Math 214 HW\#1, due 2/5/13 at 2:10 PM

1. Lee 1.7. (Just do the case $n=2$.)
2. Lee 1.9. (Just do the case $n=1$.) Also check that the projection $\mathbb{C}^{2} \backslash\{0\} \rightarrow \mathbb{C} P^{1}$ is smooth.
3. Show that $\mathbb{C} P^{1}$ is diffeomorphic to S^{2}.
4. Consider spherical coordinates on \mathbb{R}^{3} (not including the line $z=0$) ρ, ϕ, θ defined in terms of the Euclidean coordinates x, y, z by

$$
x=\rho \sin \phi \cos \theta, \quad y=\rho \sin \phi \sin \theta, \quad z=\rho \cos \phi .
$$

(a) Express $\partial / \partial \rho, \partial / \partial \phi$, and $\partial / \partial \theta$ as linear combinations of $\partial / \partial x$, $\partial / \partial y$, and $\partial / \partial z$. (The coefficients in these linear combinations will be functions on $\mathbb{R}^{3} \backslash(z=0)$.)
(b) Express $d \rho, d \phi$, and $d \theta$ as linear combinations of $d x, d y$, and $d z$.
5. Let V and W be finite dimensional vector spaces and let $A: V \rightarrow W$ be a linear map. Show that the dual map $A^{*}: W^{*} \rightarrow V^{*}$ is given in coordinates as follows. Let $\left\{e_{i}\right\}$ and $\left\{f_{j}\right\}$ be bases for V and W, and let $\left\{e^{i}\right\}$ and $\left\{f^{j}\right\}$ be the corresponding dual bases for V^{*} and W^{*}. If $A e_{i}=A_{i}^{j} f_{j}$ then $A^{*} f^{j}=A_{i}^{j} e^{i}$.
6. Let V be a finite dimensional vector space and let $\langle\cdot, \cdot\rangle$ be an inner product on V. The inner product determines an isomorphism $\phi: V \rightarrow$ V^{*}.
(a) Show that the isomorphism ϕ is given in coordinates as follows. Let $\left\{e_{i}\right\}$ be a basis for V, let $\left\{e^{i}\right\}$ be the dual basis, and write $g_{i j}=\left\langle e_{i}, e_{j}\right\rangle$. Then $\phi\left(e_{i}\right)=g_{i j} e^{j}$.
(b) The inner product, together with the isomorphism ϕ, define an inner product on V^{*}. Write this in coordinates as $g^{i j}=\left\langle e^{i}, e^{j}\right\rangle$. Show that the matrix $\left(g^{i j}\right)$ is the inverse of the matrix $\left(g_{i j}\right)$.
7. Show that if M and N are smooth manifolds and $p \in M, q \in N$, then there is a canonical isomorphism $T_{(p, q)}(M \times N)=T_{p} M \oplus T_{q} N$. Describe this isomorphism in terms of derivations, coordinate charts, and velocity vectors of curves.
8. How difficult was this assignment?

