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§1: Introduction

The Gauss-Green formula

(1)
∫
∂Ω

ω =
∫

Ω

dω,

where Ω is a compact smooth n-manifold with boundary in Rn and ω is a smooth
(n− 1)-form in Rn, is a classical part of the calculus of several variables (e.g. [Sp]).

When Ω is permitted to have positive codimension, (1) is often called Stokes’
Theorem; we use “Gauss-Green” to refer to the case where Ω has codimension zero.
(Note that the Gauss-Green formula is often written in the equivalent form∫

∂Ω

v · n ds =
∫

Ω

div v

where n is the outward unit normal to ∂Ω, ds is the element of area on ∂Ω, and

v is the 1-vectorfield “dual” to ω: if ω =
∑

(−1)i+1fi dx1 ∧ · · · ∧
∧
dxi ∧ · · · ∧ dxn,

then v = (f1, . . . , fn).)
There has been considerable effort in the literature (e.g. [JK], [M], [P]) to extend

this formula to permit integrands of less regularity by generalizing the Lebesgue
integral. On the other hand, invariably the situations in which (1) holds require
fairly strong hypotheses on the boundary ∂Ω, e.g. that it should have sigmafinite
(n−1)-measure, or that the gradient of the characteristic function of Ω be a vector
valued measure with finite total variation [F], [P].

However there is a natural way to expand the validity of (1) to much more general
boundaries while still using the ordinary Lebesgue integral; this is the topic of the
present paper.

For the case of Lipschitz forms, the results of this paper follow readily from
Whitney’s theory of flat chains [W2]. However his approach to the Gauss-Green
theorem is not widely appreciated because he focused on chains and cochains, where
effectively (1) is used to define the exterior derivative. In [HN] we extend Whitney’s
method to treat the more general Hölder case. (Only the case n = 2 is discussed
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there, but the ideas go through with little change to treat closed codimension 1
submanifolds in Rn.) But that paper also uses (1) partly as a definition.

The purpose of this paper is to present (1) as a theorem (see Theorem B), in
which the boundary is not required to be rectifiable, and the LHS is defined in a
way logically independent of the RHS. We also give statements in better generality
than appear in [HN]. Furthermore, since we treat only codimension 1 boundaries,
the discussion is simplified, and we make every effort to arrive at our goal as eco-
nomically and accessibly as possible.

The method of integrating a form over a fractal boundary in [HN] is to integrate
over a smooth or PL approximation of the boundary, and then take a limit. For a
variety of reasons this is not as simple as it might at first seem (see examples 1 and
2 below). For example, how is one to take the limit? This question was answered
by Whitney [W2] with his “flat norm” on the space of polyhedral chains, which has
the property that two chains close in flat norm will have integrals that are close,
provided the integrands (forms) are properly bounded (“flat”). Here (as in [HN])
we present an extension of the flat norm which permits us to reveal examples 1 and
2 below as sharp counterexamples for the theory.

The elementary idea of simply taking limits of integrals of PL approximations
must fail in complete generality, as the following classical example shows.

Example 1. [W1],[N2]. There exists a C1 function f and a continuously embed-
ded arc γ such that df = 0 at each point of γ, but f is not constant along γ; we can
choose f to be increasing along γ, f(γ(0)) = 0 and f(γ(1)) = 1.

In this paper we ask that a good theory of geometric integration have both of
the following properties:

Property A: ω|γ = 0 implies
∫
γ
ω = 0, i.e. the value of the integral should

depend only on the values of the form on the submanifold over which it is being
integrated, and

Property B: formula (1) where Ω is a topological submanifold with boundary,
of arbitrary codimension.

Example 1 (with γ = Ω) shows that we cannot have both A and B for all
continuous forms and all continuous submanifolds. (See also example 3 in section
4 below.) However such counterexamples cannot be very smooth: the C1,1 Morse-
Sard theorem [B] implies that f cannot be C1,1, and in fact it is shown in [N1] that
f can be at most of class Cs, where s is the Hausdorff dimension of the curve γ.
Hence it is reasonable to expect that properties A and B should be attainable if
we assume some minimum regularity of the form relative to the dimension of the
submanifold or its boundary.

In the context of Whitney’s flat theory, γ of example 1 represents a flat chain
and df , since it is exact, represents a flat cochain; yet Property A fails. To recover
Property A we must require the form to be Lipschitz as well (and any Lipschitz form
represents a flat cochain) —see Theorem A’. Similarly, we also obtain Property A
for Hölder forms with an appropriate condition on the dimension of the boundary
—see Theorem A.

In this paper we restrict attention to submanifolds Ω of codimension zero. The
case of arcs in the plane is treated in [HN]; for the more general Stokes’ theorem
see [H].
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It will turn out that the essential hypothesis for integration is roughly that the
box dimension of the boundary should not be too large when compared with the
Hölder class of the form to be integrated (see Theorems A and B below).

Even when all curves in the discussion are PL, it is still possible for the limit
of the integrals to disagree with the integral of the limit, as the following example
shows:

Example 2. [HN]. Let σ denote a compact line segment in the plane. There
exists a sequence σn of PL embedded curves coterminal with σ and a Hölder form
ω so that

(i) σn tends to σ in the Hausdorff metric on compact subsets of the plane, and
(ii)

∫
σ
ω = 0, but

∫
σn
ω > 1 for all n.

This means we must be careful in specifying the proper topology on curves or
chains; we do this by means of the “d-flat norm” below. Example 2 also illustrates
the peculiar difficulty of Hölder forms in the theory: for smooth forms the integrals
will converge properly if σn and σ enclose an area tending to zero. (This is conver-
gence in Whitney’s “flat norm”.) For forms with less regularity, the d-flat norm is
needed.

In sections 2 and 3 we define, in a geometric way, the integral of a d-flat (n− 1)-
form over a d-summable boundary, for n − 1 < d ≤ n. (Any (d − n + 1)-Hölder
(n−1)-form is d-flat.) Then in section 4 we prove Property A for (d−n+1)-Hölder
forms and Property B for all d-flat forms satisfying a Sobolev condition.

Acknowledgment: The authors wish to thank the referee for useful comments.

§2: Abstract Theory; flat chains and the definition of the integral.

There is a standard theory of polyhedral chains in Rn, which we summarize here.
(See, e.g., [W2, Ch 5] for more details.)

An affine n-simplex in Rn is the oriented convex hull < p0, ..., pn > of n + 1
affinely independent points. If σ1, ..., σm are non-overlapping oriented affine n-
simplices, and a1, ..., am are real coefficients, the expression A = Σaiσi determines
a polyhedral n-chain in Rn.

We want such a chain to be independent of choice of subdivision, so we employ
the following device. Define a function A(p) to have value ai or −ai for p in int(σi),
according to whether σi is oriented positively or negatively relative to the standard
orientation on Rn, and zero for p outside the interiors of the simplices σi.

Then identify two polyhedral chains A and B if A(p) = B(p) except perhaps on
a finite number of simplices of dimension less than n. This space of equivalence
classes forms a real vector space in a natural way, denoted Pn. The elements of Pn
are the polyhedral n-chains in Rn.

For example, if A = Σaiσi and B = Σbiτi, then tA = Σtaiσi and A+B = Σ(a′i+
b′i)µi, where {µi} is a common subdivision of A and B and A = Σa′iµi, B = Σb′iµi.

For m < n, a polyhedral m-chain in Rn is a finite set of oriented m-planes in
Rn, together with a polyhedral m-chain in each. The space of polyhedral m-chains
in Rn is denoted Pm.

The boundary of an n-simplex σ =< p0, ..., pn > is defined to be the polyhedral
(n− 1)-chain

∂σ = Σ(−1)i < p0, ..., p̂i, ..., pn > .
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Given an m-simplex σ =< p0, ..., pm > in Rn and a continuous m-form ω, we
have the standard Riemann integral

∫
σ
ω. This is defined, for example, by letting

τm be the standard oriented m-simplex in Rm, τm =< 0, e1, e2, ..., em >, choosing
an affine parametrization φ : τm → σ so that φ(ei) = pi, i = 1, ...,m, and letting

(2)
∫
σ

ω =
∫
τm

ω(φ(s))(Dφ(s)e1, ..., Dφ(s)em)ds1ds2...dsm.

For a polyhedral m-chain A = Σciσi, then, we let∫
A

ω = Σci
∫
σi

ω

for any continuous m-form ω. We can relax the requirement of continuity if we
wish, so long as the integrand in the RHS of (2) is integrable in some suitable
sense, e.g. Lebesgue.

Definition. An m-form ω in Rn is m-measurable if for each affine m-simplex
σ in Rn with affine parametrization φ : τm → σ, the function

ω(φ(s))(Dφ(s)e1, ..., Dφ(s)em)

is measurable on τm.

Example. An m-form in Rn which is Hm-a.e. equal to a continuous m-form is
m-measurable. (Hm is Hausdorff m-measure).

d-mass.
For 0 < d ≤ m, the d-mass Md(A) of a polyhedral m-chain in Rn is

Md(A) = inf{Σ|ai||σi|d : A = Σaiσi}.

(Here |σ| denotes the diameter of σ as a subset of Rn.)
It is straightforward to check that Md is a norm on Pm ([HN]). Note that Mm

is equivalent to Whitney’s mass [W2].
For d = n, the d-mass is comparable to the volume, but when d < n the d-mass

is difficult to compute in specific cases. For example, if σ is an equilateral triangle
in the plane, then Md(σ) = |σ|d, but if σ is very long and thin, then Md(σ) << |σ|d.

The sums in the definition of Md are reminiscent of those in the definition of
Hausdorff d-measure. However, we do not, as in that case, take the limit of finer
and finer subdivisions, since for d < m this would diverge to infinity for chains with
nontrivial support. The infimum in the definition of Md occurs instead when the
sub-simplices are in some sense as large as possible. This is what makes computation
of Md a subtle matter.

d-flat norm.
For n−1 < d ≤ n, we define the d-flat norm |A|d of the polyhedral (n−1)-chain

A as follows:

|A|d = inf{Mn−1(S) +Md(T ) : A = S + ∂T}.

It is easy to check that this defines a seminorm. To see that it is a norm, given
A 6= 0, choose a C∞ (n−1)-form ω so that

∫
A
ω 6= 0. Then |A|d 6= 0 is a consequence

of the following temporary lemma (which will be shortly supplanted by (3)):
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Lemma 1. If A ∈ Pn−1 is supported in a disk of radius r ≥ 1, and ω is a smooth
(n− 1)-form, then

|
∫
A

ω| ≤ r|ω|C1 |A|d.

Proof. If τ is an n-simplex, then volume(τ) ≤ r|τ |d. It is then easy to check that

|
∫
∂T

ω| = |
∫
T

dω| ≤ rMd(T )|dw|0

for any polyhedral n-chain T .
Also for any (n− 1)-chain S in Pn−1, |

∫
S
ω| ≤ |ω|0Mn−1(S).

Thus if A = S + ∂T ,

|
∫
A

ω| ≤ r|ω|C1(Mn−1(S) +Md(T )),

and this completes the proof.

We now have the linear spaces Pn−1 and Pn, equipped with norms |.|d,Md,
respectively. Define Ed to be the completion of (Pn,Md) and Cd to be the completion
of (Pn−1, |.|d). The boundary operator ∂ : Pn → Pn−1 satisfies |∂A|d ≤Md(A) and
therefore extends to a unique bounded linear operator

∂ : Ed → Cd

satisfying the same inequality.

We remark that when d′ < d, Cd′ embeds continuously into Cd, since the d′-flat
topology is finer than the d-flat topology. This becomes clearer if we make the
optional stipulation in the definition of Md that all subdividing simplices are to
have diameter at most one. In this case, we obtain the simple inequalities

Md ≤Md′ and |.|d ≤ |.|d′ whenever d′ ≤ d.

d-flat (n− 1)-forms.
Let ω be an (n − 1)-measurable (n − 1)-form on Rn. (For simplicity, assume

henceforth that ω has compact support.)

Definitions.

|ω| = inf{C : |
∫
σ

ω| ≤ CMn−1(σ), for all (n− 1)-simplices σ},

||ω|| = inf{C : |
∫
∂τ

ω| ≤ CMd(τ), for all n-simplices τ},

and

|ω|d = inf{C : |
∫
A

ω| ≤ C|A|d, for all A ∈ Pn−1}.

Note that |.|d is the dual norm to |.|d with respect to the linear pairing ω.A =∫
A
ω.
The following proposition helps in understanding the norm |.|d. The proof is

straightforward, but is omitted since we will not use this proposition here.
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Proposition. [HN]. |ω|d = max(|ω|, ||ω||).

We denote by F d the space of (n−1)-measurable (n−1)-forms ω in Rn for which
|ω|d <∞. This is the space of d-flat (n− 1)-forms.

Note that our definitions imply

(3) |
∫
A

ω| ≤ |A|d|ω|d

for all A ∈ Pn−1, ω ∈ F d.

If d′ ≤ d, then since |.|d is dual to |.|d, we get ||d′ ≤ ||d. Hence F d
′

embeds
naturally into F d.

Extension of the integral to the full space of d-flat forms and chains.
So far we have been discussing the standard Lebesgue integral for forms on

polyhedral chains. But by virtue of (3), the bilinear operator∫
: Pn−1 × F d → R

extends uniquely to Cd × F d, satisfying the same inequality. We will denote this
extended operator by the symbol

∫ [. Thus |
∫ [
A
ω| ≤ |A|d|ω|d for all A ∈ Cd, ω ∈ F d.

Remarks.
1. This definition of

∫ [ : Cd × F d → R is equivalent to defining, for A ∈ Cd,∫ [
A
ω = lim

∫
Ak
ω, where {Ak} is any sequence of polyhedral chains tending to A in

the |.|d-topology. That the limit exists and is independent of the sequence Ak is a
simple consequence of (3).

2. We could consider the larger space Cd = (Cd)∗ of d-flat (n− 1)-cochains and
get a satisfactory theory [HN]. However we will restrict our attention to forms in
this paper for the sake of their more concrete geometric meaning.

3. If ω is a (d−n+1)-Hölder (n−1)-form, then ω ∈ F d. (This is a straightforward
exercise.) In fact

|ω|d ≤ C|ω|d−n+1

for some constant C, where the norm on the right is the (d− n+ 1)- Hölder norm.
Hence for such forms,

|
∫ [

A

ω| ≤ C|ω|d−n+1|A|d.

The reader may wish to think of such Hölder forms rather than the more general
d-flat forms.

4. Cn is simply the original space of flat (n− 1)-chains as defined in [W2].
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§3: The geometric theory

So far we have defined integration on a large space Cd of abstract chains. Given a
geometric boundary ∂Ω, we wish to make use of this theory by identifying ∂Ω with
a unique element (∂Ω)[ ∈ Cd –and then we will simply define

∫
∂Ω
ω to be

∫ [
(∂Ω)[

ω.
Our method is to identify Ω with an element Ω[ of Ed, and then (∂Ω)[ will be

∂(Ω)[.

Definition. A Jordan domain Ω in Rn is a bounded oriented connected open
subset of Rn whose boundary is a compact topological hypersurface.

(For n = 2, this yields the usual notion of Jordan domain in the plane.)

Definition. An affine decomposition of an open set Ω is a collection T of non-
overlapping affine n-simplices whose interiors are all contained in Ω and such that
for some set E of Lebesgue measure zero, ∪T ⊃ Ω\E. If E = ∅, T is called proper.

The d-sum of any decomposition T is the (possibly infinite) quantity
∑
τ∈T |τ |d.

The principal example of a proper decomposition is the Whitney decomposition
W of Ω by binary cubes, defined as follows (e.g. [S]):

A cube Q is called a k-cube if it is of the form

[l12−k, (l1 + 1)2−k]× ...× [ln2−k, (ln + 1)2−k]

where k, l1, ..., ln are integers.
When Ω is bounded, there is a smallest k0 such that some k0-cube and all

its neighbors are contained in Ω. Then we can inductively define Wk to be the
collection of all k-cubes Q ⊂ Ω satisfying

(a) every k-cube touching Q is contained in Ω, and
(b) Q is not contained in any cube in Wj for j < k.
Let W = ∪∞k0

Wk.

We will use the Whitney decomposition of Ω to define an approximating sequence
of polyhedral n-chains as follows. Any cube determines a polyhedral n-chain in the
obvious way, so we can let

Wk = Σ{τ ∈ W : τ ∈ Wj for some j ≤ k} ∈ Pn.

We then define Ω[ ≡ limWk ∈ Ed. Our job now is to show that this limit exists
under appropriate geometric assumptions on Ω. To do this, we must first introduce
a geometric notion of summability.

Definitions. Given a bounded set X ⊂ Rn, let NX(ε) be the number of ε-balls
needed to cover X. Then the box dimension of X is defined by

dimX = lim sup
ε→0

logNX(ε)
− log ε

.

Note that in defining NX if we permitted ourselves only the use of k-cubes for
2−k ≤ ε < 2−k+1, this would change NX by at most a bounded factor, and hence
dimX not at all. Therefore we are free to think of NX this way if we wish. In
either case, NX is a monotone function of ε.

We can think of dimX as measuring the asymptotic maximum exponential rate
of increase of NX(ε) as ε→ 0. (This number agrees with the topological dimension
for smooth submanifolds, and agrees with the Hausdorff dimension for self-similar
sets.) However the number dimX is slightly too crude for our purposes.
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Definition. A bounded set X ⊂ Rn is d-summable if the improper integral∫ 1

0
NX(x)xd−1dx converges.

Note. If dimX < d, then NX(ε) ≤ O(ε−d
′
), for dimX < d′ < d, and hence X is

d-summable.
If dimX = d, then X is still d-summable if NX does not grow too quickly, e.g.

if NX(ε)εd(log ε)(log log ε)2 remains bounded as ε tends to zero.
The importance of this definition lies in

Lemma 2. If Ω is a bounded open subset of Rn and ∂Ω is d-summable, then the
d-sum

∑
Q∈W |Q|d of the Whitney decomposition W of Ω is finite.

Proof. Write N = N∂Ω.
The main observation is that the number of k-cubes in W is at most a constant

(depending only on n) times N(2−k). This is because, by virtue of the definition of
W, each k-cube Q ofW is contained in a (k−1)-cube Q′ that touches a (k−1)-cube
Q′′ meeting ∂Ω. (Otherwise Q′ would be in W instead of Q.) The number of such
cubes Q′′ is controlled by N(2−k+1) ≤ 2nN(2−k), and hence the number of such Q
is controlled by a constant times N(2−k).

The d-sum of the k-cubes of W is therefore less than C(n)N(2−k)2−kd, where
C(n) is some constant depending only on n.

This means that the d-sum of W is finite if

∞∑
k=k′

N(2−k)2−kd <∞

where 2−k
′

is the size of the largest cube in W.
This is true iff

∫∞
0
N(2−y)2−dydy < ∞, and this, by means of the change of

variable x = 2−y, is our hypothesis.

Now we can state

Proposition 1. If Ω is a Jordan domain in Rn and ∂Ω is d-summable, then
Ω[ ≡ limWk exists in Ed.

Proof. By Lemma 2,
∑
Q∈W |Q|d <∞. Hence, if k < j,

Md(Wk −Wj) ≤
j∑

i=k+1

∑
Q∈Wi

|Q|d → 0 as k →∞.

This means that the sequence {Wk} in Pn is Md-Cauchy, and so converges to
some element of Ed.

Definition. If Ω is any Jordan domain with d-summable boundary and ω ∈ F d,
then we define ∫

∂Ω

ω ≡
∫ [

∂(Ω[)

ω.

The meaning of this definition is that
∫
∂Ω
ω can be computed as lim

∫
∂Wk

ω, or
indeed lim

∫
Ak
ω where {Ak} is any other sequence in Pn−1 tending to ∂(Ω[).
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Remark. This definition of Ω[ does not depend on our choice of the Whitney de-
composition. Indeed, if {Tk} is any sequence of PL Jordan domains contained in
Ω and similarly oriented, then limTk = Ω[ provided that there is, for each k, an
affine decomposition Tk of Ω\Tk such that the d-sum of Tk tends to zero as k →∞.
(This is proved for n = 2 in [HN], Lemma 5.1, and the proof in the general case is
similar.)

More simply, one can show directly that any regular decomposition can take the
place of the Whitney decomposition in the above definition and yield the same
element Ω[. (A regular decomposition is an affine decomposition T such that for
some C > 1 and for each τ ∈ T ,

(i) |τ |n ≤ Cvol(τ), and
(ii) (1/C)dist(τ, ∂Ω) ≤ |τ | ≤ Cdist(τ, ∂Ω).)

For consistency we need to know that if our domain already represents an element
of Pn, and hence

∫
∂Ω
ω is already defined, we have

∫
∂Ω
ω =

∫ [
∂(Ω[)

ω. By (3), this
follows from

Proposition 2. Suppose Ω is the interior of a finite union of oriented nonover-
lapping affine n-simplices σ1, ..., σN . Let Ω =

∑
σi ∈ Pn.

Then Ω[ ≡ limWk = Ω.

We relegate the proof to the Appendix.

§4: The Gauss-Green Theorem

We wish to show that the extended integral we have defined satisfies properties
A and B of section 1. First,

Theorem A. Let d ∈ (n − 1, n]. If ω is Hn−1-a.e. equal to a (d − n + 1)-Hölder
form, and Ω is a Jordan domain in Rn such that ∂Ω is d-summable,

then
∫
∂Ω
ω = 0 if ω|∂Ω = 0.

Proof. For purposes of integration we are free to assume that ω is actually (d−n+1)-
Hölder.

Assume ω|∂Ω = 0. Think of ∂Wk as representing a finite union of PL (n − 1)-
manifolds, approximating ∂Ω in the Hausdorff metric. For x ∈ ∂Wk, Q ∈ Wk a
cube containing x, and p ∈ ∂Ω any point minimizing the distance from x to ∂Ω,
we have

|ω(x)| = |ω(x)− ω(p)| ≤ |ω|d−n+1|x− p|d−n+1 ≤ C|ω|d−n+1|Q|d−n+1

for some constant C depending only on n.
If S denotes an (n− 1)-face of ∂Wk and Q ∈ Wk is the k-cube containing S, we

then have

|
∫
S

ω| ≤ C|ω|d−n+1|Q|d−n+1 vol(S) ≤ C|ω|d−n+1|Q|d.

Each face of ∂Wk is one of the 2n faces of some Q ∈ Wk. Therefore

|
∫
∂Wk

ω| ≤ 2nC|ω|d−n+1

∑
Q∈Wk

|Q|d → 0

as k tends to infinity. //

The following example shows that “(d − n + 1)-Hölder” cannot be replaced by
“d-flat” (nor weakened to (d′ − n+ 1)-Hölder for any d′ < d).
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Example 3. For any d ∈ (1, 2], there is a d-flat 1-form ω in the plane, and a
Jordan domain Ω with d-summable boundary, so that ω|∂Ω = 0 but

∫
∂Ω
ω 6= 0.

To show this, we can construct, by the same technique as in Example 1, a
compact arc γ with dimension d′ ∈ (1, d) and a Cd

′
function f : R2 → R so that

df = 0 on γ, f(γ(0)) = 0, and f(γ(1)) = 1.

For convenience of this example, we can also arrange the following extra condi-
tions:

(a) γ(0) = (0, 1/2), γ(1) = (1, 1/2), and, except for these endpoints, γ is con-
tained in the open unit square U = {(x, y) : 0 < x < 1 and 0 < y < 1}, and

(b) f ≡ 0 on {(x, y) : x ≤ 0} and f ≡ 1 on {(x, y) : x ≥ 1}.

Now let σ be any smooth arc with σ(0) = γ(1) and σ(1) = γ(0), and such that
σ is, except for endpoints, disjoint from Ū . Then σ ∪ γ forms the boundary of a
Jordan domain Ω, and this boundary is d-summable since it has dimension d′ < d.

Let β : R2 → R be a C∞ function so that β ≡ 0 on {(x, y) : y < 0 and y > 1}
and β ≡ 1 on a small neighborhood V of γ.

Now define ω = βdf . Note that ω ≡ 0 outside U , and since ω = df on γ, we thus
have ω|∂Ω = 0.

It remains to check that ω is d-flat and
∫
∂Ω
ω 6= 0.

First, observe that there are constants N, ε, depending only on V , such that any
2-simplex τ can be subdivided into at most N sub-simplices τ1, . . . , τj , j ≤ N , such
that each τi is either contained in V or else has distance at least ε from γ.

Furthermore, since ω is C∞ away from γ, there is a constant K so that |dω(x)| ≤
K whenever d(x, γ) ≥ ε.

Now

|
∫
∂τ

ω| ≤
j∑
i=1

|
∫
∂τi

ω| =
∑
τi⊂V

|
∫
∂τ

ω|+
∑
τi 6⊂V

|
∫
τi

dω|,

where we have made use of the ordinary Gauss-Green theorem in the last sum.
The terms in the first sum on the right are zero since, in V , ω = df is exact. The

terms in the second sum are bounded by K area(τi) ≤ KM2(τ) ≤ KMd(τ), so

|
∫
∂τ

ω| ≤ NKMd(τ).

This means ||ω|| < NK, and hence |ω|d <∞.

To show that
∫
∂Ω
ω 6= 0, we show that

∫
∂Wk

ω = 1 for large k, where Wk is the
polyhedral approximation to Ω given by the Whitney decomposition.

Divide the set ∂Wk into two parts ∂Wk = Sk ∪ Tk, where Sk = ∂Wk \ U and
Tk = ∂Wk ∩ U .

Now
∫
Sk
ω = 0 since ω = 0 off U . For large k, Tk ⊂ V , so

∫
Tk
ω =

∫
Tk
df = 1,

since the endpoints of Tk all lie on x = 0 or x = 1, where f has value 0 or 1,
respectively.

Hence
∫
∂Wk

ω =
∫
Sk
ω +

∫
Tk
ω = 1. //

We can do away with the summability assumption in the Lipschitz case:
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Theorem A’. If ω is Hn−1-equal to a Lipschitz form and Ω is any Jordan domain
in Rn (even with positive measure boundary), then

ω|∂Ω = 0 implies
∫
∂Wk

ω → 0,

where Wk is the polyhedral approximation determined by the Whitney decomposition
of Ω.

Proof. The Whitney decomposition of any bounded region is always n-summable.
Now repeat the proof of Theorem A with d = n. //

Even when ω is Hn−1-a.e. differentiable on Ω and dω ∈ L1(Ω), we cannot
expect to have a Gauss-Green Theorem, even for rectangles, because of the usual
Cantor function counterexamples to the Fundamental Theorem of Calculus. In one
variable, this motivates the notion of absolute continuity. In higher dimensions, the
natural counterpart is the “ACL” condition:

Definition. A function f is ACL (absolutely continuous on lines) in a domain Ω
if , in each closed rectangle R ⊂ Ω, f is absolutely continuous as a function of one
variable when restricted to almost every line parallel to each coordinate axis.

A form is ACL if each of its component functions is ACL.

Note: An ACL function has finite partial derivatives a.e. [LV], so that dω is
defined pointwise a.e. if ω is ACL.

Definition. We denote by W 1,1(Ω) the Sobolev space of (n−1)-forms ω satisfying
(i) ω is ACL in Ω, and
(ii) dω ∈ L1(Ω).

This space W 1,1(Ω) is a natural space of forms for which Green’s formula holds
for rectangular subregions of Ω [LV, lemma III.6.1]. The benefit of sections 2 and
3 is that we now have a meaningful definition for the expression on the LHS of (1),
logically independent of the RHS. The theorem is the following:

Theorem B (Gauss-Green). Let d ∈ (n− 1, n]. If ω ∈ F d
⋂
W 1,1(Ω), and Ω is

a Jordan domain in Rn such that ∂Ω is d-summable,
then

∫
∂Ω
ω =

∫
Ω
dω.

Proof. The main work has already been done:
If W is the Whitney decomposition of Ω, then

∫
Ω
dω = lim

∫
∂Wk

ω.
Since ω ∈ W 1,1(Ω), we have, for any Whitney cube Q,

∫
Q
dω =

∫
∂Q

ω by the
standard arguments via the Fundamental Theorem of Calculus.

Hence
∫
Wk

dω =
∫
∂Wk

ω. Now by the Lebesgue Dominated Convergence Theo-
rem, the left hand side above tends to

∫
Ω
dω. //

Appendix

Proof of Proposition 2.
We are given Ω =

∑N
1 σi such that Ω = int(∪σi), and we wish to show that

Md(Ω−Wk)→ 0 as k →∞.

Let W (k) denote the union of the simplices of Wk.
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Fix k large enough that Wk 6= ∅.
For j ≥ k, define the collections U(j) and V(j) as follows:

U(j) =
⋃

k<i≤j

Wi, and

V(j) = {Q ∩ Ω : Q is a j-cube, and Q * ∪U(j)}.

Note that U(j) ∪ V(j) is a finite decomposition of Ω \W (k).
Since every element of V(j) is contained in the 2−j+2

√
n+ 1-neighborhood of ∂Ω

, the cardinality of V(j) is at most C2j(n−1), where C is some constant depending
on Ω but not on j or k.

Choose the constant C ′ = C ′(n) so large that for any n-cube Q and n-simplex
σ, Q ∩ σ can be subdivided into at most C ′ n-simplices. Then for any n-cube Q,
Q ∩ Ω can be subdivided into at most NC ′ n-simplices.

Now we may subdivide each element of U(j) and V(j) into at most NC ′ affine
n-simplices. Denote the collection of all such simplices by T (j); this is a finite affine
decomposition of Ω \W (k), and so its d-sum estimates Md(Ω−Wk).

The d-sum of T (j) is at most

NC ′


 ∑
k<i≤j

∑
Q∈Wi

|Q|d
+ C2j(n−1)2−jd(n+ 1)d/2


≤ C ′′


∑
i>k

∑
Q∈Wi

|Q|d
+ 2j(n−d−1)


where C ′′ depends only on n and Ω.
Letting j →∞, this shows that

Md(Ω−Wk) ≤ C ′′
∑
i>k

∑
Q∈Wi

|Q|d,

which tends to zero as k →∞ by Lemma 2. //
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