Math 185 HW\#3, due 2/16/16 at 8:10 AM

0. (optional, not to be graded, but might be useful practice) Gamelin page 57 , exercise 1, and page 67, exercise 1.
1. Gamelin, page 58, exercises 6,7 . (You may assume the result of page 57, exercise 5.)
2. Gamelin, page 62, exercises 4,5 .
3. Gamelin, page 68, exercises 2,4 .
4. Find a conformal bijection from the open first quadrant $(x>0, y>0)$ to the unit disk $(|z|<1)$. Hint: first map to the upper half plane, then use an appropriate linear fractional transformation.
5. Given distinct points $z_{1}, z_{2}, z_{3}, z_{4} \in \widehat{\mathbb{C}}$, define the cross ratio

$$
\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\frac{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}{\left(z_{1}-z_{4}\right)\left(z_{2}-z_{3}\right)}
$$

(If one of the points z_{k} is ∞, cross out the two factors containing z_{k}.)
(a) Show that the cross ratio is $f\left(z_{1}\right)$, where f is the unique linear fractional transformation sending $z_{2} \mapsto 1, z_{3} \mapsto 0$, and $z_{4} \mapsto \infty$.
(b) Given another four distinct points $w_{1}, w_{2}, w_{3}, w_{4} \in \widehat{\mathbb{C}}$, show that there exists a linear fractional transformation sending $z_{k} \mapsto w_{k}$ for $k=1, \ldots, 4$ if and only if $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$.
(c) Show that $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ is real if and only if the four points $z_{1}, z_{2}, z_{3}, z_{4}$ lie on a line or a circle.

