Notes on singular value decomposition for Math 54

Recall that if A is a symmetric $n \times n$ matrix, then A has real eigenvalues $\lambda_1, \ldots, \lambda_n$ (possibly repeated), and \mathbb{R}^n has an orthonormal basis v_1, \ldots, v_n , where each vector v_i is an eigenvector of A with eigenvalue λ_i . Then

$$A = PDP^{-1}$$

where P is the matrix whose columns are v_1, \ldots, v_n , and D is the diagonal matrix whose diagonal entries are $\lambda_1, \ldots, \lambda_n$. Since the vectors v_1, \ldots, v_n are orthonormal, the matrix P is orthogonal, i.e. $P^T P = I$, so we can alternately write the above equation as

$$A = PDP^T.$$
 (1)

A singular value decomposition (SVD) is a generalization of this where A is an $m \times n$ matrix which does not have to be symmetric or even square.

1 Singular values

Let A be an $m \times n$ matrix. Before explaining what a singular value decomposition is, we first need to define the singular values of A.

Consider the matrix $A^T A$. This is a symmetric $n \times n$ matrix, so its eigenvalues are real.

Lemma 1.1. If λ is an eigenvalue of $A^T A$, then $\lambda \geq 0$.

Proof. Let x be an eigenvector of $A^T A$ with eigenvalue λ . We compute that

$$||Ax||^{2} = (Ax) \cdot (Ax) = (Ax)^{T} Ax = x^{T} A^{T} Ax = x^{T} (\lambda x) = \lambda x^{T} x = \lambda ||x||^{2}.$$

Since $||Ax||^2 \ge 0$, it follows from the above equation that $\lambda ||x||^2 \ge 0$. Since $||x||^2 > 0$ (as our convention is that eigenvectors are nonzero), we deduce that $\lambda \ge 0$.

Let $\lambda_1, \ldots, \lambda_n$ denote the eigenvalues of $A^T A$, with repetitions. Order these so that $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$. Let $\sigma_i = \sqrt{\lambda_i}$, so that $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$.

Definition 1.2. The numbers $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$ defined above are called the singular values of A.

Proposition 1.3. The number of nonzero singular values of A equals the rank of A.

Proof. The rank of any square matrix equals the number of nonzero eigenvalues (with repetitions), so the number of nonzero singular values of A equals the rank of $A^T A$. By a previous homework problem, $A^T A$ and A have the same kernel. It then follows from the "rank-nullity" theorem that $A^T A$ and A have the same rank.

Remark 1.4. In particular, if A is an $m \times n$ matrix with m < n, then A has at most m nonzero singular values, because rank $(A) \le m$.

The singular values of A have the following geometric significance.

Proposition 1.5. Let A be an $m \times n$ matrix. Then the maximum value of ||Ax||, where x ranges over unit vectors in \mathbb{R}^n , is the largest singular value σ_1 , and this is achieved when x is an eigenvector of $A^T A$ with eigenvalue σ_1^2 .

Proof. Let v_1, \ldots, v_n be an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of $A^T A$ with eigenvalues σ_i^2 . If $x \in \mathbb{R}^n$, then we can expand x in this basis as

$$x = c_1 v_1 + \dots + c_n v_n \tag{2}$$

for scalars c_1, \ldots, c_n . Since x is a unit vector, $||x||^2 = 1$, which (since the vectors v_1, \ldots, v_n are orthonormal) means that

$$c_1^2 + \dots + c_n^2 = 1.$$

On the other hand,

$$||Ax||^{2} = (Ax) \cdot (Ax) = (Ax)^{T} (Ax) = x^{T} A^{T} Ax = x \cdot (A^{T} Ax).$$

By (2), since v_i is an eigenvalue of $A^T A$ with eigenvalue σ_i^2 , we have

$$A^T A x = c_1 \sigma_1^2 v_1 + \dots + c_n \sigma_n^2 v_n.$$

Taking the dot prodoct with (2), and using the fact that the vectors v_1, \ldots, v_n are orthonormal, we get

$$||Ax||^{2} = x \cdot (A^{T}Ax) = \sigma_{1}^{2}c_{1}^{2} + \dots + \sigma_{n}^{2}c_{n}^{2}.$$

Since σ_1 is the largest singular value, we get

$$||Ax||^2 \le \sigma_1^2 (c_1^2 + \dots + c_n^2).$$

Equality holds when $c_1 = 1$ and $c_2 = \cdots = c_n = 0$. Thus the maximum value of $||Ax||^2$ for a unit vector x is σ_1^2 , which is achieved when $x = v_1$. \Box

One can similarly show that σ_2 is the maximum of ||Ax|| where x ranges over unit vectors that are orthogonal to v_1 (exercise). Likewise, σ_3 is the maximum of ||Ax|| where x ranges over unit vectors that are orthogonal to v_1 and v_2 ; and so forth.

2 Definition of singular value decomposition

Let A be an $m \times n$ matrix with singular values $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$. Let r denote the number of nonzero singular values of A, or equivalently the rank of A.

Definition 2.1. A singular value decomposition of A is a factorization

$$A = U\Sigma V^T$$

where:

- U is an $m \times m$ orthogonal matrix.
- V is an $n \times n$ orthogonal matrix.
- Σ is an $m \times n$ matrix whose i^{th} diagonal entry equals the i^{th} singular value σ_i for $i = 1, \ldots, r$. All other entries of Σ are zero.

Example 2.2. If m = n and A is symmetric, let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A, ordered so that $|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_n|$. The singular values of A are given by $\sigma_i = |\lambda_i|$ (exercise). Let v_1, \ldots, v_n be orthonormal eigenvectors of A with $Av_i = \lambda_i v_i$. We can then take V to be the matrix whose columns are v_1, \ldots, v_n . (This is the matrix P in equation (1).) The matrix Σ is the diagonal matrix with diagonal entries $|\lambda_1|, \ldots, |\lambda_n|$. (This is almost the same as the matrix D in equation (1), except for the absolute value signs.) Then U must be the matrix whose columns are $\pm v_1, \ldots, \pm v_n$, where the sign next to v_i is + when $\lambda_i \ge 0$, and - when $\lambda_i < 0$. (This is almost the same as P, except we have changed the signs of some of the columns.)

3 How to find a SVD

Let A be an $m \times n$ matrix with singular values $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$, and let r denote the number of nonzero singular values. We now explain how to find a SVD of A.

Let v_1, \ldots, v_n be an orthonormal basis of \mathbb{R}^n , where v_i is an eigenvector of $A^T A$ with eigenvalue σ_i^2 .

Lemma 3.1. (a) $||Av_i|| = \sigma_i$.

(b) If $i \neq j$ then Av_i and Av_j are orthogonal.

Proof. We compute

$$(Av_i) \cdot (Av_j) = (Av_i)^T (Av_j) = v_i^T A^T Av_j = v_i^T \sigma_j^2 v_j = \sigma_j^2 (v_i \cdot v_j).$$

If i = j, then since $||v_i|| = 1$, this calculation tells us that $||Av_i||^2 = \sigma_j^2$, which proves (a). If $i \neq j$, then since $v_i \cdot v_j = 0$, this calculation shows that $(Av_i) \cdot (Av_j) = 0$.

Theorem 3.2. Let A be an $m \times n$ matrix. Then A has a (not unique) singular value decomposition $A = U\Sigma V^T$, where U and V are as follows:

- The columns of V are orthonormal eigenvectors v_1, \ldots, v_n of $A^T A$, where $A^T A v_i = \sigma_i^2 v_i$.
- If $i \leq r$, so that $\sigma_i \neq 0$, then the i^{th} column of U is $\sigma_i^{-1}Av_i$. By Lemma 3.1, these columns are orthonormal, and the remaining columns of U are obtained by arbitrarily extending to an orthonormal basis for \mathbb{R}^m .

Proof. We just have to check that if U and V are defined as above, then $A = U\Sigma V^T$. If $x \in \mathbb{R}^n$, then the components of $V^T x$ are the dot products of the rows of V^T with x, so

$$V^T x = \begin{pmatrix} v_1 \cdot x \\ v_2 \cdot x \\ \vdots \\ v_n \cdot x \end{pmatrix}.$$

Then

$$\Sigma V^T x = \begin{pmatrix} \sigma_1 v_1 \cdot x \\ \sigma_2 v_2 \cdot x \\ \vdots \\ \sigma_r v_r \cdot x \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

When we multiply on the left by U, we get the sum of the columns of U, weighted by the components of the above vector, so that

$$U\Sigma V^T x = (\sigma_1 v_1 \cdot x) \sigma_1^{-1} A v_1 + \dots + (\sigma_r v_r \cdot x) \sigma_r^{-1} A v_r$$

= $(v_1 \cdot x) A v_1 + \dots + (v_r \cdot x) A v_r.$

Since $Av_i = 0$ for i > r by Lemma 3.1(a), we can rewrite the above as

$$U\Sigma V^T x = (v_1 \cdot x)Av_1 + \dots + (v_n \cdot x)Av_n$$

= $Av_1v_1^T x + \dots + Av_nv_n^T x$
= $A(v_1v_1^T + \dots + v_nv_n^T)x$
= $Ax.$

In the last line, we have used the fact that if $\{v_1, \ldots, v_n\}$ is an orthonormal basis for \mathbb{R}^n , then $v_1v_1^T + \cdots + v_nv_n^T = I$ (exercise).

Example 3.3. (from Lay's book) Find a singular value decomposition of

$$A = \begin{pmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{pmatrix}.$$

Step 1. We first need to find the eigenvalues of $A^T A$. We compute that

$$A^T A = \begin{pmatrix} 80 & 100 & 40\\ 100 & 170 & 140\\ 40 & 140 & 200 \end{pmatrix}.$$

We know that at least one of the eigenvalues is 0, because this matrix can have rank at most 2. In fact, we can compute that the eigenvalues are $\lambda_1 = 360, \lambda_2 = 90$, and $\lambda_3 = 0$. Thus the singular values of A are $\sigma_1 = \sqrt{360} = 6\sqrt{10}, \sigma_2 = \sqrt{90} = 3\sqrt{10}$, and $\sigma_3 = 0$. The matrix Σ in a singular value decomposition of A has to be a 2 × 3 matrix, so it must be

$$\Sigma = \begin{pmatrix} 6\sqrt{10} & 0 & 0 \\ 0 & 3\sqrt{10} & 0 \end{pmatrix}.$$

Step 2. To find a matrix V that we can use, we need to solve for an orthonormal basis of eigenvectors of $A^T A$. One possibility is

$$v_1 = \begin{pmatrix} 1/3 \\ 2/3 \\ 2/3 \end{pmatrix}, \quad v_2 = \begin{pmatrix} -2/3 \\ -1/3 \\ 2/3 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 2/3 \\ -2/3 \\ 1/3 \end{pmatrix}$$

(There are seven other possibilities in which some of the above vectors are multiplied by -1.) Then V is the matrix with v_1, v_2, v_3 as columns, that is

$$V = \begin{pmatrix} 1/3 & -2/3 & 2/3 \\ 2/3 & -1/3 & -2/3 \\ 2/3 & 2/3 & 1/3 \end{pmatrix}.$$

Step 3. We now find the matrix U. The first column of U is

$$\sigma_1^{-1}Av_1 = \frac{1}{6\sqrt{10}} \begin{pmatrix} 18\\6 \end{pmatrix} = \begin{pmatrix} 3/\sqrt{10}\\1/\sqrt{10} \end{pmatrix}.$$

The second column of U is

$$\sigma_2^{-1} A v_2 = \frac{1}{3\sqrt{10}} \begin{pmatrix} 3\\9 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{10}\\-3/\sqrt{10} \end{pmatrix}$$

Since U is a 2×2 matrix, we do not need any more columns. (If A had only one nonzero singular value, then we would need to add another column to U to make it an orthogonal matrix.) Thus

$$U = \begin{pmatrix} 3/\sqrt{10} & 1/\sqrt{10} \\ 1/\sqrt{10} & -3/\sqrt{10} \end{pmatrix}.$$

To conclude, we have found the singular value decomposition

$$\begin{pmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{pmatrix} = \begin{pmatrix} 3/\sqrt{10} & 1/\sqrt{10} \\ 1/\sqrt{10} & -3/\sqrt{10} \end{pmatrix} \begin{pmatrix} 6\sqrt{10} & 0 & 0 \\ 0 & 3\sqrt{10} & 0 \end{pmatrix} \begin{pmatrix} 1/3 & -2/3 & 2/3 \\ 2/3 & -1/3 & -2/3 \\ 2/3 & 2/3 & 1/3 \end{pmatrix}^{T}$$

T

4 Applications

Singular values and singular value decompositions are important in analyzing data.

One simple example of this is "rank estimation". Suppose that we have n data points v_1, \ldots, v_n , all of which live in \mathbb{R}^m , where n is much larger than m. Let A be the $m \times n$ matrix with columns v_1, \ldots, v_n . Suppose the data points satisfy some linear relations, so that v_1, \ldots, v_n all lie in an r-dimensional subspace of \mathbb{R}^m . Then we would expect the matrix A to have rank r. However if the data points are obtained from measurements with errors, then the matrix A will probably have full rank m. But only r of the singular values of A will be large, and the other singular values will be close to zero. Thus one can compute an "approximate rank" of A by counting the number of singular values which are much larger than the others, and one expects the measured matrix A to be close to a matrix A' such that the rank of A' is the "approximate rank" of A.

For example, consider the matrix

$$A' = \begin{pmatrix} 1 & 2 & -2 & 3 \\ -4 & 0 & 1 & 2 \\ 3 & -2 & 1 & -5 \end{pmatrix}$$

The matrix A' has rank 2, because all of its columns are points in the subspace $x_1 + x_2 + x_3 = 0$ (but the columns do not all lie in a 1-dimensional subspace). Now suppose we perturb A' to the matrix

$$A = \begin{pmatrix} 1.01 & 2.01 & -2 & 2.99 \\ -4.01 & 0.01 & 1.01 & 2.02 \\ 3.01 & -1.99 & 1 & -4.98 \end{pmatrix}$$

This matrix now has rank 3. But the eigenvalues of $A^T A$ are

$$\sigma_1^2 \approx 58.604, \quad \sigma_2^2 \approx 19.3973, \quad \sigma_3^2 \approx 0.00029, \quad \sigma_4^2 = 0.$$

Since two of the singular values are much larger than the others, this suggests that A is close to a rank 2 matrix.

For more discussion of how SVD is used to analyze data, see e.g. Lay's book.

5 Exercises (some from Lay's book)

- 1. (a) Find a singular value decomposition of the matrix $A = \begin{pmatrix} 2 & -1 \\ 2 & 2 \end{pmatrix}$.
 - (b) Find a unit vector x for which ||Ax|| is maximized.

2. Find a singular value decomposition of $A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix}$.

- 3. (a) Show that if A is an $n \times n$ symmetric matrix, then the singular values of A are the absolute values of the eigenvalues of A.
 - (b) Give an example to show that if A is a 2×2 matrix which is not symmetric, then the singular values of A might not equal the absolute values of the eigenvalues of A.
- 4. Let A be an $m \times n$ matrix with singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$. Let v_1 be an eigenvector of $A^T A$ with eigenvalue σ_1^2 . Show that σ_2 is the maximum value of ||Ax|| where x ranges over unit vectors in \mathbb{R}^n that are orthogonal to v_1 .
- 5. Show that if $\{v_1, \ldots, v_n\}$ is an orthonormal basis for \mathbb{R}^n , then

$$v_1v_1^T + \dots + v_nv_n^T = I.$$

6. Let A be an $m \times n$ matrix, and let P be an orthogonal $m \times m$ matrix. Show that PA has the same singular values as A.