Math 113 Midterm #2 solutions

(1) True or false:

(a) If R is an integral domain with quotient field Q then the quotient field of R[x] is isomorphic to Q[x].

(b) The group $\mathbb{Z}_4 \times \mathbb{Z}_{18}$ is isomorphic to the group $\mathbb{Z}_2 \times \mathbb{Z}_{36}$.

(a) False. Q[x] is not a field because x has no multiplicative inverse. Degree is additive under multiplication of polynomials, so there is no way to multiply the degree 1 polynomial x by another polynomial to get the degree 0 polynomial 1.

(b) True. Since 2 and 9 are relatively prime, $\mathbb{Z}_2 \times \mathbb{Z}_9 \simeq \mathbb{Z}_{18}$. Since 4 and 9 are relatively prime, $\mathbb{Z}_4 \times \mathbb{Z}_9 \simeq \mathbb{Z}_{36}$. Thus both groups are isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_9.$

(2) Let G be a group. Consider the "diagonal"

$$H = \{(x, x) \mid x \in G\} \subset G \times G.$$

H is a subgroup of $G \times G$; you don't have to prove this.

(a) Show that H is a normal subgroup of $G \times G$ if and only if G is abelian.

(b) Assuming G is abelian, show that $(G \times G)/H \simeq G$.

(a) If G is abelian, then for $(x, x) \in H$ and $(g_1, g_2) \in G \times G$, we have $(g_1, g_2)(x, x)(g_1, g_2)^{-1} = (g_1 x g_1^{-1}, g_2 x g_2^{-1}) = (x, x) \in H$, so H is normal. Conversely if H is normal, then for any $x, y \in G$ we must have $(x,e)(y,y)(x,e)^{-1} \in H$, which means that $xyx^{-1} = y$, so xy = yx, so G is abelian.

(b) Define $\phi : G \times G \to G$ by $\phi(x,y) = xy^{-1}$. Since G is abelian, ϕ is a homomorphism: $\phi((x_1, y_1)(x_2, y_2)) = \phi(x_1x_2, y_1y_2) = x_1x_2y_2^{-1}y_1^{-1} = x_1y_1^{-1}x_2y_2^{-1} = \phi(x_1, y_1)\phi(x_2, y_2)$. Now $\operatorname{Ker}(\phi) = \{(x, y) \mid xy^{-1} = e\} = \{(x, y) \mid xy^{-1} = e\}$ $\{(x,y) \mid x=y\} = H$, and ϕ is surjective since for any $x \in G$ we have x = $\phi(x, e)$. So by the fundamental homomorphism theorem, $(G \times G)/H \simeq G$.

(3a) Find all solutions to the equation $x^2 - 1 = 0$ in \mathbb{Z}_{35} . (3b) Show that if p > 2 is prime then either $2^{(p-1)/2} + 1$ or $2^{(p-1)/2} - 1$ is a multiple of p.

(a) We have $x^2 - 1 = (x+1)(x-1)$. This is zero when x = 1 or x = -1. It is also zero when x + 1 and x - 1 are two numbers whose product is a multiple of 35, i.e. when one is a multiple of 5 and the other is a multiple of 7. Listing the multiples of 5 and 7 from 0 to 35, we see that the solutions we get this way are x = 6 and x = -6.

(b) By Lagrange's theorem, the order of 2 in the group \mathbb{Z}_p^* must divide the order of the group, namely p-1, so $2^{p-1} \equiv 1 \mod p$. Thus $2^{(p-1)/2}$ is a solution to the equation $x^2 - 1 = 0$ in \mathbb{Z}_p . Since \mathbb{Z}_p is a field this equation only has the two solutions x = 1 and x = -1. Instead of the last two sentences, one can also observe that p divides the product $2^{p-1} - 1 =$ $(2^{(p-1)/2} + 1)(2^{(p-1)/2} - 1)$, so since p is prime p must divide one of the two factors.

(4a) Find the quotient and the remainder when $x^3 + 8x^2 + 7x - 1$ is divided by 4x - 1 in $\mathbb{Z}_{11}[x]$.

(4b) Prove the "remainder theorem": if F is a field, $p \in F[x]$, and $\alpha \in F$, then $p(\alpha)$ is the remainder when p is divided by $x - \alpha$. (Here $p(\alpha)$ denotes the image of p under the evaluation homomorphism $i_{\alpha} : F[x] \to F$.)

(a) Doing long division of polynomials we find that $q = 3x^2 + 10$ and r = 9. In doing this division, a key point is that in \mathbb{Z}_{11} , division by 4 is the same as multiplication by 3.

(b) By the division theorem we can write $p = (x-\alpha)q+r$ where $q, r \in F[x]$ and $\deg(r) < \deg(x-\alpha)$, that is $\deg(r) = 0$, so r is a constant polynomial and can be regarded as an element of F. Applying the evaluation homomorphism i_{α} , we have $p(\alpha) = i_{\alpha}(p) = i_{\alpha}(x-\alpha)i_{\alpha}(q) + i_{\alpha}(r)$. Now $i_{\alpha}(x-\alpha) = 0$ and $i_{\alpha}(r) = r$. Putting this into the previous equation completes the proof.

(5) True or false:

(a) The quotient group $(\mathbb{Z} \times \mathbb{Z})/\langle (2,4) \rangle$ is isomorphic to \mathbb{Z} .

(b) There exists a nonzero homomorphism from the group \mathbb{Z}_{33} to the group \mathbb{Z}_{20} .

(a) False. This quotient group cannot be isomorphic to \mathbb{Z} because it contains an element of order 2, namely the coset $(1,2) + \langle (2,4) \rangle$. This coset has order 2 because $(1,2)^2 = (2,4)$ is an element of the subgroup $\langle (2,4) \rangle$.

(b) False. Let $\phi : \mathbb{Z}_{33} \to \mathbb{Z}_{20}$ be a homomorphism. The fundamental homomorphism theorem says that $\mathbb{Z}_{33}/\operatorname{Ker}(\phi) \simeq \operatorname{Im}(\phi)$. Since the left side is the quotient of \mathbb{Z}_{33} by a subgroup, its order must divide 33. Since the right side is a subgroup of \mathbb{Z}_{20} , its order must divide 20. Since the greatest common divisor of 33 and 20 is 1, both sides must be one element groups, which means that ϕ is the zero homomorphism.