Math 113 Homework \# 1, due 1/30/03 at 8:00 AM

This is kind of a warm-up assignment because we haven't introduced much material yet in the first two lectures.

1. Fraleigh, section 0 , exercise 12 and exercises 29-34.
2. (a) Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. Show that if $g \circ f: X \rightarrow Z$ is surjective, then g is surjective. Show that if $g \circ f$ is injective, then f is injective.
(b) Show that $f: X \rightarrow Y$ is bijective if and only if there exists $g: Y \rightarrow X$ with $g \circ f=\mathrm{id}_{X}$ and $f \circ g=\mathrm{id}_{Y}$.
(c) Show that if X and Y are finite sets with the same cardinality and $f: X \rightarrow Y$, then f is injective if and only if f is surjective.
3. Fix a positive integer n. Let us try to define multiplication $\bmod n$ by $[x][y]=[x y]$. Is this well-defined? Why or why not?
4. (a) Prove by induction on n that the sum of the first n odd positive integers is n^{2} :

$$
1+3+\cdots+(2 n-1)=n^{2}
$$

(b) Show by induction on n that if n is a nonnegative integer and x is a real number with $x \neq 1$ then

$$
1+x+x^{2}+\cdots+x^{n}=\frac{1-x^{n+1}}{1-x}
$$

Just for fun (not required), can you see the above formulas without using induction?
5. Show that for any positive integer n, a $2^{n} \times 2^{n}$ checkerboard with one square removed can be tiled by L-triominoes. (An "L-triomino" is a shape consisting of three squares joined in an 'L'-shape. To "tile" means to completely cover, using tiles that do not overlap.)
6. How challenging did you find this assignment? How long did it take?

