
A CURSORY INTRODUCTION TO SPIN STRUCTURE

JOSH GENAUER

Abstract. In our brief summary paper, we give the basic algebraic definitions

of Spin(V ) and Spinc(V ), compute Spin(Rn) for small n, and describe some of

Spin’s elementary properties, most importantly that it is the non-trivial double
cover of SO(V ). From there, we propose two definitions for a Spin structure

and show their equivalence. Lastly, we generalize the notion of spin structure

to that of a spinc structure and roughly sketch why every four manifold has
a spinc structure and how spinc structures are used to define the Seiberg-

Witten invariant of a four manifold. As an afterthought, we give a short list of

results that involve spin structures. Assuredly, much of the exposition below
is muddled and confused. For clarification on the first two sections chapter 2

and the beginning of chapter 3 of [7] are recommended and for clarification on
the the other sections, consult chapter 5 and the appendix for chapter 2 in [1].

1. The Players

For n ∈ N, n > 2, SO(n) has fundamental group Z2 and so possesses a unique
non-trivial double cover := Spin(n). It is of general interest to construct Spin(n)
explicitly.

Let V be a real finite dimensional vector space with an inner product (always
assumed to be positive, non-degenerate).

Let T (V ) be defined as ⊕0≤nV
⊗n which is a real algebra with unit. Note that

T (V ) has a natural Z grading.

The Clifford algebra, Cl(V ) is defined to be T (V ) modulo the relation v⊗v +
‖v‖2·1 = 0. The grading does not desend, as the relation is not homogeneous,
however, it is homogenous modulo two, so the Z grading of T (V ) descends onto a
Z2 grading of Cl(V ) so we have Cl(V ) = Cl0(V )⊕Cl1 where Cl0 is a subalgebra
and Cl1 is a Cl0 module.

Let e1, ..., ek be an orthonormal basis for V . Then we may write Cl(V ) in terms
of generators and relations. As T (V ) is generated by all products of ei’s. Obvi-
ously ei

2 = −1 and as ‖ei + ej‖2 = 2 we see that eiej = −ejei. So Cl(V ) =
{ei1ei2 · · ·eij

|e2i = −1 and eiej = −ejei}. Thus every element of Cl(V ) may be
uniquely written as a sum of products of the form ei1 · · ·eij

with il < · · · < il+1.
Uniqueness can first be established for monomials i.e there does not exist ei1 · · ·eis =
ej1 · · ·ejt . To see this, multiply through by ei1 · · ·eis , and then square both sides.
There is a contradiction (the right side will equal −1) if the length of the monomial
being squared is of length one or two modulo four. But this is good enough, since
if the length is zero or three, we can multiply the original monomials by, say, e1
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to get our contradiction. For more general expressions, squaring both sides and
invoking the uniqueness of monomial expressions gets us what we want. From this
it follows that if V is of dimension k then Cl(V ) has dimension 2k.
The multiplicative units of Cl(V ) form a group. Pin(V ) is the subgroup generated
by the units of norm one in V. Spin(V ) := Pin(V ) ∩ Cl0(V ). The generators of
Pin(V ) are in Cl1(V ) so Spin(V ) is the subgroup of index two consisting of all
elements in Pin(V ) expressible as a product of an even number of generators in
Pin(V ).

There is a natural action of SO(n) on V , SO(V ), that extends to an action on
Cl(V ) and respects the grading. V can be naturally identified with a subspace
of Cl(V ) that is invariant and orientation preserved under SO(V ). So SO(V ) is
represented by the group of automorphisms of Cl(V ) that restrict to an orientation
preserving linear automorphism of V . Every element of Spin(V ) acts on Cl(V )
by conjugation and each action is the same as an action induced by an element of
SO(V ). In this way we get a map φ : Spin(V )→SO(V ) when dimV > 2. We claim
that φ is surjective and that the kernel of φ is {−1, 1}. Recall our definition of
Spin(V ) as the subgroup of Pin(V ) consisting of all elements which can be written
as a product on an even number of the given generators of Pin(V ) (elements in V
with norm one). We can extend our representation of Spin(V ) to Pin(V ) by again
taking an element of Pin(V ) to the automorphism of Cl(V ) that is conjugation by
the element. To see how conjugation by an element of Pin(V ) restricts to V , we
note that the generators of Pin(V ) are the elements of unit length in V . For any
d, v∈V , ‖d‖ = 1, dvd−1 is going to be the reflection of v across the subspace which
is normal to w. By our previous remarks then it follows that the actions induced on
V by Spin(V ) are the compositions of an even number of reflections of V . These
are exactly the automorphisms of V which comprise SO(V ). Surjectivity has been
established. Note that the kernel of our representation is equal to the intersection
of Spin(V ) with the center of Cl(V ). The next paragraph will give some idea of
why the intersection of Spin(V ) with the center of Cl(V ) is {+1,−1}. We show
this intersection must lie in R, to see the whole argument consult Morgan [7].

The only elements in this intersection are 1 and −1. This is not obvious. First we
must make a number of observations. Let e1, ..., en be an orthonormal basis for V .
ej ·(ei1 · · ·eit

) = (−1)d(t)(ei1 · · ·eit
)ej where d(t) = t provided j 6=ir for all 1≤r≤t and

d(t) = t− 1 otherwise. From this and the uniqueness of the representatives that if
the dimension of V is even, then the center of Cl(V ) is the real multiples of the unit
1. If the dimension of V is odd, then the center is the real vector space spanned by 1
and e1· · ·en. In both cases, the intersection of the center with Cl0(V ) is isomorphic
to R. Thus, the center of Spin(V ) is a subgroup of the multiplicative group R∗.
As the square of any generator of Pin(V ) is −1, we see that {+1,−1}⊂Spin(V ).

Next we want to verify that φ is a non-trivial double cover. To do so, it suffices
to show that the kernel of φ is in the same component. Following Stong [9], consider
the path

λ : [0, π]→Spin(n)
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t 7→cos(t) + sin(t)e1e2

From this we conclude that Spin(V ) is a non-trivial double cover of SO(V ). As
SO(V ) is a compact Lie group of dimension n(n−1)

2 , and π1(SO(V )) = Z2 when
dim(V ) > 2, we conclude that Spin(V ) is a Lie group of dimension n(n−1)

2 and is
simply connected when dim(V ) > 2.

It will be useful for us to compute Spin(Rn) for n = 1, 2, 3, 4.

i) Clearly Cl(R) = R[x]
(x2+1) = C. Then Pin(1) is the subgroup of C generated by

i. Spin(1) must be {±1}.

ii) Cl(R2) is the algebra generated by i and j such that i2 = j2 = −1 and
ij = −ji. So Cl(R2) is the quaternion algebra H. Pin(2) is generated by elements
of the form cos(t) + sin(t)i and (cos(t) + sin(t)i) ∗ j which we see is the union of
two circles. So Spin(2) = S1.

iii)A straightforward computation shows that Cl(R3)'H⊕H. It is generated by
x, y, z with x2 = y2 = z2 = −1 and anti-commutation between each other. The
isomorphism from H⊕H is given by

(11, i1, j1, k1, 12, i2, j2, k2)7→

(
1 + xyz

2
,
xy − z

2
,
yz − x

2
,
zx− y

2
,
1− xyz

2
,
xy + z

2
,
yz + x

2
,
zx+ y

2
)

Under this isomorphism, R3 is identified with pairs (a, a) with a having no real part.
For any pair of unit imaginary quaternions, a, b, their product ab is an element of
Spin(V ) ⊂ Cl0(R3) = H as the diagonal copy in H⊕H. The set of these products
generate S3.

iv)It is not hard to show that Cl(Rn)'Cl0(Rn+1). Under this identification when
n = 3, Spin(3) becomes a subgroup of Spin(4), where the embedding is determined
by the embedding of R3 in R4. The union of the images of all these embeddings
generates S3×S3⊂H⊕H. We conclude then that Spin(4)'SU(2)×SU(2). To see
the group isomorphism, given a quaternion a + bi + cj + dk, associate to it the
matrix (

a− di −b+ ci
b+ ci a+ di

)
When restricted to the unit quaternions, S3 this gives the desired isomorphism with
SU(2)×SU(2).

For four manifoldular reasons that will be explained later, we are actually more
inclined to be interested in the complex version of Spin(V ), Spinc(V ). This is de-
fined as the subgroup of the multiplicative group of units of Cl(V )⊗RC generated by
Spin(V )and the complex unit circle of complex scalars i.e. Spinc(V )'Spin(V )×{±1}S

1.
Most of the arguments made for Spin(n) can be modified to work for Spinc(n), but
for simplicity’s sake we stick with Spin(n) for as long as possible. For much more
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algebraic information on spin(V ) and spinc(V ) refer to Morgan [7].

2. Principal Bundles and the Spin Structures they love

We give two definitions of spin structures. While they do not all have the same
generality, they are equivalent in overlapping cases. One has been explained in
class, and will be re-explained here. We also present the other and sketch why they
are equivalent. (In fact there is another definition for Riemannian four manifolds).

Because we know the viewing audience at home can’t wait, we waste no time
in giving the first definition here: given a real finite dimensional vector space V
with inner product and dim(V ) > 1. Let X be an oriented manifold, and P→X
a principal SO(V ) bundle. The bundle P→X has a spin structure if there is a
principal Spin(V ) bundle PSpin(V )→X such that PSpin(V ) is a double cover of P .
The important case to consider is when X is an oriented Riemannian manifold and
we consider its frame bundle F which is a principal SO(n) bundle. In this case, if
the bundle lifts to a principal Spin(n) bundle, then we say X along with a partic-
ular choice of lifting PSpin(V ) of P is a spin manifold.

When does a SO(n) bundle P lift to a Spin(n) bundle? Is the lifting unique?
We’ll find out that:

Proposition 1. A principal SO(n) bundle P lifts to a principal Spin(n) bundle
PSpin(n) iff its second Steifel-Whitney class w2(P )∈H2(X; Z2) = 0.

Proposition 2. If X is simply connected, then the lifting is unique. In general,
the set of distinct spin structures is in a non-canonical bijection with H1(X; Z2).

3. Two definitions of spin structure that coincide

In the previous section we have given a definition for a spin structure. In this
section we give an other definition, the definition briefly given in class which we
shall review.

First we refresh our memory of what a frame bundle is. Let E be a vector bundle
over B with fiber Rn. We construct a new bundle over B where the fiber over a
point p is the set of all frames in the fiber over P in E. (We say that a frame in
Rn is any orthonormal basis.) We denote the frame bundle by Fr(E). For most
purposes, the tangent space TM over a manifold M plays the part of E.

Let X be a CW complex, and P an oriented real vector bundle over X with
fiber a vector space of dimension greater than two. Let Fr(P ) denote the bundle
of oriented frames over X. We define a spin structure on a bundle P→X to be an
element of H1(Fr(P ); Z2) which restricts to the generator on each fiber. Another
way to say this is that there is a trivialization of P restricted to the two skeleton of
X. We try to construct a trivializaton. As P is oriented, we may continuously pick
an orientation for the fibers, and so we can extend a trivialization of P restricted
to the zero skeleton (which obviously exists) to a trivialization of the one skeleton.
Call the trivializaton σ.
The harder part is to extend this trivialization σ to the two skeleton. The attaching
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region of each 2-cell lifts to an element in π1(SO(n))'Z2. And as on any 2-cell, P
must be trivial since a 2-cell is conctractible, we conclude σ extends over a 2-cell
iff the 2-cell’s corresponding element in π1 = 0. By extending this map on the
boundary of the 2-cells, we get a cochain in C2(X; Z2). We had some choice in σ
however. Supposing we instead choose σ′ as a trivialization over the one skeleton,
σ and σ′ lift to elements of π1(SO(n)) along the one handles that differ by either 0
or 1. This difference, σ − σ′ gives a one cochain. Then that σ and σ′ both extend
over the same two handle is equivalent to saying their difference evaluated over the
boundary of the two handle is zero. Switching the boundary operator, we get the
condition that the coboundary of σ − σ′ evaluate to zero on the two handle. So
changing our choice of σ affects the cochain in C2(X; Z2) by a coboundary. As P
restricted to a three handle must be trivial, the cochain in C2(X; Z2) must be a
cocycle. We conclude that in fact it is a representative of H2(X; Z2) and is the
obstruction to to an oriented vector bundle admitting a spin structure.

To see how many spin structures we get, we work backwards. Given two spin
structures, σ1 and σ2 we know from above they determine trivializations τ1 and τ2
up to homotopy on the 1 skeleton. We homotope the two trivializations to agree on
the zero skeleton. Their difference once again gives a 1- cochain via lifting to the
fundamental group of SO(n). As both τ1 and τ2 extend over the two skeleton we
see the difference is a cocycle that depended on the homotopy to ensure agreement
on the zero skeleton. Changing the homotopy changes WOLOG τ1 by the generator
of π1(SO(n)), and so the difference changes by a coboundary. The difference then
defines a class in H1(X; Z2).

We have yet to show the equivalency of this definition of spin structure with our
original definition. We know from the first section that when n > 2 and i = 1 that
π1(Spin(n)) = 0. In fact, as π2(SO(n)) = 0, π2(Spin(n)) = 0 also. Given a real
vector bundle E→X, let PSpin(n)→X be the spin structure associated to it in the
sense defined earlier. Because the zero, first, second fundamental groups are trivial,
we conclude that PSpin(n) restricted to the two skeleton has only one section up
to homotopy, as if it had more than one, its difference would induce a non-zero π1

or π2. Recalling that PSpin(n) projects as a double cover onto PSO(n) we obtain a
section of PSO(n) restricted to the two skeleton. But this determines a trivialization
of E on the two skeleton.

At this point in time, the viewing audience might want to keep in mind that:
The non-trivial double covers of a space X correspond to the subgroups of π1(X)
of index 2. These subgroups in turn are in correspondence with homomorphisms
φ : π1(X)→Z2. Each non-trivial φ is determined by φ′ : H1(X; Z)→Z2 which is in
1-1 correspondence with non-zero elements of H1(X; Z2).

From an exact sequence for bundles in [1]:

0→H1(X; Z2)→H1(PSO(n); Z2)→H1(SO(n); Z2)→H2(X; Z2)(3.1)
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As H1(PSO(n); Z2)'Z2, if there is a spin structure i.e. the last arrow in the se-
quence must map everything to zero, then the second to last map must be a sur-
jection. By the above argument, the double covers of PSO(n) can be associated to
H1(PSO(n); Z2) and the spin structures are the preimages of 1 under the second to
last arrow. This shows that the spin structures in the sense defined in earlier in
this paper, like those defined in class, are in 1-1 correspondence with elements of
H1(X; Z2).

With this is mind, that our map from “double cover” spin structures to the spin
structures defined in class is clearly one-to-one suffices to show equivalence.

4. Every 4-manifold has a spinc structure

The existence/definition of the Seiberg-Witten invariants depend on the presence
of some sort of ”spin structure” on a manifold. Not all four manifolds admit a true
spin structure though. As it turns out though every four manifold admits a spinc

structure.
Recalling (out of nowhere) that Spinc(4)'{(A,B)∈U(2)×U(2)|det(A) = det(B)},

we see there is a natural homomorphism λ : Spinc(4)→S1 by representing an el-
ement of Spinc(4) as (A,B) and defining λ((A,B)) := det(A). We associate to a
Spinc structure the line bundle L given by L = PSpinc(4)×λC

Proposition 3. Let X be an oriented four-manifold and let P→X be the frame
bundle of the tangent bundle. Then there is a Spinc(4) bundle that is a cover of the
frame bundle and on each fiber restricts to quotienting by the center of Spinc(4).

Proof. As Spinc(n)'Spin(n)×{±1}S
1 we obtain the following exact seqence:

{e} → Z2→Spinc(4)→S1×SO(4)→{e}(4.1)

From this we conclude that there exists a Spinc structure with determinant line bun-
dle L iff the principal bundle PS1×SO(4) has a double cover which on each fiber has
Spinc→S1×SO(4). Remember that the double covers of a manifold X correspond
to elements of H1(X; Z2). Applying this to our case, where H1(S1×SO(4); Z2) =
Z2×Z2 we see there are three non-trivial double covers. Through trial and er-
ror we see they are Spinc(4), S1×SO(4) where S1 wraps around itself twice, and
S1×Spin(4). It turns out that the double cover extends to one of SO(6) iff the
double cover is Spinc(4). For a more detailed analysis consult the section (appendix
to chapter 2) in Gompf and Stipsicz [1] on spinc structures.
So there exists a spinc structure with determinant line bundle L iff PS1×SO(4) itself
admits a spin structure. But this condition we know is equivalent to w2(PS1×SO(4)) =
0. But w2(PS1×SO(4)) = w2(L) + w2(X). As L is a complex bundle, w2(L) is
the reduction of c1(L) mod two, and we see that existence of a spinc structure
with line bundle L is equivalent to c1(L)≡w2(X) mod two. Every characteris-
tic element is the first Chern class of the determinant line bundle for some spinc

structure. Thus, the set of spinc structures on X surjects via c1(L) onto the set
{K∈H2(X; Z)|K≡w2(X)mod2}. That this set is nonempty for compact oriented
four-manifolds is a result of Hirzebruch and Hopf. Later, Teichner and Vogt ex-
tended the result to non-compact oriented four-manifolds. See [1] for more. �
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5. Sketch on how to get to the Seiberg-Witten equations

It turns out (and not much is explained here...mostly definitions, and unjusti-
fied assertions) that when n is even, say n = 2k, Cl(2k)⊗RC'M2k(C) and the
corresponding complex 2n-dimensional representation Sn of Spin(n) splits into two
non-isomorphic irreducible representations, Sn := Sn

+⊕S−n .
From this complex representation Sn, if we have fixed a spin structure PSpin(n)→X
on an oriented Riemannian manifold, we can associate the bundle S→X. Sections of
S are called spinors. When X is even, the bundle splits into S+⊕S− from the split-
ting of the representation Sn. There is another bundle associated to P(Spin(n)→X
by the Spin(n) representation Cl(n)⊗RC This bundle is referred to as the Clifford
bundle of the spin structure on X. The action of Cl(n)⊗RC on Sn induces an ac-
tion on the bundle S called Clifford multiplication. Now suppose in particular we
are working on a spin manifold, (PSO(n) = TX). To the metric d on our manifold
is associated the unique Levi-Civita connection ∆d : Γ(X;TX)→Γ(X;TX⊗T ∗X)
where Γ(X;Y ) denotes the vector space of smooth sections of the vector bundle
Y→X. We pull this connection back to the bundle PSpin(n)→X which in turn
induces a differentiation ∆ : Γ(X;S)→Γ(X;S⊗T ∗X).
As T ∗X is a subbundle of the Clifford bundle, T ∗X acts on the spinor bundle S.
Hence we get the map induced by the Clifford multiplication: C : Γ(X;S⊗T ∗X)→Γ(X;S).

Definition 1. For a given Riemannian manifold X with spin structure PSpin(n),
the composition:

δ = C◦∆ : Γ(X;S)→Γ(X;S)(5.1)

is called the Dirac operator of X.

The construction above can be carried out in a similar fashion for spinc struc-
tures so that we get a Clifford multiplication and a Dirac operator. If we assume
that X is a simply connected four-manifold, then the spinc structure uniquely de-
termines the determinant line bundle L. Any U(1) connection on L combined with
the Levi-Civita connection gives a covariant differentiation from smooth sections
of the spinor bundle to smooth sections of the spinor bundle tensor the cotangent
bundle. Composing with the Clifford multiplication, we get the coupled Dirac op-
erator of the spinc structure coupled to a U(1) connection on the determinant line
bundle which we will denote δA.
It ends up being important that in dimension four, Lie(SO(4)) splits as
Lie(SO(3)⊕Lie(SO(3)) coinciding with the splitting of two forms into self-dual and
anti-dual two forms under the Hodge-* operator. Somehow from this we are able
to induce a map, iσ from positive spinors to imaginary-valued-self-dual-two-forms
by noting that conjugation of i by a quaternion element is spinc(4) invariant.
Given a U(1) connection, A on the determinant line bundle, the curvature FAis a Lie
algebra-valued two form. As U(1) isomorphic to the imaginary line, it follows that
FA is a imaginary two form and hence splits by extending the splitting on two forms
to imaginary valued two forms. Let F+

A denote the self-dual part of the curvature.

Lastly, the Gauge group is the group of bundle automorphisms of PSpinc(4)→X
inducing the trivial action on the frame bundle. Alternatively it is defined as the
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group of maps from X to S1. Any element in the Gauge group acts on a section in
the positive spinor bundle by multiplication.

Definition 2. Given a U(1) connection A on the determinant line bundle, and a
section in the positive spin bundle, ψ the Seiberg-Witten equations are:

δA(ψ) = 0(5.2)

and

F+
A = iσψ(5.3)

The set of all pairs (A,ψ) that satisfy the Seiberg-Witten equations is called
the moduli space. This space is invariant under the Gauge group. And here we
really don’t know what we’re talking about....so we should shut up before we say
something bad.

6. Why We Should Care

Spin has some useful applications. It is used in the following results:

i) Every closed, oriented three-manifold embeds smoothly in m connected sums
of S2×S2 for sufficiently large m.

ii) The Poincare homology sphere is not the boundary of any contractible smooth
four-manifold [1].

iii) To define the Seiberg-Witten invariants it is necessary to have a spinc struc-
ture on a four-manifold.

iv) If you are involved in K-theory, then spin has been partially responsible
for your employment. It is a theorem attributed to Anderson-Brown-Peterson that
two spin manifolds are cobordant iff their Stiefel-Whitney classes agree and all their
K-theoretical classes agree too [9].

The Seiberg-Witten invariants which we outlined using spin-c structures have
been the source of much active research. Previously the only finely tuned four
manifold invariant was the Donaldson invariant which was difficult to work with for
reasons of compactness (lack thereof). In the case of the Seiberg-Witten, the moduli
space consisting of all of the solutions of the Seiberg-Witten equations up to Gauge
transformation is compact. The invariants have been used, perhaps most notably
by Kronheimer and Mrowka to give proof of the Thom conjecture which states that
a holomorphic curve in CP 2 minimizes the genus of any surface which represents
the same homology class and Morgan, Szabo, and Taubes to prove that a smooth
symplectic curve of nonnegative self-intersection in a symplectic four-manifold is
genus minimizing, and have given a product formula for computing Seiberg-Witten
invariants which allows them to give a non-vanishing result for the Seiberg-Witten
invariants of certain generalized connected sum manifolds. Lastly, the invariants are
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computable for Kahler manifolds, and are used to gain insight into the enumeration
of algebraic curves. For the real deal see for instance [3],[4],[8],[10],[11] and a survey,
[1].
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