LINEAR ALGEBRA. Part 0

Definitions. Let \mathbb{F} stands for \mathbb{R} , or \mathbb{C} , or actually any field. We denote by \mathbb{F}^n the set of all *n*-vectors, i.e. $n \times 1$ -matrices with entries from \mathbb{F} . Equipped with the operations of addition and multiplication by scalars, they form an \mathbb{F} -vector space. A map $A : \mathbb{F}^n \to \mathbb{F}^m$ is called *linear*, if for all $\mathbf{x}, \mathbf{y} \in \mathbb{F}^n$ and all $\lambda, \mu \in \mathbb{F}$, we have $A(\lambda \mathbf{x} + \mu \mathbf{y}) = \lambda A \mathbf{x} + \mu A \mathbf{y}$. Two \mathbb{F} -vector spaces are called *isomorphic* if there exists an invertible linear map between them. Two linear maps $A, B : \mathbb{F}^n \to \mathbb{F}^m$ are called *equivalent* if there exists isomorphisms $C : \mathbb{F}^m \to \mathbb{F}^m$ and $D : \mathbb{F}^n \to \mathbb{F}^n$ such that $B = C^{-1}AD$. The *dimension* of a vector space is defined as the maximal cardinality of linearly independent subsets in it The *rank* of a linear map is defined as the dimension of its range (which is a subspace in the target space, and is therefore a vector space on its own).

1. Show that every linear map $\mathbb{F}^n \to \mathbb{F}^m$ is the multiplication by an $m \times n$ -matrix, $A: \mathbf{x} \mapsto A\mathbf{x}$.

2. Prove that in \mathbb{F}^n , every set of n + 1 vectors are linearly dependent. Hint: Apply induction on n.

3. Prove that every maximal linearly independent set in \mathbb{F}^n has *n* elements. Hint: Show first that vectors of this set form a *basis*, i.e. every vector is written uniquely as their linear combination.

4. (Classification of finite dimensional vector spaces.) Prove that every finite dimensional \mathbb{F} -vector space is isomorphic to exactly one of \mathbb{F}^n , $n = 0, 1, 2, \ldots$. 5. (Classification of linear maps: The Rank Theorem.) Prove that two linear maps from \mathbb{F}^n to \mathbb{F}^m are equivalent if and only if they have the same rank. Hint: Given A of rank r, construct bases $\mathbf{e}_1, \ldots, \mathbf{e}_n$ in \mathbb{F}^n and $\mathbf{f}_1, \ldots, \mathbf{f}_m$ in \mathbb{F}^m such that $A\mathbf{e}_i = \mathbf{f}_i$ for $i = 1, \ldots r$, and $A\mathbf{e}_i = \mathbf{0}$ for i > r.

6. Derive that every linear map $\mathbb{F}^n \to \mathbb{F}^m$ of rank r is equivalent to the map given by the $m \times n$ -matrix $E_r = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$.

7. Derive that for every linear map $A : \mathbb{F}^n \to \mathbb{F}^m$, $\operatorname{rk}(A) + \operatorname{nullity}(A) = n$. 8. Show that for every $m \times n$ -matrix of rank r there exist invertible matrices C and D such that $A = C^{-1}E_r D$.

9. (Systems of linear equations: theory.) A system $A\mathbf{x} = \mathbf{b}$ of m linear equations in n unknowns with the coefficient matrix A of rank r is consistent provided that the right hand side \mathbf{b} satisfies a certain set of r linear condiction, and in this case the general solution depends on n - r parameters. Hint: This is true for the system $E_r \mathbf{x} = \mathbf{b}$.

10. (Excess dimension formula.) Let U and V be two subspaces in \mathbb{F}^n of dimensions a and b respectively. If $U + V = \mathbb{F}^n$ (i.e. vectors from U and V span the whole space), then $\dim U \cap V = n - a - b$. Hint: Consider the map $(\mathbf{u}, \mathbf{v}) \mapsto \mathbf{u} - \mathbf{v}$ to \mathbb{F}^n from the direct sum $U \oplus V$ (by definition, it consists of ordered pairs, $\mathbf{u} \in U, \mathbf{v} \in V$), and apply the "rank+nullity" formula.

11. Prove that positive and negative inertia indices of the quadratic form $x_1^2 + \cdots + x_p^2 - x_{p+1}^2 - \cdots + x_{p+q}^2$ in *n* real variables x_1, \ldots, x_n are equal to *p* and *q* respectively.