Math 113 Homework \# 5, due 3/6/03 at 8:10 AM

1. Fraleigh section 8 , problem 21; section 9 , problem 23.
2. Show that if one performs 8 perfect shuffles of a deck of cards, then this returns the cards to their original position. Note that a perfect shuffle can be represented by the following permutation $f \in S_{52}$:

$$
f(x)=\left\{\begin{array}{cl}
2 x-1, & \text { if } x \in\{1, \ldots, 26\}, \\
2(x-26), & \text { if } x \in\{27, \ldots, 52\} .
\end{array}\right.
$$

Suggestion: first express f as a product of disjoint cycles.
3. (a) Show that if $\mu=\left(x_{1} x_{2} \cdots x_{k}\right) \in S_{n}$ is a k-cycle and $\sigma \in S_{n}$ is any permutation then $\sigma \mu \sigma^{-1}$ is the k-cycle

$$
\sigma \mu \sigma^{-1}=\left(\sigma\left(x_{1}\right) \sigma\left(x_{2}\right) \cdots \sigma\left(x_{k}\right)\right) .
$$

(b) Using the above, can you guess a necessary and sufficient condition for two permutations in S_{n} to be conjugate to each other?
4. (a) Find the left and right cosets of the subgroup $H=\left\{R_{0}, F_{0}\right\}$ of D_{4}. Are they the same?
(b) Same question for $H=\left\{R_{0}, R_{2}\right\}$.

D_{4}	R_{0}	R_{1}	R_{2}	R_{3}	F_{0}	F_{1}	F_{2}	F_{3}
R_{0}	R_{0}	R_{1}	R_{2}	R_{3}	F_{0}	F_{1}	F_{2}	F_{3}
R_{1}	R_{1}	R_{2}	R_{3}	R_{0}	F_{1}	F_{2}	F_{3}	F_{0}
R_{2}	R_{2}	R_{3}	R_{0}	R_{1}	F_{2}	F_{3}	F_{0}	F_{1}
R_{3}	R_{3}	R_{0}	R_{1}	R_{2}	F_{3}	F_{0}	F_{1}	F_{2}
F_{0}	F_{0}	F_{3}	F_{2}	F_{1}	R_{0}	R_{3}	R_{2}	R_{1}
F_{1}	F_{1}	F_{0}	F_{3}	F_{2}	R_{1}	R_{0}	R_{3}	R_{2}
F_{2}	F_{2}	F_{1}	F_{0}	F_{3}	R_{2}	R_{1}	R_{0}	R_{3}
F_{3}	F_{3}	F_{2}	F_{1}	F_{0}	R_{3}	R_{2}	R_{1}	R_{0}

5. Fraleigh section 10 exercises 34, 39, 40, 44.
6. Extra credit: Show that every even permutation in A_{n} can be expressed as a product of 3 -cycles. (The 3 -cycles need not be disjoint. Also, we regard the identity as the product of zero 3 -cycles.) Suggestion: use induction on n.
7. How challenging did you find this assignment? How long did it take?
