Math 113 Midterm #1 solutions

- (a) To make an injective function f: {1,2,3} → {4,5,6,7,8} there are 5 possibilities for f(1). Since f(2) must be distinct from f(1), there are only 4 possibilities for f(2). Since f(3) must be distinct from f(1) and f(2), there are 3 possibilities for f(3). The total number of possibilities is 5 ⋅ 4 ⋅ 3 = 60.
 - (b) Using the Euclidean algorithm we find

$$113 = 103 + 10,$$

$$103 = 10 \cdot 10 + 3,$$

$$10 = 3 \cdot 3 + 1.$$

Thus gcd(113, 103) = 1. Working backwards to express the gcd as a linear combination of 113 and 103, we have

$$1 = 10 - 3 \cdot 3,$$

$$3 = 103 - 10 \cdot 10,$$

$$1 = 10 - 3(103 - 10 \cdot 10) = 31 \cdot 10 - 3 \cdot 103,$$

$$10 = 113 - 103,$$

$$1 = 31(113 - 103) - 3 \cdot 103 = 31 \cdot 113 - 34 \cdot 103.$$

Thus a solution is x = -34, y = 31.

2. Reflexive: Given $x \in G$, to prove $x \sim x$ we must find $a \in G$ such that $axa^{-1} = x$. Take a = e. Then $axa^{-1} = exe^{-1} = exe = x$.

Symmetric: if $x \sim y$ then there exists a such that $axa^{-1} = y$. We must prove $y \sim x$, i.e. we must find b such that $byb^{-1} = x$. Take $b = a^{-1}$. Then $byb^{-1} = a^{-1}y(a^{-1})^{-1} = a^{-1}axa^{-1}a = x$.

Transitive: if $x \sim y$ and $y \sim z$ then we can write $axa^{-1} = y$ and $byb^{-1} = z$. We must prove that $x \sim z$, i.e. we must find c such that $cxc^{-1} = z$. Take c = ba. Then $cxc^{-1} = (ba)x(ba)^{-1} = baxa^{-1}b^{-1} = byb^{-1} = z$ so $x \sim z$.

3. (a) False. Q is not commutative since ij = k but ji = -k. However \mathbb{Z}_8 is commutative, and commutativity is a structural property.

- (b) False. Q has only two elements x with $x^2 = e$, namely 1 and -1. However D_4 has six such elements, namely the four reflections, the identity, and the 180 degree rotation. The cardinality of the set of elements with $x^2 = e$ is a structural property, since an isomorphism $G \to H$ induces an bijection from the set of elements $x \in G$ with $x^2 = e$ to the set of elements $x \in H$ with $x^2 = e$.
- 4. (a) $xy = (1\ 2)(3\ 5)(4\ 6\ 7\ 8).$
 - (b) Since disjoint cycles commute, $x^k = (1\ 2\ 3)^k (4\ 5\ 6\ 7\ 8)^k$. This is the identity whenever k is a multiple of both 3 and 5. The smallest positive integer k with this property is 15. Thus x has order 15.
- 5. (a) False. For example let $G = \mathbb{Z}$, $H_1 = \langle 2 \rangle$, $H_2 = \langle 3 \rangle$. Then $H_1 \cup H_2$ is not closed under the group operation since 2 and 3 are in $H_1 \cup H_2$ but $2 + 3 = 5 \notin H_1 \cup H_2$.
 - (b) Claim: (498) = (3). Proof: (498) ⊃ (3) since -2 · 498 = 3, and (498) ⊂ (3) since 166 · 3 = 498.
 Since 3 is a divisor of 999, the subgroup generated by 3 has order 999/3 = 333. Thus the subgroup generated by 498 has order 333. In general, if a and n are positive integers, then the subgroup of Z_n generated by [a] has order n/gcd(a, n); see the proof in section 6 of the book.