- 1. Lee 7.16
- 2. Lee 8.13.
- 3. Lee 9.6.
- 4. Lee 9.16.
- 5. Lee 9.17.

Now let G be a Lie group and let \mathfrak{g} denote its Lie algebra.

- 6. Recall that the bracket $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ and the exponential map $\exp : \mathfrak{g} \to G$ are defined using left-invariant vector fields on G. Show that if one uses right-invariant vector fields instead, then the bracket switches sign, while the exponential map is unchanged. *Hint:* Let $f : G \to G$ denote the map sending $g \mapsto g^{-1}$. What does f do to invariant vector fields?
- 7. (a) Let $X \in \mathfrak{g}$, let X^L denote the left-invariant extension of X to a vector field on G, and let $\{\phi_t\}_{t\in\mathbb{R}}$ denote the flow of X^L . Find and prove a formula showing that the map $\phi_t : G \to G$ agrees with left or right multiplication by an appropriate element of G.
 - (b) Suppose that the exponential map $\exp : \mathfrak{g} \to G$ is surjective¹. Use the result in part (a) to prove that G is abelian if and only if the Lie bracket on \mathfrak{g} vanishes identically.
- 8. How difficult was this assignment?

¹In fact one only needs to assume here that G is connected. This is a weaker condition; see Lee, Exercise 20.6.