Math 113 Homework \# 6, due 10/21/9 at 2:10 PM

1. Fraleigh section 14 exercises 34, 37. (Recall that an automorphism of G is an isomorphism from G to itself. For each $a \in G$ there is an automorphism i_{a} defined by $i_{a}(g)=a g a^{-1}$; an automorphism of G is called inner if it is i_{a} for some $a \in G$.)
2. Compute the following quotient groups in terms of the classification of finitely generated abelian groups:
(a) $\mathbb{Z} \oplus \mathbb{Z} /\langle(6,9)\rangle$
(b) $\mathbb{Z} \oplus \mathbb{Z} /\langle(4,2),(0,2)\rangle$
3. Fraleigh section 15 exercises $14,19,23$.
4. Let n be a positive integer and let d be a divisor of n.
(a) Show that $H=\left\{R_{0}, R_{d}, R_{2 d}, \ldots\right\}$ is a normal subgroup of D_{n}.
(b) Describe the cosets of H in D_{n}.
(c) Show that $D_{n} / H \simeq D_{d}$.
(d) Show that the commutator subgroup of $D_{2 n}$ is $\left\{R_{0}, R_{2}, R_{4}, \ldots\right\}$.
(e) Show that the abelianization $D_{2 n}^{a b}$ of $D_{2 n}$ is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
5. How challenging did you find this assignment? How long did it take?
