Math $214 \mathrm{HW} \# 9$, due 4/7/15 at 12:40 PM

1. Lee 11.11 .
2. Lee 11.17.
3. Check in local coordinates that if α is a 1-form and V and W are vector fields on M, then

$$
d \alpha(V, W)=V \alpha(W)-W \alpha(V)-\alpha([V, W])
$$

4. Let $\omega: \mathbb{R}^{4} \otimes \mathbb{R}^{4} \rightarrow \mathbb{R}$ be an alternating bilinear form. Show that there exist linear maps $\alpha, \beta: \mathbb{R}^{4} \rightarrow \mathbb{R}$ with $\omega=\alpha \wedge \beta$ if and only if $\omega \wedge \omega=0$. Hint: Choose a basis in which ω looks simple.
5. Lee 13.10.
6. Lee 13.24.
7. Let M be a smooth manifold with a Riemannian metric $g: T M \otimes$ $T M \rightarrow \mathbb{R}$. If $f: M \rightarrow \mathbb{R}$ is a smooth function, the gradient of f with respect to g is the vector field ∇f defined by

$$
d f=g(\nabla f, \cdot)
$$

(a) In local coordinates $\left\{x^{i}\right\}$, if $g\left(\partial / \partial x^{i}, \partial / \partial x^{j}\right)=g_{i j}$, explain how to compute ∇f in terms of $g_{i j}$ and $\partial f / \partial x^{i}$. Hint: See HW\#1.
(b) Let $f: M \rightarrow \mathbb{R}$ and let $p \in M$. Show that if $V \in T_{p} M$ satisfies $d f_{p}(V)>0$, then there exists a Riemannian metric g on M with $\nabla f(p)=V$.
8. Consider the one-form α on $\mathbb{R}^{2} \backslash\{(0,0)\}$ defined by

$$
\alpha=\frac{x d y-y d x}{x^{2}+y^{2}}
$$

(which we can think of as " $d \theta$ "). Let $A \subset \mathbb{R}^{2} \backslash\{(0,0)\}$ denote the positive x-axis, and let $\gamma:[a, b] \rightarrow \mathbb{R}^{2} \backslash\{(0,0)\}$ be a loop which is transverse to A. Show that the intersection number $A \cdot \gamma \in \mathbb{Z}$ satisfies

$$
\frac{1}{2 \pi} \int_{\gamma} \alpha=A \cdot \gamma
$$

9. Lee 14.6.
10. For $k>0$, define a map K from k-forms on \mathbb{R}^{n} to $(k-1)$-forms on \mathbb{R}^{n} as follows. If α is a k-form, write $\alpha=d x^{1} \wedge \beta_{I} d x^{I}+\gamma_{J} d x^{J}$ where the multi-indices I and J do not include 1. Define

$$
K \alpha\left(x^{1}, \ldots, x^{n}\right)=\left(\int_{0}^{x^{1}} \beta_{I}\left(t, x^{2}, \ldots, x^{n}\right) d t\right) d x^{I}
$$

Let V denote the subspace $\left(x^{1}=0\right) \subset \mathbb{R}^{n}$, let $\imath: V \rightarrow \mathbb{R}^{n}$ denote the inclusion map, and let $\pi: \mathbb{R}^{n} \rightarrow V$ denote the projection $\left(x^{1}, \ldots, x^{n}\right) \mapsto$ $\left(0, x^{2}, \ldots, x^{n}\right)$.
(a) Show that

$$
d \circ K+K \circ d=1-\pi^{*} \circ \imath^{*} .
$$

(b) Use the above result and induction on n to show that if $k>0$ then every closed k-form on \mathbb{R}^{n} is exact.
11. How difficult was this assignment?

