LINEAR ALGEBRA. Part 0

Definitions. Let \mathbb{F} stands for \mathbb{R}, or \mathbb{C}, or actually any field. We denote by \mathbb{F}^{n} the set of all n-vectors, i.e. $n \times 1$-matrices with entries from \mathbb{F}. Equipped with the operations of addition and multiplication by scalars, they form an \mathbb{F}-vector space. A map $A: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ is called linear, if for all $\mathbf{x}, \mathbf{y} \in \mathbb{F}^{n}$ and all $\lambda, \mu \in \mathbb{F}$, we have $A(\lambda \mathbf{x}+\mu \mathbf{y})=\lambda A \mathbf{x}+\mu A \mathbf{y}$. Two \mathbb{F}-vector spaces are called isomorphic if there exists an invertible linear map between them. Two linear maps $A, B: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ are called equivalent if there exists isomorphisms $C: \mathbb{F}^{m} \rightarrow \mathbb{F}^{m}$ and $D: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ such that $B=C^{-1} A D$. The dimension of a vector space is defined as the maximal cardinality of linearly independent subsets in it The rank of a linear map is defined as the dimension of its range (which is a subspace in the target space, and is therefore a vector space on its own).

1. Show that every linear map $\mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ is the multiplication by an $m \times n$ matrix, A : $\mathbf{x} \mapsto A \mathbf{x}$.
2. Prove that in \mathbb{F}^{n}, every set of $n+1$ vectors are linearly dependent.

Hint: Apply induction on n.
3. Prove that every maximal linearly independent set in \mathbb{F}^{n} has n elements. Hint: Show first that vectors of this set form a basis, i.e. every vector is written uniquely as their linear combination.
4. (Classification of finite dimensional vector spaces.) Prove that every finite dimensional \mathbb{F}-vector space is isomorphic to exactly one of $\mathbb{F}^{n}, n=0,1,2, \ldots$. 5. (Classification of linear maps: The Rank Theorem.) Prove that two linear maps from \mathbb{F}^{n} to \mathbb{F}^{m} are equivalent if and only if they have the same rank. Hint: Given A of rank r, construct bases $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ in \mathbb{F}^{n} and $\mathbf{f}_{1}, \ldots, \mathbf{f}_{m}$ in \mathbb{F}^{m} such that $A \mathbf{e}_{i}=\mathbf{f}_{i}$ for $i=1, \ldots r$, and $A \mathbf{e}_{i}=\mathbf{0}$ for $i>r$.
6. Derive that every linear map $\mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ of rank r is equivalent to the map given by the $m \times n$-matrix $E_{r}=\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]$.
7. Derive that for every linear map $A: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}, \operatorname{rk}(A)+\operatorname{nullity}(A)=n$.
8. Show that for every $m \times n$-matrix of rank r there exist invertible matrices C and D such that $A=C^{-1} E_{r} D$.
9. (Systems of linear equations: theory.) A system $A \mathbf{x}=\mathbf{b}$ of m linear equations in n unknowns with the coefficient matrix A of rank r is consistent provided that the right hand side \mathbf{b} satisfies a certain set of r linear condidtion, and in this case the general solution depends on $n-r$ parameters. Hint: This is true for the system $E_{r} \mathbf{x}=\mathbf{b}$.
10. (Excess dimension formula.) Let U and V be two subspaces in \mathbb{F}^{n} of dimensions a and b respectively. If $U+V=\mathbb{F}^{n}$ (i.e. vectors from U and V span the whole space), then $\operatorname{dim} U \cap V=n-a-b$. Hint: Consider the map $(\mathbf{u}, \mathbf{v}) \mapsto \mathbf{u}-\mathbf{v}$ to \mathbb{F}^{n} from the direct sum $U \oplus V$ (by definition, it consists of ordered pairs, $\mathbf{u} \in U, \mathbf{v} \in V$), and apply the "rank+nullity" formula.
11. Prove that positive and negative inertia indices of the quadratic form $x_{1}^{2}+\cdots+x_{p}^{2}-x_{p+1}^{2}-\cdots x_{p+q}^{2}$ in n real variables x_{1}, \ldots, x_{n} are equal to p and q respectively.

