Math 113 Homework \# 3, due 9/23/9 at 2:10 PM

1. Fraleigh section 4, exercise 41.
2. Fraleigh section 5, exercise 13.
3. (a) Fraleigh section 5, exercise 54.
(b) Is this still true if one replaces intersection by union? Prove or give a counterexample.
4. Let $n>1$ be an integer and let $\theta=2 \pi / n$. Let P be the regular n-gon with vertices $(\cos i \theta, \sin i \theta)$ for $i \in \mathbb{Z}_{n}$. The dihedral group D_{n} is the symmetry group of P, which consists of rotations R_{i} and reflections F_{i} for $i \in \mathbb{Z}_{n}$. Here R_{i} is the counterclockwise rotation around the origin by angle $i \theta$, and F_{i} is the reflection across the line through the origin and $(\cos i \theta / 2, \sin i \theta / 2)$.
Your problem: find (and give at least some justification for) general formulas for $R_{i} R_{j}, R_{i} F_{j}, F_{i} R_{j}$, and $F_{i} F_{j}$. For example, $R_{i} R_{j}=R_{i+j}$, where the addition of indices is $\bmod n$.
5. Find all subgroups of D_{4}.
6. If G is a group, the center of G is defined to be

$$
Z(G)=\{x \in G \mid x y=y x \text { for all } y \in G\}
$$

(a) Show that $Z(G)$ is a subgroup of G.
(b) For $n>2$, what is the center of D_{n} ? (Use the multiplication rules you found above. The answer depends on whether n is even or odd.)
7. Fraleigh section 6 , exercise 32 (justify as always).
8. How challenging did you find this assignment? How long did it take?

