Math 113 Homework \#10, due 11/25/9 at 2:10 PM

1. Let R be an integral domain and $f \in R[x]$ a nonzero polynomial. Prove that if $\alpha \in R$ is a zero of f, then there is a unique $g \in R[x]$ such that $f=(x-\alpha) g$. (That is, the Factor Theorem is true for $R[x]$ when R is an integral domain, even though the Division Theorem is not.) Hint: use induction on the degree of f.
2. Fraleigh chapter 27 problems $6,14,15,16$.
3. Fraleigh chapter 45 problem 10.
4. Fraleigh chapter 46 problems 12, 13.
5. Fraleigh chapter 47 problems $4,5,6,7,8$.
