## Math 113 Homework \# 3, due 2/13/03 at 8:10 AM

1. Prove the following part of the Chinese remainder theorem: if $b_{1}$ and $b_{2}$ are relatively prime positive integers, and if $a_{1}$ and $a_{2}$ are any integers, then there exists an integer $x$ such that $x \equiv a_{1}\left(\bmod b_{1}\right)$ and $x \equiv a_{2}\left(\bmod b_{2}\right)$.
2. Fraleigh section 3, exercises 26, 27, 30, 32 .
3. Fraleigh section 4, exercises 19, 20, 28, 41.
4. (a) Let $n>1$ be an integer and let $\mathbb{Z}_{n}^{*}$ be the set of units in $\mathbb{Z}_{n}$, i.e. elements $x \in \mathbb{Z}_{n}$ such that there exists $y \in \mathbb{Z}_{n}$ with $x y=1$. Show that $\mathbb{Z}_{n}^{*}$ (with the operation of multiplication) is a group.
(b) Make multiplication tables for $\mathbb{Z}_{8}^{*}, \mathbb{Z}_{10}^{*}$, and $\mathbb{Z}_{12}^{*}$.
(c) Show that $\mathbb{Z}_{8}^{*} \simeq \mathbb{Z}_{12}^{*}$ but $\mathbb{Z}_{8}^{*} \not 千 \mathbb{Z}_{10}^{*}$ and $Z_{10}^{*} \not 千 \mathbb{Z}_{12}^{*}$.
5. (Extra credit) Let $n>1$ be an integer and let $\theta=2 \pi / n$. Let $P$ be the regular $n$-gon with vertices $(\cos i \theta, \sin i \theta)$ for $i \in \mathbb{Z}_{n}$. The dihedral group $D_{n}$ is the symmetry group of $P$, which consists of rotations $R_{i}$ and reflections $F_{i}$ for $i \in \mathbb{Z}_{n}$. Here $R_{i}$ is the counterclockwise rotation around the origin by angle $i \theta$, and $F_{i}$ is the reflection across the line through the origin and $(\cos i \theta / 2, \sin i \theta / 2)$.

Your problem: find (and give at least some justification for) general formulas for $R_{i} R_{j}, R_{i} F_{j}, F_{i} R_{j}$, and $F_{i} F_{j}$. For example, $R_{i} R_{j}=R_{i+j}$, where the addition of indices is $\bmod n$.
6. How challenging did you find this assignment? How long did it take?

