Math 113 Midterm \#2 solutions

(1) True or false:
(a) If R is an integral domain with quotient field Q then the quotient field of $R[x]$ is isomorphic to $Q[x]$.
(b) The group $\mathbb{Z}_{4} \times \mathbb{Z}_{18}$ is isomorphic to the group $\mathbb{Z}_{2} \times \mathbb{Z}_{36}$.
(a) False. $Q[x]$ is not a field because x has no multiplicative inverse. Degree is additive under multiplication of polynomials, so there is no way to multiply the degree 1 polynomial x by another polynomial to get the degree 0 polynomial 1.
(b) True. Since 2 and 9 are relatively prime, $\mathbb{Z}_{2} \times \mathbb{Z}_{9} \simeq \mathbb{Z}_{18}$. Since 4 and 9 are relatively prime, $\mathbb{Z}_{4} \times \mathbb{Z}_{9} \simeq \mathbb{Z}_{36}$. Thus both groups are isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{9}$.
(2) Let G be a group. Consider the "diagonal"

$$
H=\{(x, x) \mid x \in G\} \subset G \times G
$$

H is a subgroup of $G \times G$; you don't have to prove this.
(a) Show that H is a normal subgroup of $G \times G$ if and only if G is abelian.
(b) Assuming G is abelian, show that $(G \times G) / H \simeq G$.
(a) If G is abelian, then for $(x, x) \in H$ and $\left(g_{1}, g_{2}\right) \in G \times G$, we have $\left(g_{1}, g_{2}\right)(x, x)\left(g_{1}, g_{2}\right)^{-1}=\left(g_{1} x g_{1}^{-1}, g_{2} x g_{2}^{-1}\right)=(x, x) \in H$, so H is normal. Conversely if H is normal, then for any $x, y \in G$ we must have $(x, e)(y, y)(x, e)^{-1} \in H$, which means that $x y x^{-1}=y$, so $x y=y x$, so G is abelian.
(b) Define $\phi: G \times G \rightarrow G$ by $\phi(x, y)=x y^{-1}$. Since G is abelian, ϕ is a homomorphism: $\phi\left(\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)\right)=\phi\left(x_{1} x_{2}, y_{1} y_{2}\right)=x_{1} x_{2} y_{2}^{-1} y_{1}^{-1}=$ $x_{1} y_{1}^{-1} x_{2} y_{2}^{-1}=\phi\left(x_{1}, y_{1}\right) \phi\left(x_{2}, y_{2}\right)$. Now $\operatorname{Ker}(\phi)=\left\{(x, y) \mid x y^{-1}=e\right\}=$ $\{(x, y) \mid x=y\}=H$, and ϕ is surjective since for any $x \in G$ we have $x=$ $\phi(x, e)$. So by the fundamental homomorphism theorem, $(G \times G) / H \simeq G$.
(3a) Find all solutions to the equation $x^{2}-1=0$ in \mathbb{Z}_{35}.
(3b) Show that if $p>2$ is prime then either $2^{(p-1) / 2}+1$ or $2^{(p-1) / 2}-1$ is a multiple of p.
(a) We have $x^{2}-1=(x+1)(x-1)$. This is zero when $x=1$ or $x=-1$. It is also zero when $x+1$ and $x-1$ are two numbers whose product is a multiple of 35 , i.e. when one is a multiple of 5 and the other is a multiple of 7. Listing the multiples of 5 and 7 from 0 to 35 , we see that the solutions we get this way are $x=6$ and $x=-6$.
(b) By Lagrange's theorem, the order of 2 in the group \mathbb{Z}_{p}^{*} must divide the order of the group, namely $p-1$, so $2^{p-1} \equiv 1 \bmod p$. Thus $2^{(p-1) / 2}$ is a solution to the equation $x^{2}-1=0$ in \mathbb{Z}_{p}. Since \mathbb{Z}_{p} is a field this equation only has the two solutions $x=1$ and $x=-1$. Instead of the last two sentences, one can also observe that p divides the product $2^{p-1}-1=$ $\left(2^{(p-1) / 2}+1\right)\left(2^{(p-1) / 2}-1\right)$, so since p is prime p must divide one of the two factors.
(4a) Find the quotient and the remainder when $x^{3}+8 x^{2}+7 x-1$ is divided by $4 x-1$ in $\mathbb{Z}_{11}[x]$.
(4b) Prove the "remainder theorem": if F is a field, $p \in F[x]$, and $\alpha \in F$, then $p(\alpha)$ is the remainder when p is divided by $x-\alpha$. (Here $p(\alpha)$ denotes the image of p under the evaluation homomorphism $i_{\alpha}: F[x] \rightarrow F$.)
(a) Doing long division of polynomials we find that $q=3 x^{2}+10$ and $r=9$. In doing this division, a key point is that in \mathbb{Z}_{11}, division by 4 is the same as multiplication by 3 .
(b) By the division theorem we can write $p=(x-\alpha) q+r$ where $q, r \in F[x]$ and $\operatorname{deg}(r)<\operatorname{deg}(x-\alpha)$, that is $\operatorname{deg}(r)=0$, so r is a constant polynomial and can be regarded as an element of F. Applying the evaluation homomorphism i_{α}, we have $p(\alpha)=i_{\alpha}(p)=i_{\alpha}(x-\alpha) i_{\alpha}(q)+i_{\alpha}(r)$. Now $i_{\alpha}(x-\alpha)=0$ and $i_{\alpha}(r)=r$. Putting this into the previous equation completes the proof.
(5) True or false:
(a) The quotient group $(\mathbb{Z} \times \mathbb{Z}) /\langle(2,4)\rangle$ is isomorphic to \mathbb{Z}.
(b) There exists a nonzero homomorphism from the group \mathbb{Z}_{33} to the $\operatorname{group} \mathbb{Z}_{20}$.
(a) False. This quotient group cannot be isomorphic to \mathbb{Z} because it contains an element of order 2 , namely the coset $(1,2)+\langle(2,4)\rangle$. This coset has order 2 because $(1,2)^{2}=(2,4)$ is an element of the subgroup $\langle(2,4)\rangle$.
(b) False. Let $\phi: \mathbb{Z}_{33} \rightarrow \mathbb{Z}_{20}$ be a homomorphism. The fundamental homomorphism theorem says that $\mathbb{Z}_{33} / \operatorname{Ker}(\phi) \simeq \operatorname{Im}(\phi)$. Since the left side is the quotient of \mathbb{Z}_{33} by a subgroup, its order must divide 33 . Since the right side is a subgroup of \mathbb{Z}_{20}, its order must divide 20 . Since the greatest common divisor of 33 and 20 is 1 , both sides must be one element groups, which means that ϕ is the zero homomorphism.

