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1 Introduction

Bott periodicity in K-theory is a rather mysterious object. The classical proofs typically consist
of showing that the unitary groups form an Ω-spectrum from which to get a cohomology theory;
then showing that that theory is K-theory; and most formidably showing that U(n) is homotopic
to U(n + 2) for all n.

However, Cuntz showed that Bott periodicity can be derived in a much simpler way if one
resorts to using not only traditional topological spaces, but also ”non-commutative topological
spaces,” i.e. C∗-algebras. That in fact, Bott periodicity is not only reflected in the collective
topology of the unitary groups, but also encoded in the structure of the Toplitz C∗-algebra.

In next two sections we will overview the essential ingredients of non-communitive topol-
ogy that are needed to follow Cuntz’s argument. Namely the analogues of topological spaces,
continuous functions, suspensions, and vector bundles. These two sections are rather sketchy,
without any actual proofs given. In the third section we will use the functorial properties of K0

to compute the K-theory of the Toplitz C∗-algebra, and with this we will be able to give Cuntz’s
quick proof of Bott periodicity.

It should be noted that Cuntz’s proof does not actually even use the definition of K0, just a
couple of functorial properties. So the curious reader can skip to the proof of Bott periodicity
without any extra difficulties.

Finally, it should also be noted that tensor products are rather ubiquetous in the following.
It’s a rather unfortunate fact that in general the tensor product of two C∗-algebras is not uniquely
defined. One would like to simply that the algebraic tensor product and complete with respect
to a C∗-norm, but in general there is more than one C∗-norm on the algebraic tensor product.
However, the tensor product is uniquely defined if at least one of the two factors happens to
be nuclear. Examples of nuclear C∗-algebras include the commutative ones; the algebra K of
compact operators on an infinite dimensional, seperable Hilbert space; and the Toplitz operators.
Luckily, in all of the tensor products below at least one of the factors is nuclear. Also, there is
good side to C∗-algebra tensor products. As long as at least one of the factors in each tensor
product is nuclear, it’s a fact that taking the tensor product of a short exact sequence with a
fixed C∗-algebra yields another short exact sequence (i.e., there are no Tor terms). This will
come in handy at one point below. The interested reader will find a very nice appendix on tensor
products in Wegge-Olsen’s K − Theory and C∗ − Algebras.

All material for this paper can be found in Arveson’s A Short Course in Spectral Theory
or Wegge-Olsen’s K − Theory and C∗ − Algebras.
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2 Basic ideas of Noncommutative Topology

Let X be a compact Hausdorff space. Then it is useful to consider C(X), the set of continuous
functions f : X → C. C(X) forms an associative algebra with identity under pointwise sum and
product. It has an involution, namely f ∗(x) = f(x), and it is a complete metric space with the
uniform norm. Moreover, the norm and the involution are related by the formula ‖f ∗f‖ = ‖f‖2.
There is one more property of C(X) that we would like to point out, namely, it is commutative.
A noncommutative topological space, or C∗-algebra, is defined to be an algebra with the above
properties except the commutivity. Namely, a unital C∗-algebra A is a unital associative algebra
with an involution and a submultiplicative norm ‖ � ‖ such that A is complete with respect to
‖ � ‖ and ‖a∗a‖ = ‖a‖2 for all a ∈ A.

A continuous map φ : X → Y induces a corresponding map φ̄ : C(Y )→ C(X) by φ̄(f) = f◦φ.
φ̄ is a unital *-homomorphism from C(Y ) to C(X). Motivated by this, one declares a morphism
from A to B in the category of unital C∗-algebras to be a unital *-homomorphism φ : A → B.
One checks that any morphism of unital C∗-algebras is automatically norm continuous. Most
importantly, Gelfand theory implies our associations X −→ C(X) and (φ : X → Y ) −→ (φ̄ :
C(Y ) → C(X)) gives an equivalence of the category of compact Hausdorff spaces with the
subcategory of commutative unital C∗-algebras. This justifies the philosophy that arbitrary
unital C∗-algebras correspond to noncommutative compact Hausdorff spaces.

We will also have need for locally compact, but noncompact Hausdorff spaces. If X is locally
compact but not compact, then we can form C0(X), the set of continuous f : X → C that vanish
at infinity; that is, for any ε there is a compact K ⊂ X such that ‖f(x)‖ < ε for x ∈ X −K.
C0(X) has all the properties above except that it is nonunital. A proper map φ : X → Y induces
a *-homomorphism φ̄ : C0(Y ) → C0(X). Continuous functions can also be treated, but it is
more complicated. Fortunately we will not have need of the more general morphisms motivated
by arbitrary continuous functions, so we will say a morphism from a nonunital C∗-algebra to a
C∗-algebra is simply a *-homomorphism.

3 K-theory and Suspension

First we need to understand what K0 for an arbitrary C∗-algebra should be. We restrict the
motivating discussion to the case of unital C∗-algebras, just like in topology where K-theory is
first described for compact spaces. In the topological case, the K-theory for a locally compact
space is then defined to the K-theory for its one point compactification, quotiented out by a
copy of Z. In the same way, for nonunital C∗-algebras one first looks at the K-theory of the
unitalization, and then quotients out by a copy of Z.

Recall that K0 is a contravariant functor for topological spaces, but since the equivalence
of topological spaces with C∗-algebras reverses arrows, our corresponding functor K0 for C∗-
algebras will be covariant. In the topological space case, for a compact X we have that V ect(X)
is the cancelative semigroup generated by stable equivalence classes of vector bundles over X with
addition induced from the Whitney sum. Then K0(X) is the Grothendick group of V ect(X);
that is, the group of formal differences of elements of V ect(X). By Swan’s Theorem, stable
equivalence classes of vector bundles over X correspond to stable equivalence classes of finitely
generated projective modules over C(X), with addition given by the direct sum. (Two projective
modules over a ring are called stably equivalent if they can be made isomorphic by direct summing
them with finitely generated free modules of large enough size). So we define for a unital C∗-
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algebra A the K0 group to be the Grothendick group of the cancelative semigroup generated by
the stable equivalence classes of finitely generated projective right A-modules with addition of
classes induced from the direct sum.

We also need to think about what K0 does to morphisms of C∗-algebras. If φ : A → B is
a *-homomorphism, then we can B as a left A-module by a · b = φ(a)b. Thus given a right
A-module M we can form a corresponding right B-module by M 7→ M ⊗A B. This association
clearly takes stably equivalent A-modules to stably equivalent B-modules, so we get an induced
map φ∗ : K0(A) → K0(B). This enables us (among other things) to define K0 for non-unital
algebras; namely, for a nonunital C∗-algebra A we define K0(A) = ker(φ∗ : K0(C) → K0(Ã)),
where Ã is the algebra obtained by adjoining a unit to A, and φ : C→ Ã is the natural inclusion
λ 7→ λ1Ã.

There are three critical properties of K0, its stability, homotopy invariance, and half exactness.
The stability property of K0 says that K0(A) = K0(A⊗K) for any C∗-algebra A, where K is the
C∗-algebra of compact operators on an infinite dimensional, seperable Hilbert space. Indeed, we
see that K0(A) = K0(A⊗Mn(C)) for any n ∈ N because A and A⊗Mn(C) are Morita equivalent
rings, as in just plain old algebra. (Two rings are called Morita equivalent if they have equivalent
categories of right modules. The standard example is to take a ring R and Mn(R), for the map
N 7→ N ⊗R Mn(R) induces an equivalence. Since projectiveness of a module has a categorical
interpretation– N is a projective A-module iff the functor HomA(N,−) is exact– it follows that
K0(A) depends only on the Morita equivalence class of A.) A typical direct limit argument shows
that K0 preserves direct limits (as does ⊗), so we indeed get K0(A) = K0(A⊗K).

The homotopy invariance of K0 says that an induced map φ∗ : K0(A)→ K0(B) only depends
on the homotopy class of φ : A → B. To see this, it is helpful to look at another approach to
constructing K0. First note that a finitely generated projective module over A corresponds to a
direct summand of An, which in turn corresponds to a idempotent in Mn(A). While it’s a little bit
subtle to determine exactly when two such idempotents correspond to stably equivalent modules,
it’s certainly true that it is sufficient that the idempotents be similar. Any *-homomorphism
φ : A → B will send idempotents to idempotents, and a little chasing shows that this sending
idempotents to idempotents corresponds to the φ∗ : K0(A) → K0(B) constructed above from
the module viewpoint. We want to see that K0 is actually homotopy invariant, i.e. a stongly
continuous family of *-homomorphisms {φt}t∈[0,1] all induce the same map on the K0 groups.
(A family of morphisms is called strongly continuous if (t 7→ φt(a)) is continuous for any fixed
a ∈ A.) By above, it suffices to show that if p and q are homotopic idempotents, then p and
q are similar. By dividing the path from p to q into pieces if necessary, we can assume that
‖p− q‖ < 1. Let z = (2p− 1)(2q − 1) + 1. Then direct computation shows that ‖z − 2‖ < 2, so
z is invertible, and that qz = zp. Thus p and q are similar and so K0 is homotopy invariant.

The final important property of K0 is its half exactness. A (covariant) functor F is called half
exact if given a short exact sequence 0 −→ A −→ B −→ C −→ 0, then the induced sequence
F (A) −→ F (B) −→ F (C) is exact. The proof that K0 is half exact is again to just take the
corresponding result for topological spaces, and translate the proof into algebraic language. Since
the goal of this paper is to show how Bott periodicity becomes simplier when looked at from a
noncommutative viewpoint, in the spirit of the paper I’m going to omit this translation.

Recall that in classical topology we have that given any half exact, homotopy invariant covari-
ant (contravariant) functor F , we can get a (co)homology theory (with a long exact sequence, split
exact additive functors, etc) by defining H−n(X) = F (SnX), where the right hand side denotes
the iterated suspension. (It’s also easy to see that every homotopy invariant homology theory
comes about in this way, using the short exact sequence with X, it’s suspension, and it’s cone.)
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So to define the higher K-groups, we need to understand suspension. The classical definition of
suspension is to multiply the space X by [0, 1] and then collapse the ends. The corresponding
operation to Cartesian product of the spaces is tensor product of the function algebras, for if
X and Y are locally compact Hausdorf then we have a map from the algebraic tensor product
C(X)⊗algC(Y )→ C(X×Y ) by (f⊗g)(x, y) = f(x)g(y). Stone Weierstrauss gives that this map
has dense range, so that the C∗-algebraic tensor product identifies C(X)⊗C(Y ) = C(X×Y ). In
our case we have Y = [0, 1]. The collapsing of the ends means that we need each of the functions
f ⊗ g to be constant in the x variable at the ends of [0, 1]. This forces the function g to vanish
at the endpoints. Such a function g is easily identified with an element of C0(R), so we define
the suspension of a C∗-algebra A to be SA ≡ C0(R) ⊗ A. Now that we have suspension, we
can define the higher K-groups by K−n(A) = K0(S

nA). Pretty much the same (long) proof as
in the topoligical case shows that the homotopy invariance of K0 implies that the Kn’s form a
homology theory.

4 The Proof of Bott Periodicity

Cuntz’s proof of Bott periodicity only requires two facts about K0:
•)K0 is a half exact, homotopy invariant functor
•)K0(A) = K0(A⊗K) for any A, where K denotes the compact operators on the seperable,

infinite dimensional Hilbert space
As we mentioned in the last section, the first fact implies that defining K−n(A) = K0(S

nA)
where SA = C0(R)⊗A gives us a homotopy invariant homology theory (which has a long exact
sequence and split exact, additive functors). What we will show in this section, is that this
together with the second fact gives us Bott periodicity.

The main step is to calculate the K-theory of the Toplitz C∗-algebra T . T is defined as
the C∗-algebra generated by the unilateral shift S, defined on an orthonormal basis {en}n∈N by
Sen = en+1. Note that S∗S = I, so T is unital, and I − SS∗ is the projection onto the linear
subspace spanned by e1. Knowing exactly what this algebra looks like is not important, the only
other thing that is needed is that there is a short exact sequence: 0 −→ K −→ T −→ C(T) −→ 0,
where C(T) denotes the set of continuous complex valued functions on the circle group T. (See
Arveson’s book for details). We have:

Theorem 4.1 There is a canonical surjection q : T → C such that q∗ : K0(T ) → K0(C) is an
isomorphism.

Notice that K0(C) = Z, for a finitely generated right C module is characterized up to stable
equivalence by its dimension, so the Grothendick group you get is Z.

Proof: Let q : T → C be obtained by composing the quotient map T → T /K ' C(T) with
evaluation at 1 ∈ T. Let j : C → T be the map sending 1 to the identity of T . It is clear that
q∗ ◦ j∗ = idK0(C). To obtain j∗ ◦ q∗ = idK0(T ), we will need to use the above facts about K0.

Consider the rank 1 projection I − SS∗ in T and the standard embedding σ : T → K ⊗ T
given by T 7→ (I − SS∗) ⊗ T . That is, view T as being a 1 by 1 matrix in K ⊗ T . Since
σ∗ : K0(T ) → K0(K ⊗ T ) is assumed to be an isomorphism, it is sufficient to prove that
σ∗ ◦ j∗ ◦ q∗ = σ∗. In order to do this, we construct another C∗-algebra T and a morphism
ι : K⊗ T → T such that ι∗ is injective and ι∗ ◦ σ∗ ◦ j∗ ◦ q∗ = ι∗ ◦ σ∗.
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To start, let T̂ = C∗(K ⊗ T , T ⊗ 1) ⊂ T ⊗ T . Note that K ⊗ T is an ideal in T̂ and that

T̂ /(K ⊗ T ) ' T /K ' C(T). Thus we can define T as the fibre product of the quotient maps

π : T → C(T) and π̂ : T̂ → C(T) That is: T ≡ {x⊕ y ∈ T̂ ⊕ T |π̂x = πy}.
Putting ι(x) ≡ x ⊕ 0, π̄(x ⊕ y) ≡ y, and γ(y) = (I − SS∗) ⊗ y ⊕ y gives us a split exact

sequence 0 −→ K ⊗ T −→ T ←→ T −→ 0, so ι∗ : K0(K ⊗ T ) → K0(T ) is injective by split
exactness of K0, as desired.

Now let’s actually compute the compositions ι ◦ σ and ι ◦ σ ◦ j ◦ q. (Both map T → T ). For
the first one we have ι ◦ σ(T ) = ι((I − SS∗)⊗ T ) = (I − SS∗)⊗ T ⊕ 0. For the second we have
ι ◦ σ ◦ j ◦ q(T ) = (I −SS∗)⊗ I ⊕ 0. Let β(T ) = S2S∗⊗ I ⊕T . Then the range of β is orthogonal
to that of ι ◦ σ in T , so the desired equality will follow from the additivity and the homotopy
invariance of K0 once we can show that β0 ≡ β + ι ◦ σ and β1 ≡ β + ι ◦ σ ◦ j ◦ q are homotopic.

To simplify notation, define v ≡ S ⊗ I, w ≡ (I − SS∗)⊗ S, and e ≡ (I − SS∗)⊗ (I − SS∗).

Consider the two elements of T̂ given by u0 = v2v∗+wv∗+vw∗+e and u1 = v2v∗2 +(1−vv∗)v∗+
v(1− vv∗). Then a simple calculation gives that βi(T ) = ui(T ⊗ I)⊕ T . The reason for picking
these particular ui rather than one of the simplier expressions that would give the same relation
with the βi is that these two ui’s are actually symmetries. (An operator is called a symmetry if
u = u∗ and u2 = I.) Indeed, the ui are manifestly selfadjoint. Checking that u2

i = I for each
i is a little annoying, but it just comes down to playing around with the unilateral shift. The
importance of this fact is that since the ui are symmetries, we have that the spectrum of ui is
contained in {−1, 1} for each i. In particular, we can define a branch of the logrithm on the
spectrum of each ui, and so get a continuous path from each ui to the identity through unitaries
in T̂ . In particular, the ui are homotopic to each other through unitaries in T̂ , which gives that
the two βi’s are homotopic aswell.

�

With the K-theory of the Toplitz C∗-algebra in hand, we can now prove Bott Periodicity
rather quickly.

Theorem 4.2 Bott Periodicity: For any C∗-algebra A we have a natural isomorphism K0(A) =
K0(S

2A). In other words, K0(A) = K−2(A).

Proof: Let q, j be as in the previous theorem and let T0 = ker(q). Then we have a short exact
sequence 0 −→ T0 −→ T ←→ C −→ 0.

As mentioned before, K0 is a split exact functor, as is tensoring with a fixed C∗-algebra A,
so we have another split exact sequence:

0 −→ K0(A⊗ T0) −→ K0(A⊗ T )←→ K0(A⊗ C) −→ 0.
By the previous theorem, the map (idA ⊗ q)∗ is an isomorphism, so exactness implies that

K0(A⊗ T0) = 0 for any C∗-algebra A.
By definition of T0, it also fits into another short exact sequence 0 −→ K −→ T0 −→

C0(R) −→ 0. Since for there is no Tor terms for nice enough C∗-algebras that the tensor product
is unambiguously defined, we can tensor this sequence with A to obtain another short exact
sequence:

0 −→ A⊗K −→ A⊗ T0 −→ SA −→ 0,
where we recalled the definition SA ≡ A⊗C0(R). Now the long exact sequence for K-theory

along with the fact that K−1(A) = K0(SA) gives us an exact sequence
K0S(A⊗K) −→ K0S(A⊗ T0) −→ K0S

2A −→ K0(A⊗K) −→ K0(A⊗ T0) −→ K0SA.
We observed above that K0(A ⊗ T0) = 0. Also by associativity (up to isomorphism) of

tensor products we have K0S(A ⊗ T0) = K0(SA ⊗ T0) = 0. Thus exactness gives us that
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K0S
2A ' K0(A⊗K) ' K0(A), and the isomorphisms are natural by the naturality of the long

exact sequence and the naturality of the stability isomorphism.
�
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