Math 185 HW#2, due 9/11/12 at 12:40 PM

1. For $z \in \mathbb{C}$ define

$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2}, \qquad \sin(z) = \frac{e^{iz} - e^{-iz}}{2i}.$$

Prove that $\cos(z)^2 + \sin(z)^2 = 1$ and that the usual angle addition formulas still hold.

- 2. Gamelin, page 27, exercise 1.
- 3. Prove that there is no continuous logarithm function defined for all nonzero complex numbers. That is, there is no continuous function $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ such that $e^{f(z)} = z$ for all $z \in \mathbb{C} \setminus \{0\}$. *Hint:* Modify the proof in the notes that there is no continuous square root function.
- 4. Prove that $f : \mathbb{C} \to \mathbb{C}$ is holomorphic if and only if the function $g : \mathbb{C} \to \mathbb{C}$ defined by $g(z) = \overline{f(\overline{z})}$ is holomorphic.
- 5. Let U be a connected open subset of \mathbb{C} and let $f: U \to \mathbb{C}$ be holomorphic. Show that if |f| is constant, then f is constant.
- 6. Gamelin, page 50, exercises 6, 8.
- 7. Gamelin, page 53, exercise 6.
- 8. For which quadruples of real numbers is the function $u : \mathbb{R}^2 \to \mathbb{R}$ defined by $u(x, y) = ax^3 + bx^2y + cxy^2 + dy^3$ harmonic? For quadruples (a, b, c, d) such that u is harmonic, find all conjugate harmonic functions v by integration, and describe the corresponding holomorphic functions u + iv.
- 9. Extra credit: Let $a \in \mathbb{C}$ and assume that $|a| \neq 0, 1$. Show that all circles that pass through a and $1/\overline{a}$ intersect the circle |z| = 1 at right angles.