Math 113 Midterm \#1 solutions

1. (a) To make an injective function $f:\{1,2,3\} \rightarrow\{4,5,6,7,8\}$ there are 5 possibilities for $f(1)$. Since $f(2)$ must be distinct from $f(1)$, there are only 4 possibilities for $f(2)$. Since $f(3)$ must be distinct from $f(1)$ and $f(2)$, there are 3 possibilities for $f(3)$. The total number of possibilities is $5 \cdot 4 \cdot 3=60$.
(b) Using the Euclidean algorithm we find

$$
\begin{aligned}
113 & =103+10, \\
103 & =10 \cdot 10+3, \\
10 & =3 \cdot 3+1 .
\end{aligned}
$$

Thus $\operatorname{gcd}(113,103)=1$. Working backwards to express the gcd as a linear combination of 113 and 103, we have

$$
\begin{aligned}
1 & =10-3 \cdot 3 \\
3 & =103-10 \cdot 10 \\
1 & =10-3(103-10 \cdot 10)=31 \cdot 10-3 \cdot 103 \\
10 & =113-103 \\
1 & =31(113-103)-3 \cdot 103=31 \cdot 113-34 \cdot 103 .
\end{aligned}
$$

Thus a solution is $x=-34, y=31$.
2. Reflexive: Given $x \in G$, to prove $x \sim x$ we must find $a \in G$ such that $a x a^{-1}=x$. Take $a=e$. Then $a x a^{-1}=e x e^{-1}=e x e=x$.
Symmetric: if $x \sim y$ then there exists a such that $a x a^{-1}=y$. We must prove $y \sim x$, i.e. we must find b such that $b y b^{-1}=x$. Take $b=a^{-1}$. Then $b y b^{-1}=a^{-1} y\left(a^{-1}\right)^{-1}=a^{-1} a x a^{-1} a=x$.

Transitive: if $x \sim y$ and $y \sim z$ then we can write $a x a^{-1}=y$ and $b y b^{-1}=z$. We must prove that $x \sim z$, i.e. we must find c such that $c x c^{-1}=z$. Take $c=b a$. Then $c x c^{-1}=(b a) x(b a)^{-1}=b a x a^{-1} b^{-1}=$ $b y b^{-1}=z$ so $x \sim z$.
3. (a) False. Q is not commutative since $i j=k$ but $j i=-k$. However \mathbb{Z}_{8} is commutative, and commutativity is a structural property.
(b) False. Q has only two elements x with $x^{2}=e$, namely 1 and -1 . However D_{4} has six such elements, namely the four reflections, the identity, and the 180 degree rotation. The cardinality of the set of elements with $x^{2}=e$ is a structural property, since an isomorphism $G \rightarrow H$ induces an bijection from the set of elements $x \in G$ with $x^{2}=e$ to the set of elements $x \in H$ with $x^{2}=e$.
4. (a) $x y=(12)(35)(4678)$.
(b) Since disjoint cycles commute, $x^{k}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)^{k}(45678)^{k}$. This is the identity whenever k is a multiple of both 3 and 5 . The smallest positive integer k with this property is 15 . Thus x has order 15 .
5. (a) False. For example let $G=\mathbb{Z}, H_{1}=\langle 2\rangle, H_{2}=\langle 3\rangle$. Then $H_{1} \cup H_{2}$ is not closed under the group operation since 2 and 3 are in $H_{1} \cup H_{2}$ but $2+3=5 \notin H_{1} \cup H_{2}$.
(b) Claim: $\langle 498\rangle=\langle 3\rangle$. Proof: $\langle 498\rangle \supset\langle 3\rangle$ since $-2 \cdot 498=3$, and $\langle 498\rangle \subset\langle 3\rangle$ since $166 \cdot 3=498$.
Since 3 is a divisor of 999 , the subgroup generated by 3 has order $999 / 3=333$. Thus the subgroup generated by 498 has order 333 . In general, if a and n are positive integers, then the subgroup of \mathbb{Z}_{n} generated by $[a]$ has order $n / \operatorname{gcd}(a, n)$; see the proof in section 6 of the book.

