposition of

411 14
A:<8 7 —2)‘

Step 1. We first need to find the eigenvalues of AT A. We compute that

80 100 40
ATA= 1100 170 140
40 140 200

We know that at least one of the eigenvalues is 0, because this matrix can
have rank at most 2. In fact, we can compute that the eigenvalues are
A1 = 360, A2 = 90, and A3 = 0. Thus the singular values of A are o1 =
V360 = 6\/@, o9 = V90 = 3@, and o3 = 0. The matrix ¥ in a singular
value decomposition of A has to be a 2 x 3 matrix, so it must be

2= ("0 2w o)

Step 2. To find a matrix V that we can use, we need to solve for an
orthonormal basis of eigenvectors of AT A. One possibility is

1/3 —2/3 2/3
v = 2/3 , U2 = —1/3 , U3 = —2/3
2/3 2/3 1/3

(There are seven other possibilities in which some of the above vectors are
multiplied by —1.) Then V' is the matrix with vy, va, v3 as columns, that is

1/3 —2/3 2/3
v=1|2/3 -1/3 —-2/3
2/3 2/3 1/3

b}



Step 3. We now find the matrix U. The first column of U is

oL vy — 1 <18> _ <3/\/ﬁ>_
6110 \ 6 1/v/10
The second column of U is

e 5 (5) = (4vm).

Since U is a 2 x 2 matrix, we do not need any more columns. (If A had only
one nonzero singular value, then we would need to add another column to
U to make it an orthogonal matrix.) Thus

y_ (BVID 1/
= 5m)

To conclude, we have found the singular value decomposition
T

4 _ 1/3 —
( 11 14) (3/@ 1/m><6m 0 0) /3 —2/3 2/3
8 7 -2

2/3 —1/3 —2/3
1/v10 —3/v10 0 310 0 2/3 2/3 1/3

4 Applications

Singular values and singular value decompositions are important in analyz-
ing data.

One simple example of this is “rank estimation”. Suppose that we have
n data points vi,...,v,, all of which live in R™, where n is much larger
than m. Let A be the m x n matrix with columns vy, ...,v,. Suppose the
data points satisfy some linear relations, so that vy,...,v, all lie in an -
dimensional subspace of R™. Then we would expect the matrix A to have
rank r. However if the data points are obtained from measurements with
errors, then the matrix A will probably have full rank m. But only r of the
singular values of A will be large, and the other singular values will be close
to zero. Thus one can compute an “approximate rank” of A by counting
the number of singular values which are much larger than the others, and
one expects the measured matrix A to be close to a matrix A’ such that the
rank of A’ is the “approximate rank” of A.

For example, consider the matrix

1 2 -2 3



The matrix A’ has rank 2, because all of its columns are points in the
subspace z1 + x2 + 23 = 0 (but the columns do not all lie in a 1-dimensional
subspace). Now suppose we perturb A’ to the matrix

1.01 201 -2 299
A=1|-401 0.01 1.01 202
3.01 -1.99 1 —4.98

This matrix now has rank 3. But the eigenvalues of AT A are
0} ~ 58.604, 03 ~19.3973, o3 ~0.00029, o35 =0.

Since two of the singular values are much larger than the others, this suggests
that A is close to a rank 2 matrix.

For more discussion of how SVD is used to analyze data, see e.g. Lay’s
book.

5 Exercises (some from Lay’s book)

1. (a) Find a singular value decomposition of the matrix A = <§ _21> .

(b) Find a unit vector x for which [|Az|| is maximized.

2 2
2. Find a singular value decomposition of A = (3 5 _ 2).
3. (a) Show that if A is an n X n symmetric matrix, then the singular
values of A are the absolute values of the eigenvalues of A.
(b) Give an example to show that if A is a 2 x 2 matrix which is

not symmetric, then the singular values of A might not equal the
absolute values of the eigenvalues of A.

4. Let A be an m xn matrix with singular values 01 > g9 > --- > g, > 0.
Let v1 be an eigenvector of AT A with eigenvalue o?. Show that o is
the maximum value of ||Ax| where z ranges over unit vectors in R”
that are orthogonal to v.

5. Show that if {v1,...,v,} is an orthonormal basis for R", then

T T
vivy + -+ oy, =1

6. Let A be an m x n matrix, and let P be an orthogonal m x m matrix.
Show that PA has the same singular values as A.



