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The Seiberg-Witten equations are defined on any smooth 4-manifold. By
appropriately counting the solutions to the equations, one obtains smooth
4-manifold invariants. On a symplectic 4-manifold, these invariants have a
symplectic interpretation, as a count of pseudoholomorphic curves. This al-
lows us to transfer information between the smooth and symplectic categories
in four dimensions.

In the following lectures, we will try to explain this story. In the first
two lectures, we review some background from differential geometry, which
will allow us to write down the Seiberg-Witten equations at the end of the
second lecture. In the third lecture we define the Seiberg-Witten invariants
and discuss their most basic properties. In the fourth lecture we compute
the simplest of the Seiberg-Witten invariants on a symplectic 4-manifold.
In the fifth lecture we relate the remaining Seiberg-Witten invariants in the
symplectic case to pseudoholomorphic curves.
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1 Background from differential geometry

The data for the Seiberg-Witten equations are a connection A on a certain
line bundle, and a section ψ of a certain C2 bundle. In this lecture we will
review bundles and connections. We assume familiarity with the tangent
bundle and differential forms. (The material in this lecture can be found in
almost any modern book on differential geometry; see e.g. [10].)

1.1 Vector bundles

Let X be a smooth manifold. (In this lecture all spaces will be smooth
manifolds.) A vector bundle on X is essentially a family of vector spaces
parametrized by X. More precisely:

Definition 1.1 Let n ∈ {1, 2, . . .}. A (complex) vector bundle on X of
rank n is a space E with an action C × E → E of C and a surjective map
π : E → X such that:

• π commutes with the C action,

• C∗ acts freely,

• E is locally isomorphic to a product, i.e. for each x ∈ X, there is a
neighborhood U ⊂ X of x and a diffeomorphism ξ : E|U = π−1(U) →
U × Cn, such that the diagram

E|U
π

!!B
BB

BB
BB

B

ξ // U × Cn

{{wwwwwwwww

U

commutes, and such that ξ intertwines the C action with the standard
C action on Cn. (ξ is called a local trivialization.)

If n = 1, we call E a line bundle. One similarly defines a real vector bundle
by replacing C above with R. A section of E is a smooth choice of a vector
in each fiber, i.e. a smooth map s : X → E such that πs = identity. We
denote the space of sections of E by C∞(E).

3



It is a consequence of the definition that the fiber Ex of E at any x ∈ X
(that is, π−1(x)) has, in a natural way, a vector space structure of Cn. This
is why E is called a vector bundle.

In particular, it follows from the definition that the space of sections
of E forms a vector space, where (s1 + s2)(x) = s1(x) + s2(x), and where
λ · s1(x) = mλ(s1(x)) for λ ∈ C. (We sometimes use mλ to denote the action
of λ on E.) In this regard, note that there is a canonical section, the “zero
section: 0 : X → E which is a bijection onto the image of multiplication by
0 on E. Note that if s is a section and f : X → C a smooth function, then
f · s is a section.

One can make new vector bundles out of old ones by analogy with the
standard operations on vector spaces. For example if E,F are vector bundles
over X, then we can define Hom(E,F ) to be the set of (x, h) such that x ∈ X
and h : Ex → Fx commutes with the C action. Likewise, the dual bundle E∗

consisting of (x, h) such that h : Ex → C and h commutes with the C action.
We also have the tensor product E ⊗ F = Hom(E,F ∗).

A fundamental example of a (real) vector bundle is the cotangent bundle
T ∗X → X. We let Ωk(X) = C∞(∧kT ∗X) denote the space of differential
forms on X. If E is another vector bundle on X, we can consider “E-valued
differential forms”, namely Ωk(X,E) = C∞(∧kT ∗X ⊗ E).

One more basic construction is the following.

Definition 1.2 If π : E → X is a vector bundle and f : Y → X is a map,
the pullback bundle f ∗E → Y is the fiber product of π and f ,

f ∗E
f̃−−−→ Ey yπ

Y
f−−−→ X,

i.e. f ∗E = {(y, e) | y ∈ Y, e ∈ Ef(y)}, and the projection f ∗E → Y sends
(y, e) 7→ y.

There is a natural map f̃ : f ∗E → E defined by

f̃(y, e) = e.

For each y ∈ Y , f̃ restricts to an isomorphism (f ∗E)y → Ef(y).
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1.2 Connections

In general, there is no canonical isomorphism of a fiber of a vector bundle
with Cn. Let us explore what this means at the infinitesimal level, i.e. at the
level of tangent bundles. If π : E → X is a vector bundle, there is an exact
sequence of (real) vector bundles on the space E,

0 −−−→ π∗E
ı−−−→ TE

π∗−−−→ π∗TX −−−→ 0. (1.1)

In this sequence, π∗E is the bundle whose fiber over e ∈ E is the vector space
in which e lives, namely Eπ(e). There is a natural map ı from π∗E to the
tangent bundle TE, whose image consists of the “vertical” tangent vectors
in E. (The map ı sends v ∈ E to the tangent vector d

dt

∣∣
t=0

(e+ tv).) And π∗
is the derivative of π.

This sequence does not have a canonical splitting. In other words, there
is no canonical way to choose a “horizontal” subspace of TE complementary
to the vertical subspace π∗E. However we can choose a splitting; and if
the splitting satisfies certain compatiblity conditions, we call the splitting a
connection. (Such a splitting “connects” the fibers over nearby points of X.)
We impose the compatibility condition as follows.

Definition 1.3 A connection on E is a map A : TE → π∗E, i.e. a 1-form
on E with values in π∗E, such that:

• A is a splitting of the exact sequence (1.1), i.e. A◦ ı = 1 : π∗E → π∗E.

• A commutes with multiplication by scalars, i.e. if λ ∈ C and mλ : E →
E is multiplication by λ, then m∗

λA = λ ·A.

It is sometimes useful to write a connection in terms of a local trivializa-
tion ξ : E|U → U ×Cn. Let ξ1, . . . , ξn be the n corresponding C-valued func-
tions on E|U , i.e. ξ(e) = (π(e), (ξ1(e), . . . , ξn(e))). The connection 1-form A
now takes values in Cn; let Aa be the coordinates, i.e. A = (A1, . . . ,An).
Then we can write

Aa = dξa + Aabξb. (1.2)

Here Aab is a 1-form pulled back from U ; we can think of A as an End(Cn)-
valued 1-form on U . (In (1.2) and elsewhere, repeated indices are summed.)

Exercise 1.4 Show that any connection A over U can be written in the
form (1.2), with Aab pulled back from U . Show conversely that for any Aab

pulled back from U , the 1-form A defined by (1.2) is a connection for E|U .
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Exercise 1.5 Show that the space of all connections on E is an affine space
over Ω1(X,End(E)). In other words, if A is a connection, then a 1-form A′ ∈
Ω1(E, π∗E) is also a connection if and only if there exists α ∈ Ω1(X,End(E))
such that (A′ −A)e = (π∗α)(e).

A connection gives us a way to differentiate sections of E.

Definition 1.6 Given a connection A, we define the covariant derivative

∇A : C∞(E)→ C∞(T ∗X ⊗ E)

as follows. If ψ ∈ C∞(E), then ∇Aψ : TxX → Ex is the composition

TxX
ψ∗−−−→ Tψ(x)E

A−−−→ (π∗E)ψ(x)
π̃−−−→ Ex.

Here is another way to understand this definition. The “horizontal” sub-
space of TE is Ker(A). There is a map H : (π∗TX)e → TeE which sends
a tangent vector v ∈ TX to its horizontal lift at e, namely the unique
horizontal vector h ∈ TeE such that π∗h = v. Given a section ψ : X → E
and v ∈ TxX, we can compare the derivative of ψ along v, namely ψ∗v, with
the horizontal lift of v, namely Hv. The difference ψ∗v − Hv is a vertical
vector in π∗E, and this is the covariant derivative, i.e.

∇Aψ(v) = π̃(ψ∗v −Hv).

So the covariant derivative measures the deviation of a section from the
horizontal subspace.

Exercise 1.7 1. Check that the map ∇Aψ : TX → E is linear.

2. Show that ∇A(ψ1 + ψ2) = ∇A(ψ1) +∇A(ψ2).

3. Prove the Leibniz rule ∇A(fψ) = df ⊗ ψ + f∇Aψ.

If Aab is the matrix for A in a local trivialization as in (1.2), and if ψ is
a section over U , which we think of as a Cn-valued function on U , then

(∇Aψ)a = dψa + Aabψb.
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1.3 Metrics

We will need to consider vector bundles with a bit more structure on them.

Definition 1.8 Let E → X be a complex vector bundle. A metric on E is
a map g : E ⊗ E → C such that, if 〈v, w〉 denotes g(v, w), then:

• g is antilinear in the first variable and linear in the second variable, i.e.
〈λv, w〉 = λ〈v, w〉 and 〈v, λw〉 = λ〈v, w〉.

• 〈w, v〉 = 〈v, w〉.

• g is positive definite, i.e. 〈v, v〉 > 0 for all v 6= 0.

If E is a real vector bundle, a metric on E is defined the same way, but
without the complex conjugation.

Definition 1.9 If E is a vector bundle with a metric g, a connection A on
E is compatible with the metric g if for any two sections ψ, η of E, we have
an equality of 1-forms

d〈ψ, η〉 = 〈∇Aψ, η〉+ 〈ψ,∇Aη〉.

Exercise 1.10 Let E be a complex (resp. real) vector bundle with a metric.
Choose a local trivialization sending the metric on E to the standard metric
on Cn (resp. Rn). Show that A is compatible with the metric if and only
if the matrix-valued 1-form A from equation (1.2) takes values in the Lie
algebra Lie(U(n)) (resp. Lie(SO(n))).

A Riemannian metric on X is a metric g on the cotangent bundle
E = T ∗X. Given g, there is a unique connection Γ on T ∗X such that:

• Γ is compatible with g,

• Γ is torsion-free, i.e. the composition

Ω1(X)
∇Γ−−−→ C∞(X,T ∗X ⊗ T ∗X)

anti-sym.−−−−−→ Ω2(X)

is equal to the exterior derivative d. (Note that this condition only
make sense for connections on E = T ∗X.)

This Γ is called the Levi-Civita connection.
We can compute with Γ as follows. At any point p ∈ X, one can choose

local coordinates x1, . . . , xn centered at p such that 〈dxj, dxk〉 = δjk+O(|x|2).
Then ∇Γ(dxj) = 0 at p.
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1.4 Curvature

The curvature of a connection is a measure of the nonintegrability of the
horizontal distribution in E; in other words it is an obstruction to finding
nontrivial local sections of E with covariant derivative zero.

Definition 1.11 If A is a connection on E, the curvature

FA ∈ Ω2(X,End(E))

is defined as follows. If v, w are two vectors in TxX, extend them to local
vector fields. Let Hv,Hw be the horizontal lifts in TE. If e ∈ E, then

FA(v, w)(e) = π̃(−Ae([Hv,Hw])).

In local coordinates,

F ab
A = dAab + Aac ∧ Acb. (1.3)

Exercise 1.12 Check that the definition of curvature makes sense, i.e. FA

is an honest tensor which does not depend on the choice of extension to local
vector fields, and prove equation (1.3).

We will need the following facts for the computations in the third and
fourth lectures.

Exercise 1.13 Choose local coordinates x1, . . . , xn on X. Let ∇i denote the
dxi component of ∇A. Show that the dxi ∧ dxj component of FA equals the
commutator [∇i,∇j].

Exercise 1.14 1. Show that one can extend the covariant derivative to
a map

∇A : Ωk(X,E)→ Ωk+1(X,E)

by requiring that

∇A(α⊗ s) = dα⊗ s+ (−1)kα ∧∇As.

for s ∈ C∞(E) and α ∈ Ωk(X).

2. Show that FA = ∇2
A : C∞(E)→ Ω2(X,E).
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1.5 Self-dual two-forms

In the four-dimensional world, there are two special vector bundles which we
will need. If X is a smooth 4-manifold with an orientation and a Riemannian
metric, the 2-forms have a decomposition into two R3-bundles

Λ2T ∗X = Λ2
− ⊕ Λ2

+

constructed as follows. There is a map ∗ : Λ2 → Λ2 defined by

ω ∧ ∗η = g(ω, η) vol,

where g is the induced metric on Λ2 and vol ∈ Ω4(X) is the volume form,
defined as follows: if e1, . . . , e4 is an oriented orthonormal basis for T ∗X at
a point x ∈ X, then vol(x) = e1 ∧ e2 ∧ e3 ∧ e4.

We have ∗2 = 1, and we define Λ2
± to be the ±1 eigenspace. Explicitly,

if e1, . . . , e4 is a basis as above, then Λ2
± is spanned by e1 ∧ e2 ± e3 ∧ e4,

e1 ∧ e3 ∓ e2 ∧ e4, and e1 ∧ e4 ± e2 ∧ e3. Sections of Λ2
+ (resp. Λ2

−) are
called self-dual (resp. anti-self-dual) 2-forms. Note that switching the
orientation on X interchanges Λ2

+ and Λ2
−, while deforming the metric moves

Λ2
± continuously inside Λ2.

2 Spin and the Seiberg-Witten equations

As we said at the beginning of the last lecture, the data for the Seiberg-
Witten equations are a connection on a certain line bundle and a section of a
certain C2 bundle. Having explained connections in the last lecture, we now
need to specify the line bundle and the C2 bundle. At the end of the lecture
we will finally be able to write down the Seiberg-Witten equations.

2.1 Principal bundles and associated bundles

We will use the following general procedure for constructing interesting vector
bundles.

Definition 2.1 Let X be a smooth manifold and G a Lie group. A prin-
cipal G bundle on X is a manifold P , a surjective map π : P → X, and a
(right) G action on P such that:
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• The G action respects π, i.e. the diagram

P ×G //

##GG
GG

GG
GG

G P

π

��
X

commutes.

• The G action is free and transitive on each fiber.

• Over open balls U ⊂ X there exist G-equivariant, fiber-preserving dif-
feomorphisms

P |U ' U ×G.

The canonical example is the frame bundle Fr of a smooth manifold X.
If X is n-dimensional, oriented, and has a Riemannian metric, then Fr is a
principal SO(n) bundle on X. The fiber over x ∈ X consists of all linear
maps Rn → TxX sending the standard metric and orientation on Rn to the
metric and orientation on TxX. The group SO(n) acts by composition on
the right.

Out of a principal bundle we can construct many vector bundles as follows.
Let V be a vector space and ρ : G → Aut(V ) a representation of G. We
define the associated vector bundle

VP =(P × V )/ ∼,
(pg, v) ∼ (p, ρ(g)v).

Exercise 2.2 1. VP is a vector bundle whose fibers are isomorphic to V .

2. If V = Rn is the fundamental representation of SO(n), then VFr = TX.

3. A G-invariant metric on V gives rise to a metric on VP .

4. The associated bundle construction commutes with linear algebra, i.e.
(V ⊗W )P = VP ⊗WP , etc.

The material in this section can also be found in almost any modern
differential geometry book.
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2.2 SpinC structures

From the above exercise we see that starting with the frame bundle and
taking the vector bundles associated to the exterior powers of the dual fun-
damental representation of SO(n), we obtain the bundles of differential forms.
Now for n ≥ 3, π1 SO(n) = Z2, and we denote the connected double cover
of SO(n) by Spin(n). It turns out that there are representations of Spin(n)
which do not descend to SO(n). So, if we could somehow “lift” Fr to a prin-
cipal Spin(n) bundle, we would get more associated vector bundles. This
motivates the following definition:

Definition 2.3 A spin structure on an oriented Riemannian manifold X
is a principal Spin(n)-bundle F̂ on X together with a map F̂ → Fr such that
the following diagram commutes:

F̂ × Spin(n) //

��

F̂

��

��

Fr× SO(n) // Fr

��
X

Not every 4-manifold has a spin structure. For example S4 and S2 × S2

have spin structures, but there does not exist any spin structure on CP 2.
However a certain weak version of a spin structure exists more often. Define

SpinC(n) = (Spin(n)× U(1))/Z2.

(Here Z2 acts on the first factor by the covering transformation of π :
Spin(n)→ SO(n) and on the second factor by multiplication by −1.) There
is a well defined map SpinC(n)→ SO(n) sending (x, λ) 7→ π(x).

Definition 2.4 A SpinC structure is like a spin structure, but using SpinC(n)
instead of Spin(n). That is, a SpinC structure is a principal SpinC bundle, F̂ ,
whose projection π to X factors through Fr to give, fiberwise, the standard
group homomorphism.

Note that although the definition of spin (resp. SpinC) structure uses a
Riemannian metric, in fact for any two metrics there is a canonical identifi-
cation between the spin (resp. SpinC) structures for one metric and the spin
(resp. SpinC) structures for the other metric.
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Theorem 2.5 On any oriented 4-manifold X, SpinC structures exist, and
the set SX of SpinC structures on X is an affine space modelled on H2(X; Z).

This is slightly nontrivial, and we will not prove it here. (Higher dimen-
sional manifolds do not always have SpinC structures, although when they
do, they always form an affine space over H2.)

2.3 Some group theory

To see what associated vector bundles we can get from a SpinC structure on a
4-manifold, we now need to discuss the representation theory of SpinC(4). We
will give explicit four-dimensional constructions, even though some of these
constructions have higher-dimensional generalizations. Some more general
theory is discussed in [1, 2, 11, 13, 8].

We want to explain the following fundamental diagram:

U(2)
s−←−−− SpinC(4)

s+−−−→ U(2)y y y
SO(3)

ρ−←−−− SO(4)
ρ+−−−→ SO(3).

(2.1)

(For us, the most important maps in the diagram are the three maps from
SpinC(4).) Recall that

SU(2) =

{(
a −b
b a

)
: |a|2 + |b|2 = 1

}
.

We can define an isomorphism

SO(4) ' (SU(2)× SU(2))/± 1 (2.2)

as follows. Identify

R4 '
{(

a −b
b a

)
: a, b ∈ C = R2

}
. (2.3)

Then (h−, h+) ∈ SU(2)× SU(2) acts on x ∈ R4 by

(h−, h+) · x = h−xh
−1
+ .

Exercise 2.6 Check that this gives an isomorphism as in (2.2).
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We then have Spin(4) ' SU(2)× SU(2) and

SpinC(4) ' (SU(2)× SU(2)× U(1))/± 1.

Observe that
U(2) = (SU(2)× U(1))/± 1.

We can then define the two maps s+, s− : SpinC(4) → U(2) in the diagram
(2.1) by

s±[h−, h+, λ] = [h±, λ].

To explain the map U(2)→ SO(3), note that there is an isomorphism

SO(3) ' SU(2)/± 1 (2.4)

defined as follows: identify

R3 '
{(

a −b
b a

)
: Re(a) = 0

}
,

and let h ∈ SU(2) act on x ∈ R3 by

h · x = hxh−1.

Exercise 2.7 Check that this gives an isomorphism as in (2.4).

Now the map U(2)→ SO(3) sends [h, λ] 7→ ±h.
Finally, the fundamental representation of SO(4) on R4 induces an or-

thogonal representation of SO(4) on Λ2R4 which preserves the decomposition
Λ2R4 = Λ2

−R4⊕Λ2
+R4. The maps ρ−, ρ+ are given by the action of SO(4) on

Λ2
−R4,Λ2

+R4 respectively.

Exercise 2.8 Show that if appropriate identifications of Λ2
−R4 and Λ2

+R4

with R3 are chosen, then the diagram (2.1) commutes.

There is one more important map, not on the diagram:

SpinC(4) −→ U(1),

[h−, h+, λ] 7−→ λ2.
(2.5)
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2.4 The spinor bundles

Let X be an oriented Riemannian 4-manifold with a SpinC structure. As-
sociated to the representations s+, s− of SpinC(4) are C2 bundles S+, S−.
Sections of these bundles are sometimes called spinors. Since the represen-
tations s+, s− are unitary, the spinor bundles S+, S− come with Hermitian
metrics.

An important related bundle is the (Hermitian) line bundle L associated
to the representation (2.5).

Exercise 2.9 Show that Λ2S± = L. (This follows from a certain equality of
representations of SpinC(4).)

2.5 Clifford multiplication

The spinor bundles are distinguished from arbitrary vector bundles by their
relation with the frame bundle. This relation manifests itself in the existence
of Clifford multiplication, a map

cl : T ∗X → End(S+ ⊕ S−)

with the following properties:

• For v ∈ T ∗X, cl(v) sends S+ to S− and vice-versa.

• cl(v)2 = −|v|2.

• If |v| = 1 then cl(v) is unitary.

We define cl : T ∗X ⊗ S+ → S− as follows. We begin by defining a map
R4 × C2 → C2: using matrix multiplication with the identification (2.3), we
map (x, ψ) 7→ xψ. To show that this induces a map T ∗X ⊗ S+ → S−, by
the definition of associated vector bundle, we have to check that it commutes
with the representations of SpinC(4), i.e. that for [h−, h+, λ] ∈ SpinC(4),

(h−xh
−1
+ )(h+λψ) = h−λxψ.

This clearly holds. We define cl : T ∗X ⊗ S− → S+ similarly: this time the
map R4 × C2 → C2 sends (x, ψ) 7→ −xtψ.

If α is a 1-form and ψ is a spinor then the notations cl(α)ψ, cl(α ⊗ ψ),
α · ψ all indicate Clifford multiplication by α on ψ.
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Remark 2.10 A SpinC structure is actually equivalent to the bundle S =
S−⊕S+ together with the Clifford action. From this point of view it easy to
describe the H2(X; Z) action on SX : an element α ∈ H2(X; Z) sends S to
S ⊗ E, where E is the line bundle with c1(E) = α.

Digression: Recall that if E is a line bundle on X, the first Chern class
c1(E) ∈ H2(X; Z) is (at least if X is a closed oriented manifold) the Poincaré
dual of the zero set of a generic section of E. On any X, c1 gives a bijection
between the set of isomorphism classes of line bundles on X and H2(X; Z).

Exercise 2.11 (Chern-Weil theory) Prove: If A is a connection on a line
bundle E, then dFA = 0 and the cohomology class [FA] equals −2πic1(E).

2.6 The spin connection

Let A be a connection on L compatible with the metric. This A induces a
“SpinC connection” A on S+ (and S− too).

To really explain this requires a bit more background than we have given
so far. But the idea, abstractly, is that a connection on a principal G bundle
P is a 1-form with values in Lie(G), the Lie algebra of G, satisfying certain
conditions, and this induces a connection on every associated vector bundle.
So to define a connection on S+ it is enough to construct a connection on
the principal SpinC(4) bundle F̂ . Now the maps

SpinC(4)

yysssssssss

$$JJJJJJJJJ

SO(4) U(1)

defined previously induce an isomorphism of Lie algebras

Lie(SpinC(4)) ' Lie(SO(4))⊕ Lie(U(1)). (2.6)

If L is the principal U(1) bundle corresponding to L, then we have maps

F̂

����
��

��
��

��?
??

??
??

?

Fr L.
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The Levi-Civita connection gives a Lie(SO(4))-valued 1-form on Fr, and the
connection A gives a Lie(U(1))-valued 1-form on L. Now pull these back to
F̂ via the above maps, add them, and apply the isomorphism (2.6) to get
the required 1-form on F̂ .

Explicitly, if X is Euclidean space, with F̂ the trivial SpinC(4) bundle, S+

the trivial C2 bundle, and L the trivial line bundle, then the connection A is
an imaginary-valued 1-form Ajdx

j (imaginary-valued, not C-valued, because
the connection is compatible with the metric), and

∇A = dxj ⊗ (∂j +
1

2
Aj)

acting on C2-valued functions. (The factor of 1
2

comes from the squaring of λ
in the map (2.5).) Note in particular that the spin connection is compatible
with the metric on S+.

Exercise 2.12 Show that ∇A is a module derivation: if α is a 1-form and
ψ is a section of S+ ⊕ S− then

∇A(α · ψ) = (∇Γα) · ψ + α · ∇Aψ (2.7)

in Ω1(X,S+ ⊕ S−). Here Γ is the Levi-Civita connection.

2.7 The Dirac operator

Definition 2.13 If A is a compatible connection on L, the Dirac operator
DA is the composition

C∞(S+)
∇A−−−→ C∞(T ∗X ⊗ S+)

cl−−−→ C∞(S−).

In the local model described above,

DA =

(
∇1 + i∇2 −∇3 + i∇4

∇3 + i∇4 ∇1 − i∇2.

)
where ∇j = ∂j +

1
2
Aj. If we introduce complex coordinates z = x1 + ix2, w =

x3 + ix4 and let ∇z = 1
2
(∇1 − i∇2), etc., then

DA

(
a
b

)
= 2

(
∇za−∇wb
∇wa+∇zb

)
. (2.8)
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2.8 The Seiberg-Witten equations

Let X be a smooth oriented Riemannian 4-manifold with a SpinC structure.
Fix a self-dual 2-form µ. The Seiberg-Witten equations are

DAψ = 0,

F+
A = q(ψ) + iµ

where A is a compatible connection on L and ψ is a section of S+.
Here F+

A is the self-dual component of FA, which is an imaginary-valued
2-form. Also

q : S+ → iΛ2
+T

∗X

is a quadratic form defined as follows. We extend Clifford multiplication to
a map Λ2 → End(S+) by defining

cl(v ∧ w) =
1

2
(cl(v) cl(w)− cl(w) cl(v)). (2.9)

We extend complex linearly to Λ2 ⊗ C and restrict to get a map

cl+ : Λ2
+ ⊗ C→ End(S+).

We then define
q(ψ) = cl†+(ψ ⊗ ψ†).

Let’s work out the second of the Seiberg-Witten equations in our local
model. If {e1, . . . , e4} is the standard basis for R4 then

cl+(e1 ∧ e2 + e3 ∧ e4) =

(
−2i

2i

)
, (2.10)

cl+(e1 ∧ e3 − e2 ∧ e4) =

(
2

−2

)
,

cl+(e1 ∧ e4 + e2 ∧ e3) =

(
−2i

−2i

)
.

If ψ =

(
a
b

)
then ψ ⊗ ψ† =

(
|a|2 ab
ab |b|2

)
and thus

q

(
a
b

)
=i(|a|2 − |b|2)(e1 ∧ e2 + e3 ∧ e4) + 2i Im(ab)(e1 ∧ e3 − e2 ∧ e4)

+ 2iRe(ab)(e1 ∧ e4 + e2 ∧ e3).
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Let F ′ij denote the ei ∧ ej component of FA − iµ. Then the second Seiberg-
Witten equation becomes

F ′12 + F ′34 = 2i(|a|2 − |b|2),
F ′13 − F ′24 − i(F ′14 + F ′23) = 4ab.

(2.11)

Remark 2.14 Each paper on Seiberg-Witten theory seems to have a slightly
different version of these equations. This is due to different conventions
for Clifford multiplication and things of this nature. For example, some
authors define q using the inverse of cl+ instead of the adjoint, which makes
their q half as large as ours. The conventions in different papers should be
isomorphic under appropriate rescaling.

Remark 2.15 The Seiberg-Witten equations were first written down by
Witten [20]. See [9, 13, 8] for more details.

3 The Seiberg-Witten invariants

Let X be a closed oriented smooth 4-manifold. Let g be a Riemannian metric
on X and let µ be a self-dual 2-form. Let s ∈ SX be a SpinC structure and
let S+, S−, L be the corresponding vector bundles. If A is a connection on
L and ψ is a section of S+, then (A,ψ) satisfy the Seiberg-Witten equations
when

F(A,ψ) =

(
DAψ

F+
A − q(ψ)− iµ

)
vanishes. Let us introduce

ms,g,µ = {(A,ψ) : F(A,ψ) = 0}

to denote the space of solutions of the Seiberg-Witten equations. In this
lecture we will discuss how to get information about X by studying topo-
logical properties of ms,g,µ that do not depend on g and µ. This information
constitutes the Seiberg-Witten invariants of X. For more details on the con-
struction of these invariants, see [13, 8].

3.1 Gauge transformations

To begin with, the space m (we usually suppress the subscripts s, g, µ) has an
infinite-dimensional group action on it, which we want to mod out by to get
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a finite dimensional space. The group in question is C∞(X,S1). A function
h : X → S1 (a gauge transformation) acts on m by

h(A,ψ) = (A− 2h−1dh, hψ).

Exercise 3.1 1. Check that this action sends m to itself.

2. Show that this action is free, except that a point with ψ ≡ 0 has
stabilizer S1.

Define
M = m/C∞(X,S1),

M0 = m/{φ ∈ C∞(X,S1) : φ(∗) = 1}.

Here ∗ ∈ X is some base point. The group {φ ∈ C∞(X,S1) : φ(∗) = 1} of
based gauge transformations always acts freely on m, so the space M0 is a
bit more likely thanM to be nonsingular.

We topologize these spaces as follows. We topologize the set of all pairs
(A,ψ) (not necessarily satisfying the Seiberg-Witten equations) with the C∞

Frechet topology. We give m the subspace topology, and we then give M
andM0 the quotient topology.

3.2 Basic properties of the moduli space

We need the following notation. There is a quadratic form Q on H2(X; R)
given by Q(α, β) =

∫
X
α∧β ∈ R. Often we write α ·β instead of Q(α, β). We

define b2+ (resp. b2−) to be the dimension of a maximal positive definite (resp.
negative definite) subspace of H2(X; R). Also bi denotes dimH i(X; R). (The
numbers bi and b2± and the quadratic form Q depend only on the homotopy
type of X.)

Fix a SpinC structure s. The moduli spaces M, M0 have the following
basic properties.

Proposition 3.2 (a) M is always compact.

(b) For generic µ (if g is fixed),M0 is a smooth finite dimensional manifold
with a C∞ circle action. If b2+ > 0, then for generic µ, M is smooth
and M0 →M is a principal S1 bundle.
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(c) For generic µ,

dim(M) = b1 − 1− b2+ +
c21 − τ

4
. (3.1)

Here τ = b2+−b2− is the signature of X, c1 = c1(L), and c21 = Q(c1, c1).

(d) M is orientable (for generic µ). Moreover there is a canonical bijec-
tion between orientations of M and orientations of the vector space
H0(X; R)⊕H1(X; R)⊕H2

+(X; R), where H2
+(X; R) is a maximal pos-

itive definite subspace for Q.

(e) If (g0, µ0) and (g1, µ1) are generic, then for a generic path (gt, µt) con-
necting them, W 0 = {t,M0

gt,µt
} is a smooth compact oriented manifold

with boundary −M0
0 +M0

1. If b2+ > 1, we can choose the path so that
W = {t,Mgt,µt} is also smooth and ∂W = −M0 +M1.

The compactness property (a) is remarkable for two reasons. First, there
is no a priori reason to expect compactness in a situation like this. For exam-
ple, if we change q to −q in the second of the Seiberg-Witten equations, then
compactness will fail. Second, one might have previously thought that an
equation with a compact moduli space would not contain interesting topolog-
ical information. For example, the noncompactness of the moduli spaces for
the older Yang-Mills equations played a key role in the proof of Donaldson’s
first theorem (which says that if Q is positive definite or negative definite
then Q : H2(X; Z) → Z can be diagonalized over the integers, which is a
very strong restriction on Q). We will outline the proof of compactness later
in this lecture.

On the other hand, properties (b)–(e) follow from standard machinery.
This is because the deformation complex for the Seiberg-Witten equations
(i.e. the linearization of the equations, which defines T(A,ψ)M) is elliptic, and
there is a standard package for dealing with equations of this type. Another
example of an elliptic equation is the equation for pseudoholomorphic curves,
for which analogues of properties (b)–(e) are proved using similar techniques.

In particular, the dimension formula (c) is proved using the Atiyah-Singer
index theorem. Property (d) is proved using the index theorem for families.
The rough idea is that the derivative of the Seiberg-Witten equations is a
family of operators parametrized byM, and one applies the theorem to this
family. Properties (b) and (e) are proved using the Sard-Smale theorem,
which is a basic tool for proving infinite-dimensional transversality results.
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These proofs can be found in, e.g., [13, 8]. Even so, Proposition 3.2 was
understood by Witten [20]. In particular, Witten has a proof of compactness.

3.3 Why the conditions on b2+?

If M0 is smooth, then M = M0/S1 will also be smooth provided that S1

acts freely, i.e. as long as there are no solutions (A,ψ) to the Seiberg-Witten
equations with ψ ≡ 0. (As a throwback to Yang-Mills theory, one might call
such a solution reducible.) If ψ ≡ 0 then the Seiberg-Witten equations read

F+
A = iµ. (3.2)

Let H2 be the space of harmonic 2-forms on X. Recall the Hodge decom-
position

Ω2 = H2 ⊕ dΩ1 ⊕ ∗dΩ1.

Let h : Ω2 → H2 be the projection.

Exercise 3.3 1. Equation (3.2) has a solution A if and only if

h(F+
A ) = h(iµ).

2. h(F+
A ) is the self-dual part of the harmonic representative of −2πic1(L),

and hence depends only on L.

From this exercise we see that reducibles exist if and only if h(iµ) equals
a certain invariant of L in the space H2

+ of harmonic self-dual 2-forms. Since
dim(H2

+) = b2+, this is a codimension b2+ condition on µ, at least at the
level of heuristic dimension counting. So if b2+ > 0, then for generic µ we
expect no reducibles, and if b2+ > 1 then we expect no reducibles for generic
1-parameter families of µ.

3.4 Outline of the proof of compactness

The outline that follows is based on arguments in [9]. The key to compactness
is the following a priori estimate:

Lemma 3.4 [9] If F(A,ψ) = 0 (and ψ is not identically zero), then

|ψ|2 ≤ max
X

(
−s
2

+ 2|µ|
)

(3.3)

at every point in X.
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Here s is the scalar curvature of the Riemannian metric on TX. (With
respect to a local orthonormal frame, the curvature of the Levi-Civita con-
nection is a tensor with components Rij

kl, antisymmetric in (i, j) and also in
(k, l). Then s =

∑
i,j R

ij
ij . For example, the scalar curvature of the round

metric on S4 is 12.)
To prove this lemma we need the following background:

Exercise 3.5 1. Prove the Bochner-Weitzenböck formula:

D†
ADA = ∇†A∇A +

s

4
+

1

2
cl(FA)

as operators on C∞(S+ ⊕ S−). (The curvature terms arise from com-
mutators of covariant derivatives as in Exercise 1.13.)

2. Show that if ψ is a section of S+ then

D†
ADAψ =

(
∇†A∇A +

s

4
+

1

2
cl+(F+

A )

)
ψ. (3.4)

Remark 3.6 It turns out that D†
A = DA. So the Bochner-Weitzenböck

formula says that D2
A equals the “covariant Laplacian” ∇†A∇A, modulo lower

order terms. This is basically the property that Dirac was looking for when
he defined the Dirac operator, and this requirement naturally leads to the
notion of Clifford multiplication. (See [3].)

Proof of Lemma 3.4. Choose a point in X at which |ψ|2 is maximized. Then

4|ψ|2 ≥ 0

at this point. (Here 4 = dd∗.) Compatibility of A with the metric implies

4|ψ|2 = 2 Re〈∇†A∇Aψ, ψ〉 − 2|∇Aψ|2

≤ 2 Re〈∇†A∇Aψ, ψ〉.

Plugging both Seiberg-Witten equations into the Bochner-Weitzenböck for-
mula (3.4) gives

0 = ∇†A∇Aψ +
s

4
ψ +

1

2
cl+(q(ψ) + iµ)ψ.
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Putting this into the inequalities above and using the definition of q we get

0 ≤ 2 Re

〈(
−s
4
− 1

2
cl+(cl†+(ψ ⊗ ψ†) + iµ)

)
ψ, ψ

〉
.

Now cl+ : Λ2
+ → End(S+) is injective and multiplies lengths by 2, and its

image consists of the traceless endomorphisms. It follows that

cl+(cl†+(ψ ⊗ ψ†)) = 2

(
ψ ⊗ ψ† − 1

2
|ψ|2

)
.

Putting this into the inequality above we get

0 ≤
(
−s
2
− |ψ|2 + 2|µ|

)
|ψ|2

at a point where |ψ|2 is maximized. This implies the a priori estimate (3.3).
2

Starting from this, the idea of the proof of compactness is to use “boot-
strapping” to get bounds on all the higher derivatives of A and ψ. Schemat-
ically, the Seiberg-Witten equations are of the form

D
(
A
ψ

)
=

(
ψ2

Aψ

)
+ smooth (3.5)

where D is a certain linear combination of derivatives. By this equation, the
bound on ψ2 gives a bound on certain linear combinations of the derivatives
of A and ψ. If these bounds imply bounds on all derivatives of A and ψ, then
(3.5) can be differentiated to obtain estimates for the second derivatives of
A and ψ in terms of the estimates for the first derivatives. Repeating this
procedure over and over gives bounds on all higher derivatives. Compactness
then comes from the Arzela-Ascoli theorem. Thus the key is whether the
bounds for the linear combinations of derivatives in (3.5) give bounds on all
derivatives. This turns out to be the case, as the Seiberg-Witten equations
are elliptic after gauge fixing (which we will not discuss).

3.5 The Seiberg-Witten invariant

Assume b2+(X) > 1 and µ is generic. Suppose also that we have fixed an
orientation of the vector space H0(X; R)⊕H1(X; R)⊕H2

+(X;R).
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Definition 3.7 Using the basic properties of the moduli space in Proposi-
tion 3.2, we define the Seiberg-Witten invariant

SWX : SX → Z

as follows. If b2+ − b1 is odd, it turns out (using topological facts about the

intersection form Q) that the dimension of the moduli space b1−1−b2++
c21−τ

4

is an even integer 2d. With this understood, set:

• SWX = 0 if b2+ − b1 is even.

• For a SpinC structure s, if d < 0 then SWX(s) = 0.

• If d = 0, then M is a finite set of points, and the orientation assigns
an element of {±1} to each point. Set SWX(s) =

∑
M±1.

• If d > 0 then M is a smooth, oriented 2d dimensional compact mani-
fold. Set SWX(s) =

∫
M ed, where e ∈ H2(M; Z) is the first Chern class

ofM0 →M (more precisely the first Chern class of the associated line
bundle (M0 × C)/S1).

The following are some “formal” properties of SW which can be proved
more or less directly from the definition, and the basic properties listed in
Proposition 3.2. (See e.g. [13, 8].)

Theorem 3.8 (a) If b2+(X) > 1, then SWX(s) depends only on s and gives
a diffeomorphism invariant SWX : SX → Z.

(b) SWX(s) = 0 for all but finitely many s.

(c) SWX#CP 2 contains the same information as SWX . (There is a blowup
formula which we will not give here.)

(d) If X = Y#Z and b2+(Y ), b2+(Z) > 0 then SWX ≡ 0. (This does not

contradict (c) because b2+(CP 2) = 0.)

(e) There is a charge conjugation involution s 7→ s on the set of SpinC

structures (which sends c1(L) to −c1(L)), and SW(s) = ± SW(s).

(Note that Y#Z is the connect sum of Y and Z. It is obtained by cutting
out small balls in Y and Z and gluing the results together along the boundary
spheres. The invariants b2+, b

1 are additive under this operation. Note that

CP 2 is complex projective space with its non-complex orientation.)
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3.6 Examples and applications

For an example where the Seiberg-Witten invariant is nontrivial and has an
interesting application, consider the K3 surface

K3 = (z4
1 + z4

2 + z4
3 + z4

4 = 0) ⊂ CP 3.

This 4-manifold has b2+ = 3, b2− = 19. On K3, there is a unique SpinC

structure s with c1(s) = 0. For this s, SWK3(s) = ±1. For all other SpinC

structures, SW = 0. (This will follow from the computation in the next
lecture.)

Theorem 3.8(c) implies that the blow up K3#CP 2 has nontrivial Seiberg-
Witten invariants. (In fact if e is the Poincaré dual of the exceptional divisor,
and if s is a SpinC structure with c1(L) = ±e, then SW(s) = ±1. This can
also be deduced from the computation in the next lecture.) Now Freed-
man’s theorem, which classifies topological 4-manifolds, says that K3#CP 2

is homeomorphic to Y = #3CP 2#20CP 2 (because the two 4-manifolds have
equivalent intersection forms over Z). But SWY ≡ 0 by Theorem 3.8(d). So
we recover the following theorem of Donaldson:

Theorem 3.9 K3#CP 2 and #3CP 2#20CP 2 are not diffeomorphic, even
though they are homeomorphic.

(This theorem was first proved by Simon Donaldson using his celebrated
4-manifold invariants [4]. See also [5].)

For another application, we will show in the next lecture that if X has a
symplectic structure and b2+ > 1 then there exists a SpinC structure s with
SW(s) = ±1. This combines with the vanishing theorem 3.8(d) to give an
obstruction to the existence of symplectic forms. For example, we get:

Theorem 3.10 [14] ⊕mCP 2 does not have a symplectic form when m > 1.

(This is true for homotopy theoretic reasons whenm is even, so the interesting
case is when m is odd.)

4 The symplectic case, part I

Let X be a closed smooth 4-manifold with b2+ > 1. Suppose that X has a
symplectic form ω (i.e. ω is a 2-form, dω = 0, and ω ∧ ω never vanishes).
In this lecture we will compute the Seiberg-Witten invariant of X for the
simplest SpinC structures.
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4.1 Statement of the theorem

We need the following basic facts about our symplectic 4-manifold:

1. X has a canonical orientation, given by ω ∧ ω.

2. There is a canonical SpinC structure s0 ∈ SX . Thus we can identify
SX ' H2(X; Z), by sending s0 to 0 and extending equivariantly. (We
will explain this shortly.)

3. The moduli spacesM have canonical orientations. (This is subtle and
we will not explain it.)

These three facts allow us to regard the Seiberg-Witten invariant as a map

SW : H2(X; Z)→ Z.

Let K = T 2,0X (defined below) and c = c1(K). Then:

Theorem 4.1 [14, 15]

(a) SW(0) = 1.

(b) SW(c) = ±1.

(c) SW(e) = ± SW(c− e).

(d) If SW(e) 6= 0, then
0 ≤ [ω] · e ≤ [ω] · c,

and if either equality holds then e = 0 or e = c.

Part (c) comes from the “charge conjugation invariance” stated in Theo-
rem 3.8(e). Parts (a) and (c) clearly imply (b). The rest of this lecture will
be devoted to proving (a) and (d).

4.2 The canonical SpinC structure

An ω-compatible almost complex structure is a map J : T ∗X → T ∗X
such that J2 = −1 and such that

g(v, w) = ω(v, Jw) (4.1)

is a Riemannian metric. Gromov [6] observed that as long as ω is nondegen-
erate, the space of such J ’s is nonempty and contractible. (See also [12].)
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Exercise 4.2 Given a nondegenerate 2-form ω and a Riemannian metric g,
there exists J satisfying (4.1) if and only if ω is self-dual with respect to g
and |ω| =

√
2.

Choose an ω-compatible J , and endow X with the Riemannian metric g
given by (4.1). The almost complex structure gives a decomposition

Λ∗T ∗X ⊗ C =
⊕
p,q

T p,q,

where T p,q = ∧pT 1,0 ⊗ ∧qT 0,1 and T 1,0 (resp. T 0,1) is the holomorphic (resp.
antiholomorphic) part of T ∗X ⊗ C.

Suppose a SpinC structure is chosen. Clifford multiplication by ω, cl+(ω) :
S+ → S+ splits S+ into ±2i eigenspaces. (In the local model of the second
lecture, ω = dx1dx2+dx3dx4, so this claim follows from equation (2.10).) Let
E be the −2i eigenspace. This is a line bundle on X. We define the canonical
SpinC structure to be the one for which E is trivial. Thus the identification
SX → H2(X; Z) sends s to c1(E).

Here are some key facts about the spin bundles and the Clifford action.

Lemma 4.3 There are natural identifications

S+ = (T 0,0 ⊕ T 0,2)⊗ E = E ⊕ (K−1 ⊗ E), (4.2)

S− = T 0,1 ⊗ E (4.3)

such that the formula for Clifford multiplication by v ∈ T ∗X ⊗ C acting on
α ∈ T 0,∗ ⊗ E is

cl(v) · α =
√

2(v0,1 ∧ α− ı(v1,0)α). (4.4)

In particular, cl(ω) equals −2i on E and +2i on K−1E.

(Here v0,1 is the T 0,1 component of v, and ı denotes interior product.)

Proof. Starting with a SpinC structure as we defined it in the second lecture,
the isomorphisms (4.2), (4.3) are given by rescaled Clifford multiplication.
More precisely we extend Clifford multiplication to a complex linear map
cl : Λ∗T ∗X ⊗ C→ End(S+ ⊕ S−) as in (2.9). Then there is an isomorphism
from K−1⊗E to the +2i eigenspace of ω on S+ given by 1

2
cl. (We put in the

factor of 1
2

to make this an isometry.) We can see that this gives the desired
isomorphism because in the local model of the second lecture,

1

2
cl(dzdw) =

(
0 0
−2 0

)
.
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This explains (4.2). The isomorphism T 0,1⊗E → S− in (4.3) is given similarly
by 1√

2
cl. It is then straightforward to check (4.4). 2

With the preceding understood, we can write ψ =

(
α
β

)
with α ∈ C∞(E)

and β ∈ Ω0,2(X,E). The second Seiberg-Witten equation is then

F+
A = i(|α|2 − |β|2) + 2(αβ − αβ) + iµ. (4.5)

(We obtain this from the local calculation (2.11) by putting α = a and
β = −1

2
bdzdw.)

We can also state the formula for the dimension 2d of the moduli spaceM.
If e = c1(E) and c = c1(K), then (3.1) and some fiddling with characteristic
classes imply

2d = e · e− c · e. (4.6)

In particular, when e = 0 the moduli space is a finite number of points, and
to prove Theorem 4.1(a) we must show that the signed number of points is
±1.

4.3 Step 1: Understanding the Dirac equation

The first step in the proof of Theorem 4.1 is to write the first of the Seiberg-
Witten equations in a nice form, by writing the Dirac operator in terms of
the Cauchy-Riemann operator ∂.

We begin by observing that there is a canonical connection A0 on K−1.
Consider the canonical SpinC structure and identify S+ = (X × C) ⊕ K−1.
Let u0 be the constant section of X × C which assigns 1 ∈ C to each point
of X.

Lemma 4.4 There exists a unique compatible connection A0 on K−1 such
that

∇A0u0 ∈ Ω1(X,K−1),

where A0 is the spin connection associated to A0.

Proof. Let A be a compatible connection on K. Any other compatible
connection can be written as A + a where a is an imaginary-valued 1-form.
We have

∇A+au0 = ∇Au0 +
1

2
au0.
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Since A is compatible with the metric, the X ×C component of ∇Au0 is an
imaginary-valued 1-form (times u0). So the unique solution is A0 = A + a
where a = −2(∇Au0)X×C. 2

If X is Kähler, ∇A0u0 vanishes altogether. If X is not Kähler, we still
have

DA0u0 = 0. (4.7)

To see this, note the following Leibniz-type formula for the Dirac operator:

DA0(ω · u0) = (dω + d∗ω) · u0 + cl(ω · ∇A0u0). (4.8)

(This much is true for any connection, differential form, and spinor, and can
be derived from (2.7). The rightmost term here means the following: start
with ∇A0u0 ∈ C∞(T ∗X ⊗ S+), first apply 1 ⊗ cl(ω) to get another element
of C∞(T ∗X ⊗ S+), and then apply cl to get an element of C∞(S−).)

Now u0 is in the −2i eigenspace of cl(ω) and ∇A0u0 is in (T ∗X tensor)
the +2i eigenspace. Also ω is closed and self-dual. So (4.8) becomes

−2iDA0u0 = 0 + 2iDA0u0.

This proves (4.7).
Now we come to the point. Consider an arbitrary SpinC structure with

S+ = E ⊕K−1E. We can write any connection A on L = K−1E2 as A0 + 2a
where A0 is the canonical connection on K−1 and a is a connection on E.
Then the formula for the Dirac operator is the following.

Lemma 4.5 If a is a connection on E, α is a section of E, and β is a
section of K−1E, then

DA0+2a

(
α
β

)
=
√

2(∂aα+ ∂
∗
aβ). (4.9)

(Here ∂a : Ω0,k(X,E) → Ω0,k+1(X,E) denotes the antiholomorphic part of
∇a.)

Proof. First consider the canonical SpinC structure. By (4.4), the Leibniz
rule as in (4.8), and (4.7), we have

DA0(α+ β) = DA0

((
α+

β

2

)
· u0

)
=

(
dα+

dβ + d∗β

2

)
· u0

=
√

2(∂α + ∂
∗
β).
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(Since β is self-dual, cl(dβ) = cl(d∗β).) The case of a general SpinC structure
and connection a follows formally from this. 2

(When X is Kähler, A0 comes from the Levi-Civita connection, and (4.9)
follows more straightforwardly from (4.4).)

Exercise 4.6 Prove Theorem 4.1(c).

4.4 Step 2: deforming the curvature equation

Since the Seiberg-Witten invariant does not depend on µ, we can choose µ
to suit our convenience. Normally one might think of choosing µ to be small,
so as to perturb the equations and get a smooth moduli space. But we will
choose µ to be very large. We take

µ = rω − iF+
A0

where r is a large positive real number.
Let’s also rescale by writing ψ =

√
r(α, β). Then the Seiberg-Witten

equations become, by (4.5) and (4.9),

∂aα = −∂∗aβ, (4.10)

F+
a =

−ir
2

(1− |α|2 + |β|2)ω − r(αβ − αβ). (4.11)

We will later need to decompose the curvature equation (4.11) as follows.
We have

Λ2
+ ⊗ C = Cω ⊕K ⊕K−1.

So (4.11) implies

F 0,2
a = rαβ, (4.12)

〈ω, Fa〉 = −ir(1− |α|2 + |β|2). (4.13)

4.5 Step 3: uniqueness of the solution

For the canonical SpinC structure, a is just an imaginary-valued 1-form,
and the equations (4.10), (4.11) have an obvious solution, given by a ≡ 0,
α ≡ 1, β ≡ 0. We will now show that this is the only solution (up to gauge
equivalence) if r is sufficiently large. This will prove Theorem 4.1(a) (modulo
a transversality issue, see below). In the following calculations we will begin
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with an arbitrary SpinC structure, which will allow us to simultaneously prove
Theorem 4.1(d).

We need the following background. First, the Nijenhuis tensor is a
map N : Ω1,0(X)→ Ω0,2(X) defined by

N(α) = (dα)0,2.

This is a measure of the failure of the almost complex structure to be inte-
grable. We claim thatN is actually a tensor, i.e. a section of Hom(T 1,0, T 0,2).
To show this, we have to check thatN(fα) = fN(α) for every f ∈ C∞(X,C);
and this follows readily from the definition.

Second, we need another Weitzenböck formula, which says that

2∂
∗
a∂a = ∇∗a∇a − i〈ω, Fa〉 (4.14)

on C∞(E). (See e.g. [5, p. 212]; there X is assumed to be Kähler, but the
proof does not use the assumption that J is integrable.)

Now here is the proof that the solution is unique. Applying ∂a to the Dirac
equation (4.10) and then using Exercise 1.14 and the curvature equation
(4.12) gives

∂a∂
∗
aβ = −∂a∂aα

= −F 0,2
a α+N(∂aα)

= −r|α|2β +N(∂aα).

Multiply by β and integrate over X to get∫
|∂∗aβ|2 =

∫ (
〈β,N(∂aα)〉 − r|α|2|β|2

)
. (4.15)

Since N is a tensor bounded independent of r, we can use the triangle in-
equality to estimate∫

〈β,N(∂aα)〉 ≤ r

2

∫
|β|2 +

z

r

∫
|∇aα|2 (4.16)

where z is a positive constant independent of r. Putting this inequality into
the previous equation gives∫ (

|∂∗aβ|2 + r|α|2|β|2 − r

2
|β|2

)
≤ z

r

∫
|∇aα|2. (4.17)
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We next want to estimate
∫
|∇aα|2. Apply the Weitzenböck formula

(4.14) to α, take the inner product with α, integrate over X, and apply the
curvature equation (4.13) to get∫

|∇aα|2 =

∫ (
2|∂aα|2 + r(1− |α|2 + |β|2)|α|2

)
. (4.18)

Now comes a key step, where we bring in cohomological information about
e = c1(E). Chern-Weil theory tells us that

−2πi[ω] · e =

∫
ω ∧ Fa.

Using the fact that ω is self-dual and putting in the curvature equation (4.13)
gives

2π[ω] · e =

∫
r(1− |α|2 + |β|2).

Putting this into (4.18) gives∫
|∇aα|2 = 2π[ω] · e+

∫ (
2|∂aα|2 + r(1− |α|2 + |β|2)(|α|2 − 1)

)
.

(It is auspicious that the square (1−|α|2)2 appears.) Now replace |∂aα|2 with
|∂∗aβ|2 (by the Dirac equation (4.10)), put (4.17) (times 2) into the integral
on the right, discard the positive term r|α|2|β|2, and rearrange to obtain∫ ((

1− 2z

r

)
|∇aα|2 + r(1− |α|2)2

)
≤ 2π[ω] · e. (4.19)

If we choose r > 2z, then we can now read off the conclusions of Theo-
rem 4.1 from the inequality (4.19).

If [ω] · e < 0 then clearly no solution is possible.
If [ω] · e = 0 then we must have |α| ≡ 1 and β ≡ 0. In particular E has a

nonvanishing section, so e = 0. After a gauge transformation, α ≡ 1. From
previous equations we have ∇aα ≡ 0, which implies a ≡ 0. So this is the
only solution. To complete the proof that SW (e) = ±1, one must check that
the moduli space is cut out transversely at this point. The proof is similar
to the above calculation and we omit it.

If [ω] · e ≥ [ω] · c, we draw analogous conclusions by using charge conju-
gation invariance to reduce to the above cases.
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4.6 Appendix: an estimate on beta

We are done with the proof of Theorem 4.1. The key was the estimate (4.19)
involving α. Using some of the same techniques, we can also get an estimate
on β. We will now do this, as it will help motivate the main theorem in the
next lecture.

We are going to use equation (4.15) a different way. There is another
Weitzenböck formula which tell us that∫

|∂∗aβ|2 =

∫
1

2

(
|∇∗aβ|2 − i〈ω, Fa〉|β|2

)
.

Putting in the curvature equation (4.13), we get∫
|∂∗aβ|2 =

∫ (
1

2
|∇∗aβ|2 +

r

2
(1− |α|2 + |β|2)|β|2

)
. (4.20)

Also, by using the triangle inequality differently, we can replace (4.16) with∫
〈β,N(∂aα)〉 ≤ r

4

∫
|β|2 +

z

r

∫
|∇aα|2, (4.21)

where z is a new constant which is still independent of r. Putting (4.20) and
(4.21) into (4.15) and discarding the positive |α|2|β|2 term, we obtain the
following estimate:∫ (

1

2
|∇∗aβ|2 +

r

2
|β|4 +

r

4
|β|2

)
≤ z

r

∫
|∇aα|2. (4.22)

5 The symplectic case, part II

We will now discuss the Seiberg-Witten invariant on a symplectic manifold
X (with b2+ > 1) for the remaining SpinC structures, and explain that it is
equal to a certain count of pseudoholomorphic curves in X.

5.1 Summary of the last lecture

Since X is symplectic, there is an identification

SX ' H2(X; Z).
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An element e ∈ H2(X; Z) corresponds to a SpinC structure with

S+ = E ⊕K−1E

where c1(E) = e, andK is the canonical bundle coming from an ω-compatible
almost complex structure J . We can regard the Seiberg-Witten invariant as
a map

SW : H2(X; Z)→ Z.
If we write ψ =

√
r(α, β) with α ∈ C∞(E) and β ∈ C∞(K−1E), write

A = A0 + 2a, and choose µ = rω − iF+
A0

, then the Seiberg-Witten equations
are

∂aα = −∂∗aβ,

F+
a =

−ir
2

(1− |α|2 + |β|2)ω − r(αβ − αβ).
(5.1)

We showed that any solution of these equations must satisfy the estimates∫ ((
1− 2z

r

)
|∇aα|2 + r(1− |α|2)2

)
≤ 2π[ω] · e, (5.2)∫ (

1

2
|∇∗aβ|2 +

r

2
|β|4 +

r

4
|β|2

)
≤ z

r

∫
|∇aα|2. (5.3)

Taking r > 2z, we see from (5.2) that if [ω] · e < 0 then there is no solution,
and if [ω] · e = 0 then e = 0 and there is a unique solution. We conclude
that SW(e) = 0 for [ω] · e < 0, and SW(0) = ±1. (Also SW(e) = SW(c− e)
where c = c1(K).)

5.2 Motivation

Fix e with [ω] · e > 0. Suppose SW(e) 6= 0. Then for every r the equations
(5.1) must have a solution. Let’s think about what the estimates (5.2), (5.3)
say when r is large.

• By (5.2), |α| wants to equal 1 as much as possible. (But it can’t equal
1 everywhere because E is nontrivial.)

• (5.2) gives an upper bound on the r.h.s. of (5.3), so |β| and |∇∗aβ| want
to be small.

• By the Dirac equation, |∂aα| = |∂∗aβ| = |∇∗aβ|, which wants to be
considerably smaller than |∇aα| by (5.3).
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This last remark suggests that the zero set of α is close to a pseudoholo-
morphic curve. The zero set of α is necessarily Poincaré dual to e = c1(E),
so this suggests that there is some relation between SW(e) and pseudoholo-
morphic curves Poincaré dual to e. Notice also that the formal dimension of
the space of (unparametrized) pseudoholomorphic curves Poincaré dual to e
is (by Riemann-Roch)

2d = e · e− c · e,
which is the same as the dimension of the Seiberg-Witten moduli space.

5.3 Seiberg-Witten and pseudoholomorphic curves

A nonzero Seiberg-Witten invariant does indeed lead to the existence of a
pseudoholomorphic curve, as follows.

Theorem 5.1 [16, 17] Fix a SpinC structure e. Given a sequence rn → ∞
and (an, (αn, βn)) satisfying the equations (5.1) for r = rn, then after taking
an appropriate subsequence, there is a compact, complex curve C and a J-
holomorphic map f : C → X such that:

• f∗[C] is the Poincaré dual of e in H2(X; Z).

• limn→∞

{
supx∈C dist(x, α−1

n (0)) + supx∈α−1
n (0) dist(x, f(C))

}
= 0.

• If G ⊂ X is a closed set and α−1
n (0)∩G 6= 0 for all n, then f(C)∩G 6= 0.

Note that C is not necessarily connected, and the map f is not necessarily
an embedding. But it is worth noting that if C is connected and f is an
embedding, then the genus g of C is given by the adjunction formula

2g − 2 = e · e+ c · e.

Theorem 5.1 has a number of applications to the topology of symplectic
4-manifolds. For example, we showed in the last lecture that SW(c) = ±1,
so Theorem 5.1 implies that there exists a pseudoholomorphic map f : C →
X with f∗[C] Poincaré dual to c = c1(K). One can use the Sard-Smale
theorem together with the adjunction formula to show that if J is generic,
then f : C → X is an embedding except that some components might be
multiply covered tori with self-intersection number zero. From this one can
further deduce that if c · c < 0 then some component of C is an embedded
pseudoholomorphic sphere with self-intersection number −1. So we get:
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Corollary 5.2 Let X be a closed connected symplectic 4-manifold with b2+ >
1 and c1(K)2 < 0. Then there exists an embedded pseudoholomorphic sphere
in X with self-intersection number −1, and hence X = Y#CP 2 where Y is
symplectic.

We can go beyond Theorem 5.1 to show that the Seiberg-Witten invariant
SW(e) is equal to a suitable count of pseudoholomorphic curves Poincaré dual
to e. This count is given by a “Gromov invariant” Gr : H2(X; Z)→ Z, which
we will define in the next section.

Theorem 5.3 [16, 19] If b2+ > 1, then SW = Gr : H2(X; Z)→ Z.

5.4 Definition of the Gromov invariant

We want to count unparametrized, possibly disconnected, pseudoholomor-
phic curves Poincaré dual to e. We will do this in a fairly standard way,
except that we allow tori to be multiply covered and count the multiple cov-
ers in a subtle way. The results in this section are discussed in greater detail
in [18].

Definition 5.4 Given e ∈ H2(X;Z), let He denote the set of finite sets
h = {(Ci,mi)} such that:

• Ci is an embedded, connected, pseudoholomorphic submanifold of X,
and if ei ∈ H2(X; Z) is the Poincaré dual of [Ci], then the formal
dimension

2di = ei · ei − c · ei ≥ 0.

• Ci ∩ Cj = ∅ for i 6= j.

• mi is a positive integer, which is 1 unless ei · ei = c · ei = 0 (i.e. Ci is a
torus with trivial normal bundle).

•
∑

imiei = e.

• If d = 1
2
(e·e−c·e) > 0, fix a set Ω ⊂ X of d points, and require Ω = ∪iΩi

where Ωi contains di points and Ωi ⊂ C. (Notice that d =
∑
di.)

The following theorem is the result of arguments due to Ruan, McDuff-
Salamon, Ye, Parker-Wolfson and Taubes.
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Theorem 5.5 If J is generic, then He is a finite set. Furthermore, for each
i, the pair (Ci,Ωi) is (strongly) nondegenerate (in a technical sense which is
specified below).

Given e ∈ H2(X; Z), we define Gr(e) ∈ Z as follows. If d < 0, we set
Gr(e) = 0. We set Gr(0) = 1. If d ≥ 0, we choose a generic J and define

Gr(e) =
∑
h∈He

∏
i

r(Ci,mi).

Here r(Ci,mi) is an integer which we will now describe.
For this purpose, we must digress momentarily to consider deformations

of a pseudoholomorphic curve C. An infinitesimal deformation of C is given
by a section of the normal bundle N → C. (We can restrict attention to
the normal bundle, instead of considering the pullback of TX, because we
are interested only in the image of the curve in X.) The normal bundle is
naturally a holomorphic line bundle on C. A deformation s ∈ C∞(N) is the
derivative of a 1-parameter family of pseudoholomorphic curves iff

Ds = ∂s+ νs+ µs ∈ C∞(N ⊗ T 0,1C)

vanishes. Here ν ∈ C∞(T 0,1C) and µ ∈ C∞(T 0,1C⊗N⊗2) are certain sections
determined by the 1-jet of the almost complex structure J near C. (If J is
integrable, then µ vanishes.)

We say that a curve C ⊂ X together with a set ΩC ⊂ C of d points is
nondegenerate if the operator

D ⊕ ev : C∞(N)→ C∞(N ⊗ T 0,1C)⊕⊕p∈ΩC
Np

has no cokernel. By the dimension formula, this means that the operator has
no kernel either.

In this case we want to define r(C, 1) to be ±1, depending on “the sign
of the determinant of D ⊕ ev”. What is the sign of the determinant of an
infinite dimensional matrix? We are considering operators whose kernel and
cokernel are finite dimensional, and have the same dimension. We require
this sign to have the following properties:

• The determinant of an invertible C-linear operator has positive sign.

• Along a suitably generic path of operators, the determinant switches
signs at the points on the path where the kernel (and hence the coker-
nel) is not trivial. (A path of operators {O(t)}t∈[0,1] is generic if three
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properties hold: first, Ker(O(t)) = {0} for all but a finite set, Λ, of t.
Second, it t ∈ Λ, then dim Ker(O(t)) = 1. Third, if t ∈ Λ, then dO

dt

∣∣
t

maps the kernel of O(t) to the cokernel of O(t).)

These two criteria turn out to be consistent, and they unambiguously deter-
mine a sign for the determinant of D. Thus, to find r(C, 1), we deform D to
an invertible C-linear operator (e.g. by deforming the µ term to zero), count
the number of points along the deformation where the kernel is not trivial,
and take (−1) to this power.

Now suppose C is a torus with trivial normal bundle. We say that C is
strongly nodegenerate if, for every holomorphic covering f : C ′ → C by
a torus C ′, the operator f ∗D on C∞(f ∗N) defined by

(f ∗D)s = ∂s+ (f ∗ν)s+ (f ∗µ)s

is surjective.
In this case r(C,m) is defined as follows. There are 4 flat real line bundles

{Lι} on C, classified by ι ∈ H1(C; Z/2). We can twist the operator D by Lι
to get an operator Dι on C∞(N ⊗ Lι). The number r(C,m) depends on:

• The sign of the determinant D0, which we signify as + or −.

• The number k ∈ {0, 1, 2, 3} of nonzero ι such that the sign of the
determinant of Dι is −1.

Let’s write r±,k(C,m) for the corresponding value of r(C,m). To define
r±,k(C,m), it is convenient to use the generating function

f±,k = 1 +
∞∑
n=1

r±,k(C,m)tm.

Then we define

f+,0 =
1

1− t
,

f+,1 = 1 + t,

f+,2 =
1 + t

1 + t2
,

f+,3 =
(1 + t)(1− t2)

1 + t2
,

f−,k =
1

f+,k

.
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Note that r(C,m) is not always ±1.
This completes the definition of Gr. Another derivation of this invariant

has been given by Ionel and Parker [7].
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