Math 214 HW#9, due 4/7/15 at 12:40 PM

- 1. Lee 11.11.
- 2. Lee 11.17.
- 3. Check in local coordinates that if α is a 1-form and V and W are vector fields on M, then

$$d\alpha(V,W) = V\alpha(W) - W\alpha(V) - \alpha([V,W]).$$

- 4. Let $\omega : \mathbb{R}^4 \otimes \mathbb{R}^4 \to \mathbb{R}$ be an alternating bilinear form. Show that there exist linear maps $\alpha, \beta : \mathbb{R}^4 \to \mathbb{R}$ with $\omega = \alpha \wedge \beta$ if and only if $\omega \wedge \omega = 0$. *Hint:* Choose a basis in which ω looks simple.
- 5. Lee 13.10.
- 6. Lee 13.24.
- 7. Let M be a smooth manifold with a Riemannian metric $g : TM \otimes TM \to \mathbb{R}$. If $f : M \to \mathbb{R}$ is a smooth function, the gradient of f with respect to g is the vector field ∇f defined by

$$df = g(\nabla f, \cdot).$$

- (a) In local coordinates $\{x^i\}$, if $g(\partial/\partial x^i, \partial/\partial x^j) = g_{ij}$, explain how to compute ∇f in terms of g_{ij} and $\partial f/\partial x^i$. *Hint:* See HW#1.
- (b) Let $f: M \to \mathbb{R}$ and let $p \in M$. Show that if $V \in T_p M$ satisfies $df_p(V) > 0$, then there exists a Riemannian metric g on M with $\nabla f(p) = V$.
- 8. Consider the one-form α on $\mathbb{R}^2 \setminus \{(0,0)\}$ defined by

$$\alpha = \frac{x\,dy - y\,dx}{x^2 + y^2}$$

(which we can think of as " $d\theta$ "). Let $A \subset \mathbb{R}^2 \setminus \{(0,0)\}$ denote the positive x-axis, and let $\gamma : [a,b] \to \mathbb{R}^2 \setminus \{(0,0)\}$ be a loop which is transverse to A. Show that the intersection number $A \cdot \gamma \in \mathbb{Z}$ satisfies

$$\frac{1}{2\pi} \int_{\gamma} \alpha = A \cdot \gamma.$$

- 9. Lee 14.6.
- 10. For k > 0, define a map K from k-forms on \mathbb{R}^n to (k-1)-forms on \mathbb{R}^n as follows. If α is a k-form, write $\alpha = dx^1 \wedge \beta_I dx^I + \gamma_J dx^J$ where the multi-indices I and J do not include 1. Define

$$K\alpha(x^1,\ldots,x^n) = \left(\int_0^{x^1} \beta_I(t,x^2,\ldots,x^n)dt\right) dx^I.$$

Let V denote the subspace $(x^1 = 0) \subset \mathbb{R}^n$, let $i : V \to \mathbb{R}^n$ denote the inclusion map, and let $\pi : \mathbb{R}^n \to V$ denote the projection $(x^1, \ldots, x^n) \mapsto (0, x^2, \ldots, x^n)$.

(a) Show that

$$d \circ K + K \circ d = 1 - \pi^* \circ i^*.$$

- (b) Use the above result and induction on n to show that if k > 0 then every closed k-form on \mathbb{R}^n is exact.
- 11. How difficult was this assignment?