Math 214 HW#1, due 2/5/13 at 2:10 PM

- 1. Lee 1.7. (Just do the case n = 2.)
- 2. Lee 1.9. (Just do the case n = 1.) Also check that the projection $\mathbb{C}^2 \setminus \{0\} \to \mathbb{C}P^1$ is smooth.
- 3. Show that $\mathbb{C}P^1$ is diffeomorphic to S^2 .
- 4. Consider spherical coordinates on \mathbb{R}^3 (not including the line z = 0) ρ, ϕ, θ defined in terms of the Euclidean coordinates x, y, z by

 $x = \rho \sin \phi \cos \theta, \quad y = \rho \sin \phi \sin \theta, \quad z = \rho \cos \phi.$

- (a) Express $\partial/\partial \rho$, $\partial/\partial \phi$, and $\partial/\partial \theta$ as linear combinations of $\partial/\partial x$, $\partial/\partial y$, and $\partial/\partial z$. (The coefficients in these linear combinations will be functions on $\mathbb{R}^3 \setminus (z=0)$.)
- (b) Express $d\rho$, $d\phi$, and $d\theta$ as linear combinations of dx, dy, and dz.
- 5. Let V and W be finite dimensional vector spaces and let $A: V \to W$ be a linear map. Show that the dual map $A^*: W^* \to V^*$ is given in coordinates as follows. Let $\{e_i\}$ and $\{f_j\}$ be bases for V and W, and let $\{e^i\}$ and $\{f^j\}$ be the corresponding dual bases for V^* and W^* . If $Ae_i = A_i^j f_j$ then $A^* f^j = A_i^j e^i$.
- 6. Let V be a finite dimensional vector space and let $\langle \cdot, \cdot \rangle$ be an inner product on V. The inner product determines an isomorphism $\phi: V \to V^*$.
 - (a) Show that the isomorphism ϕ is given in coordinates as follows. Let $\{e_i\}$ be a basis for V, let $\{e^i\}$ be the dual basis, and write $g_{ij} = \langle e_i, e_j \rangle$. Then $\phi(e_i) = g_{ij}e^j$.
 - (b) The inner product, together with the isomorphism ϕ , define an inner product on V^* . Write this in coordinates as $g^{ij} = \langle e^i, e^j \rangle$. Show that the matrix (g^{ij}) is the inverse of the matrix (g_{ij}) .
- 7. Show that if M and N are smooth manifolds and $p \in M$, $q \in N$, then there is a canonical isomorphism $T_{(p,q)}(M \times N) = T_p M \oplus T_q N$. Describe this isomorphism in terms of derivations, coordinate charts, and velocity vectors of curves.
- 8. How difficult was this assignment?