Math 185 HW\#2, due 9/11/12 at 12:40 PM

1. For $z \in \mathbb{C}$ define

$$
\cos (z)=\frac{e^{i z}+e^{-i z}}{2}, \quad \sin (z)=\frac{e^{i z}-e^{-i z}}{2 i}
$$

Prove that $\cos (z)^{2}+\sin (z)^{2}=1$ and that the usual angle addition formulas still hold.
2. Gamelin, page 27, exercise 1 .
3. Prove that there is no continuous logarithm function defined for all nonzero complex numbers. That is, there is no continuous function $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ such that $e^{f(z)}=z$ for all $z \in \mathbb{C} \backslash\{0\}$. Hint: Modify the proof in the notes that there is no continuous square root function.
4. Prove that $f: \mathbb{C} \rightarrow \mathbb{C}$ is holomorphic if and only if the function g : $\mathbb{C} \rightarrow \mathbb{C}$ defined by $g(z)=\overline{f(\bar{z})}$ is holomorphic.
5. Let U be a connected open subset of \mathbb{C} and let $f: U \rightarrow \mathbb{C}$ be holomorphic. Show that if $|f|$ is constant, then f is constant.
6. Gamelin, page 50, exercises 6,8 .
7. Gamelin, page 53, exercise 6 .
8. For which quadruples of real numbers is the function $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $u(x, y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}$ harmonic? For quadruples (a, b, c, d) such that u is harmonic, find all conjugate harmonic functions v by integration, and describe the corresponding holomorphic functions $u+i v$.
9. Extra credit: Let $a \in \mathbb{C}$ and assume that $|a| \neq 0,1$. Show that all circles that pass through a and $1 / \bar{a}$ intersect the circle $|z|=1$ at right angles.

