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Summary. In pert I, some large families of automorphisms oF = — YL
of a generic metrix algebra k < Ko eevs By > g (ny, a > 1,
k e field) are constructed. It is shown that when n = 2,
these are not all tame, ©Soms criteris for an endomorphism
of k< x];, cees X, >3 to be an automorphism ere discussed.
In pert II, identities for d x d matrices are studisd
using the trick of diagonalizing one of the generic matrices.
Among the results obtained are the nonexistence of nontrivial
ldentities whose total degree in the other indeterminates is
< d, the existence of an essentially unique identity whose
degree in those indebterminatés is 'd, and the existence of

elements centralizing the distinguished indeterminate y but

not lying in 2Z[y] (& the center).

The two parts of this paper are essentially independent, except that
part II uses the notation set up in the first two paragraphs of part I, and

provides an example referred to in part I, B2.

Fart I, Wild automorphisms,

1., The main example. ILet k Dbe a field, end let n and d be positive

integers. let
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Re=k<x, eoey xy % S Myl [xpy90 vy mygql )
denote the k=algebra genera'bed by n dxd matrices of commuting indeterminates
%, = ((x ; )) (me {1,...4n}, isj € {lses.sd}). Thus, R is the free algebra
on n indeberminates in the variety of k-elgebras satisfying the identities of
dxd matrices over commutative k-algebras.
Z will denote the center of R. For n>1, Z consists of scalar matrices
2l (e € k[xlll""’ xndd]); thus Z is isomorphic to a subring of k[xlll’""xndd]'
That this subring is strictly larger than k 1is a celebrated result of E. Formanek
and Y, P. Razmyslov (see [1] Bl2.e, [2] Bl.8, [3] B8.L or. [12]).
For 1<m< ﬁ, let S denote k < Xyse-es xm-l’ Hnslseecs ®n Jg S R. Also,
letting + be an auid:Lt1 onal comu’c:.ng ..ndetermlnate E let
= { f(xl,...,y&l) €R | f(al,...,xm-*'tl,..., Xp) = f(xl,...,xn) 1.
Clea.rly, I, is a subring of R containing Sp. Bubt if n and d are both > 1,

m

I, also conteins elements not in Sy, such as

[0 gl = xpxy - xmy (2 fm).
We claim, in fact, thet ZaT; i1s strictly larger than Zn S;. For let f be
en element of Z not in k, which is homogeneous in each of Xyseeos Xy end
chosen so a5 to minimize its total degree. Take some m such that f has positive
degree h in the .va.riable x5 in particular £ g Sm. Then for all j > 0, the
coefficient of +J in f(xi,..., = S PEPPIN xn) - f(xl,..., xn) has degree h=j
in Ko hence must be zero by our minimality essumption on h. Hence f € Tm’

so ZaT ¢ 8.




For 1< mS n, fe€R, and c¢ € k, let us define endomorphisms

yzm, f and Em, c o] f R by

x. if pFEm

. J7r
’)m,f(xPi) xp. + £ if p =
(1)

% if pfm

(x.) =
Emye ™ ¢ x, if p=m

It is well known, and not hard to see, that if f € Sm, then ',
m, f
is an automorphism of R, with inverse !qm’_f, and that if ¢ ;4 0 then

The group generated by these

£ is an automorphism, with inverse £

myc myc=le

automorphisms, as £, ¢ ‘and m range over all admissible walues, is

celled the group of tame.automorphisms of R,

One can clearly define the same types of endomorphism Nwye &nd €.,

on the free associative algebra k < Xjse++s X, >, and hence the concept of

the group of tame automorphisms of this algebra. In faect, it is meinly for

this case, and for the d = 1 case, i.e. the commuting polynmn:ua.l algebra
k< Xyseoes X, >y k[xl,..., xn], that the concept has been

studied. From the fact that every element £ e S, is the image of an
elerent of the free associative algebra k < Xyseces X a9 xm-!—l’,""' X, >

it is easy to deduce that every bame eutomorphism of R = k < X)seees Xn >d
can be lifted to k < Xyseees X, > il.e., is the immge of a tame automorphism

of this free associative algebra, under the naturel homomorphism
Aut<k<xl’ooo’xn‘>) I""’A‘J‘b(R ).

Jung, Gutwirth, Negete and van der Kulk ([4]-[7]; of. ettributions in [8])

have proved that all automorphisms of k[xl, x?J are tame., This implies that




the map Aub(k< Xy x2>) -> Aut(k[xl, xz]) is surjective. Czernieskiewicz [8]
shows that this mep is also injective, and hence that all automorphisms of
k<z1, x2> are tame., (This temeness result is proved in a slightly different
way for ohar k = 0 By L.G. Mekar-Limanov [12].)

We shell now construct, for 4 > 2, n> 2, nontrivial aubtomorphiasms of R =

k< Xyseees Xy >d which lie in the kernel of the matwral map
(2) Aut ( k< Kyseees Xy >d ) = Aut( k< Xyseser Xy >d-1)'

In particular, these go to the identity automorphism of k:[xl,..., xn];
hence for n = 2 it follows from Czerniakiewicz's result that they cannot
be lifted to k < X1s Xy >s and so are not tame,

let us first note that if g€ 2 and fe€ im, then

(8) '}m,f ’)m,g; - rim,f-!—‘g'

Indeed, both sides of (3) fix x_ for all p #m, The left~hand-side,

P
epplied to xy, gives (xm+ £) + g(xl,..., X FLyeess xn), which simplifies
to xp+f+g because g € I, is unaffected by edding a scalar matrix to its
nth argument, Hence the two sides of (3) also agree bn x .

It follows from (3) that for f € Zn‘Tm, '}m,f and V,m"_f are inverses to
one é.nother, and in fact, that for each m, the map f w>» y'm"f is a
homomorphism of the additive group of Za T, into Aut( R ).

Now any element f € Z with zero constant term in % 1lies in the kernel

of the natural homomorphism R -» k < Xys eees Ey Zo ([3] Prop.VII. 1.2, (4)).
In perticuler, if we take £€ Zr\Tm having zero constant term, then vm,f

will be carried by (2) to Ym0 =t For n=2 we can conclude as noted
L]

above that 7m,f is not tame.




Example. On k < X1s Xg >2, the aubtomorphism rll,[xl,xz] o, carrying

x. %o %y ¥ [xl,xzjz and fixing Xos is not tame.
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Remark: For n > 2, the homomorphism Aut( k< Xys eoes Xy >) -
Aut( k [xl, ooy xn} ) is not one=-to-one, even on tame elements. For

instance, 5] € Aut( k <xys Ips Xz > ) is (by definition) teme,

"l, [xz,x
but it is mapped to the identity in Aut( k[x;s x5, x;] ). Hence, though
the above construction gives automorphisms of R which are of the fornm

Oﬁ, g for Tf Sm" which go to the identity -t;mderv (2)', and for which one
has no obvious lifting to automorphisms of k < Xyse.., x > (or even

k< xl,...., X, >d+1)’ nevertheless I see no way of proving that they are

not tame, i.e. that they canmot somehow be written as a product of the
automorphisms (1). In particular, a non-tame automorphism of %k < xi, Xo >4

when extended to an subomorphism of k < x_, xz, Xg >q by letting it fix Xz

1
might, as far as we can téll,.become tane,

For n > 2 +the questions of whether all automorphisms of
l:[xl,..., xn:{ ere btame, and of whether all automorphisms of k < Xyseees ’51>

are teme, are also open.

2., Variants. We have seen that an endomorphism Om.¢ °f R is an automorphism
—m—— 3

if either f e Sm or fe ZnTm. Neither of these facts is a special case of

the other, but there is & common idea behind both. To see it, let us begin by

noting that for any Gyseess O € k, the endomorphism ¥ of R defined by
(4) @(xl) = xl + Cl $ oeey ¢(xn) = In + On
clearly has en inverse, given by

(5) ‘P(xl) =x - Cqs cees W(Xn) =X, T Cpe




But if for cl,..., ¢, We instead use srbitrery elements of R, "bhan \P will
not in general be an inverse to @ — when we compute P(Y (xm)), we get
x; * oy = ((’(o ), and the latter two terms may not oencel,

The idea behind the two types of automorphisms noted above is to set
up (4) so that P does not modify the op’'s. In one case (that. used -in
generating conventional 'tame automorphisms®), ¢ changed only one of the
generators X, and f =g¢, was chosen from Sm’ so that it was not
affected by changes in this generator. In the other case, we chose ) 4
"more! restrictively, to alter x, only hy-a central element £, but
we were then able to be less restrictive in that £ could involve Xs @85
long as it was insensitive to central elements added to this generator,

Using the same idea, we c;.n give still more constructions for automorphisms
of R. For instance, let m )‘ g<n, let C, SR be the oentralj.zer of xq.,

q
and let Um,q € R denote the subring of eleme'nts that involve x; only via

the commutetor [Xq.o Xm]a i.e. Um,q = S < [xq.xmi > ¢ R. Then we Sée that for
fe cq, qm,f fixes all elements of Um q* 5° in particule.r, if fe anU 0,q

N, £ will heve the inverse N, -t" (More generally, (¥ hokis. for. : P& Cq’ ge meq* .)

Note that
() an Z[zq}, hence anUm q:‘ (Z,-\Um,q)[xq].
From the latter inclusion we can see that the subring canm' g SR is not

o ]
contained in either Sm or Zn Tm' It also clearly does not contain either
of these subrings in general, hence this new class of automorphigms neither lies
in nor contains either of the classes discussed above.
ford > 2

In Part II, Bg below, we shall see thmt, the inclusions of (6) are both

strict, giving still further eutomorphisms iA this new class, (In 810 the same

result is noted for d = 2, n > 2.)




One cen also "reverse" the construction of section 1! Suppose f € R Ims

the property thet

(7) f(x13 cevey }Cﬂ1+ Vs oeey xn) = f(xl!00¢, xn) for
eny matrix y with O = tr(y) (trace of y).

Then if also +tr(f) = 0, ')m,f will clearly again be ?.n automorphism of
R. For en example of an f satisfying (7), (specifically, having the property
£ = tr(x;) g, where the matrix g involves only the entries of {xpl pE m})
see [1] p.467, Bxercise 8. This £ does not itself has zero trace, but the
element [:51+1f, xn_,_?J In K< Xyseees Xpsp >3 clearly will. (By standard
tricks, the number of matrix indebterminates needed can be reduced from n+2
(the n  wused in this example happens to be 3d2) to 3.)

let us note that if the characteristic of k does not divide d, any
dxd metrix over a k-algebre mey be written uniquely as the sum of & scalar
matrix and a matrix with trace O. Hence to give an n~tuple of independent
dxd matrices is equivalent to giving 2n dxd matrices, n of which are specified
as being scalar and the other n as having zero trace, but otherwise independent.
In terms of these "coordinates", ’chebt:%ﬁe of automorphisms introduced in
section 1,and the above "reversed" example::look like tame automorphismss One
of the new "coordinates" is being altered by a function of the other "eoordinates,®
Further, note that once a matrix Xy hes been given — assuming it has.
distinot eigenvalues, and.so in particular:can be diagonalized over an appropriate
extension field, -which is true of a matrix of indeterminates — then to give
enother matrix X, 1s . equivalent to giving one matrix which commutes
with x;, i.e. is diagonal with respect to the same basis as X1 and another
which has diagonal entries all zero when expressed in that basis, i.e. is a

commutator [xl’ y]. In terms of this decomposition, the other elass of




automorphisms described in this section also looks ‘teme,

The weekness of this viewpoint is that the "components" of our generic
matrices with respect to the indicated decompositions do not themselves lie
in R=k < Eys eees Xy >d’ so that we cannot really go to a new set of
generators for R as we would like. Nevertheless, I find the viewpoint
suggestive,

It is interesting to mote thet if wo write F = k & X seves x!}d for the
skew field of fractions of R, then the "components® in question will lie in P.
Indeed, if we let L denote the center of F, ‘then the trace map is a
K-lineer mp F =» L, namely tr(x) = 1/d times the trace of the action of
x by left multiplicetion on the d%-dimensional L~vector~space F; hence
the decomposition x = (3/d) w(x) + (x = (1/d) tr(x)) makes sense in F.
Similarly, if we write ad(xl) for the operator y w» [xl,y], then as
xy; has distinet eigenvalues, one can prove, by looking at an extension of
scalars to & field conteining those eigenvalues, +that F = ker ad(xl): ®

im ad(xl) s which allows one to give the second decomposition.
Observaetions along these 1ines allow one to construect large classes of
(2, p.91, Lemma 3]
"pseudo-tame" automorphisms of F. Further, using the known fact"b}nt L
is just the field of fractions of 2, one can show that most of these classes
have nonidentity members defined on R, We omit the details.
the skew field -
let us note, however, that A F has still wider classes of easily

constructible automorphisms than those mentioned so far! Clearly, for

eny m, the operation of multiplying Xn by Some nonzeroc member of F

dependiﬁg only on the other indeterminates induces an automorphism of F. To complicat

things further,the concept "depending only on the other indeterminates®




cannot be interpreted simply as "lying in the sub-skew-field generated by the
other indeterminates"™. For éxample, 7 Wwé know that k & Xyo Xy :)d contains
the sealar . #(x,)  in its center, and one can deduce that it has an
sutomorphism fixing =x,, and carrying x, %o x, ..,h"(xl) . But tr(x;)
cléerly does not lie in the . - subfield k(xl). ﬂcwéver, this type of
peculiar behavior may be limited to the two-variable case. B.g. for n §3,
'br(xl) does lie in the sub=skew=field k € X0 X3 ;}d generated by the
variables other than Xy

Iet us turn back to the beginning of this section and expand on one
point we made. Though we saw that (4) has (5) for an inverse if and only
if Cyseces O 8TE fixed by ¥, it will have an inverse if and only if

the weaker statement

(8) Olaoco’ On € ‘P(R)

holds. Indeed, nedessity is clear. Conversely, if we cen write o = '-e(dm)
(dm €R, m=1l,..., n), then we olaim an inverse to (4) is defined by

‘P(xl) = xy = dys eees \p(xn) =x, =d.

For . direct computation shows that @Y = 1. If YP were not 1,
then gO would have to be & surjective but noninjective endomorphism of R.

But arguments involving the transcendence degree of 2 show that such - . ..

endomorphisms camot exist.’

However, .I have not been able to use the weaker oriterion (8) to find

any new examples of automorphisms. ~ N




3. A converse. lLet n., d>1l, and let f be & member of 2, the center
of R=k< xl.,...A, X, >d. We have seen that a sufficiept condition for
7m,f $0 be an automorphism of R is that £ also lie in T,- let us now
show that this is also necessary.

We first note that for any f(xl,...,xn) € 2,
(9) f(o"ov.’ %” toe )y 0) € k-

For the above element is e polynomial in x,, and no nonconstant polynomial
in one metrix of indeterminates can give e scalar matrix,: ”(Thi_s is mosf easily
seen by speciaslizing x, toa diagonal matrix with distinct indeterminste
diagonal entries.)

Now let K denote the algebraic closure of k. The field K is infinite,

hence for amy f € R = Tm we oan find particular wvalues

(10) 5y B € M (K)
such that
(11) :f.‘(}l',...‘, 3m+'bI‘,..., x)e Mn(K[t]) involves +t.

In particular, if f € 2 =T, then the element given in (11) will be
the identity matrix times a nonconstant polynemial F(%) e K[t]: We now
consider two ceses:

Case 1. The matrices (10) can be chosen so that F(t) has degree > 1.
Then we can clearly find distinct elements T, T' € X such that
(12) T+ K7) = aq' + F7').
Let us define two homomorphims P, €'s R =» M (X), by letbting ‘P(xp) = ‘P'(xp) =
5, forall pfm, while P(x) = & +7I, ¢*(x) = 2+ 1'% We olaim that

10
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‘p?m, £~ @ Tm,t * Indeed, these two homomorphisms R ~» Mn(K) clearly agree on
% (p#m). On %, ‘the first gives ‘P(xm + f) = (§m + 7I) + f(%l,..., $m+TI,...,}n)
= gm +71I + F(T)I, while the second . gives ‘km +etI + F(r')I; and
these agree by (12). Thus ¥ and ¢' agree on the image of N, £ hence ']m,f’
R =-» R cannot be surjective.
Case 2. For all choices of 51,...,§n, F(t) has the form o +ft.
Begin by choosing values (10) so that (ll) is satisfied. Then introducing
another commuting indeterminete s, we see that i’(ssl,..., m+1:I,..., s§n)

will be a polynomial w(s) + p(s)*b_ (=, p e X[s] ). P_utting 8 = 0, we see

f(ssia---: Sm"'tIs--o's Ssn) = (“(:S) +ﬁ(s)t)1, where G(.,ﬁ € K[s].

Putting 8 = 0, we see

from (9) (with §,#4I for x) thet B(0) = 0. But vy (11), A1) £0. 8o
is & nonconstant polynomial, so we can find o € K such that p(cr) = «1. So
replacing ’ép by o-gp € Mn(K) (p # m), we get F(t) -in the form «=t. So

now (12) holds for all T, ', and the proof can be completed as before.

Example. For char k # 2, +he endomorphism N, [2 xz-lz of k< x, x>,
kST

is not an automorphism, in contrast with the example in the first section.
In fact, one finds that the homomorphisms €, ¢': k < X X >2 - Mz(k)

] = t = - =.p? = '
have the seme compositions with Yi, [xt;:, x 2]2- so this endomorphism cennot

have =x; in its image.

4, An algebraic geometric viewpoint. Again let -R =k < XyseeesX, g9 and let X

be the algebraic closure of k. A k-algebra endomorphism €. of R is
determined by the n-tuple of elements
Q(xl) = al(xl,ooo,xn), . . . » Q(Xn) = an(xl’coo’xn) € R,

This n=tuple in turn determines a set-map %3 Md(K)n - Md(K)n, by
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(13) O (fpoeeendy) = (ogCaueenl )ueney a (31h0008)).

Identifying Md(K) set-theoretically with Kdz, 8% may be regarded as

& polynomial map Kdzn -5 Kdzn. This is equivalent to an endomorphism 6!

of k[xlll""’ ’Smdd}' Here 0% 1is contraveriant in 6, but €' is again
covarient in @; € and ©' are related by the formula e(f)ij = e'(fij)
where f € R, and fij denotes the (i,j) entry of the matrix f£.

Cleerly a necessary condition for
(14) © € Aut(R)
to hold is
(1s) 8% is bijective, equivalently ©' € Aut k[xlll"""’ xndd]‘

The two statements of (15) are eguivalent by algebraic geonetry. A necessary

condition for (15) to hold is, in turn

(16) The determinant of the nd"3 % nd® Jacobian matrlx for ©%*, given

by en element of k[xln""’xndd]’ is invertible, i.e. lies in k = {o}.

The implication from (14) to (the first form of) (15) is essentially the
criterion we used in the preceding section.

As to whether (15) => (16) is reversible, this is a case of an outstending
question of commutative ring theory, the Jacobia.n»Dsteminan‘b Problems If e
polynomial map @ : K¥ = k¥ has constant nonzero Jacobian determinant (say
everywhere 1), must it be bijective, i.e. must the corresponding endomorphism

of K[xl’”"xr] be en automorphism? This is not known even for r = 2,
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We remark thet Czerniskiewicz hes conjectured thet an endomorphism
of the free algebra k < xl, xz > 1is an automorphism if and only if itvpreserves
the element [xi, xz], up to & nonzsro scalar factor. ("Only if" follows from
her temeness result.) Though there is no apparent generslization of this conjecture
to n > 2, it seems (as A. Hausknecht has pointed out to me) to be somehow

releted to the Jacobian determinant conjecturs for kfxl, le. .

Pert II. Identities

The remsinder of this paper studies identities in matrix algebras,
equivalently equations holding in free p.i. algebras R =k < X ceePye
They were inspired by the problem of finding elements centralizing one
indeterminate Xgs but not lying in the "obvious" subring Z[xq] Such
elements are indeed obtained, but the methods are probably of as much interest
for their ability to show precisely what elements in certain large spaces of
polynonials are identities as for these particular examples.

The approach, loosely speaking, is to distinguish one indeterminete vy,
and consider polynomials of specified degrees, and possibly also orders of
occurrence, of the other indeterminates, but arbitrary in the way vy ean ocour,

The study of such polynomials is added by the trick of diagonalizing the matrix

¥s used before By Proocesi.
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5. The basic tool: +the map Ko Throughout the remsining sections,

k will be & commutative integral domain, end n a positive inbteger. We
shall be using the commutative polynomial ring in n+l indeterminates,
k[to,..., tn], which will be abbreviated k[t*]. |

If R is any associative k-algebre, and y an element of R, we
define a mep

X3 k[ty] xR =R

y
by specifying thet for monomial arguments in k[t*] it be given by

ro ,r1 Ty . Iro ] Tn=1 Tn |
(17) Oﬁy(to tl e tn > Jcl’ LI ) &) - y XI y ® s y %1 y K]
and that it be k-linear in each of its n+l arguments. Loosely speaking,

then, (0 fm< n) represents the operation of inserting & factor of y

between x; end x . (mutetis mutendis for m = 0, n) before multiplying

th.e x's together. Gi‘V‘en xl,oa-, %3 the image uy,(k['t*], XI,o.¢, .‘Xn) €R
can be described as k[y] % kly] ... x[y] =, k[y] (i.e. the sukgroup spenned
by all products of elements from these sets.) -

We note that for any f € k[t*], end 0<m<n,

(18) “y( tm £, Xo:u-s X, ) ‘(y(f: Kyseees X Fo Kyyqs oo xn)

“y(fa Xyssees Xos ¥ Fptls oo xn)a

except that for m =0, +the first of the two formulas on the right should

be replaced by y .(y(f, Xyseees xn), and for m = n, the second should

be replaced by dy(f, Kys eors xn) y. In particular we see that for 1< m<n,




il

(19) oly( (tpag=tp) T XyseersX,) o(y(f, Xyseeos [Fs Xyloeees x,)s
and that

(20) ety (o608, zpaenes x) = [s s (85 s oens 3]0

6. Identities in k < Xysece9 Xps ¥ >d. We now fix enother integer d, and

let R be the free p.i. algebra
R = k < x1, ¢ e ’ Xn’ y >d'

We shall gbbreviate xl,..., x, to X,s SO that we can write R as

k<x,y >, ‘and qy(f, Xyseers Xy) 85 .“y(f’ xy). (Note, however, that
t, Trepresents a string of length n + 1, while x, represents a string
of length n.)

It is well=known that R may in fact be represented as a ring of
matrices over a commutative polynomial elgebra, such that y is a diagonal

matrix of indeterminates, while_ the x,'s have indeterminates for all

dz entriess
(21) y=) Yii @550 Xy = Y Xnij 1 (yii’ Xgi 3 dis’tin.ct indeterminates).

(cr. [9], p.251, paragraph following lemms 1.6.)
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Teking R in this form, let us compute the right hand side of (17)

explicitly. We get

r
(22) > ro' X . yzjl. e, yoo=1 X YR e, .o,
ioig “liply "yt Tipapdnay ®haapiniinly ol
where the sum is over all strings of indices
(23) Le = (igeeesi ) (igeeens i € {1,00.,4)).
It follows that for any f € k[‘b*] s we have
(24-') O(y(f, x*) = Z i% f(yioiO’-QO’ yinin) xlioioo-- xrlinin eiOi .

In particular, o{y(f, Xy) Will be zero if and only if for every i,

eee .'Kn

e; ; 1is (24) is zero, i.e.

the coefficient of x i i
n=-lm O™

11011

(25) f(yiciOIQ"’ yinin) =0 for all i* € {l’ooo’d}n+1o

For n small, this condition assumes a very simple form.

(28) For n<ad, oty(f, x,) =0 in R=k <x,s ¥y>q if and

only if £ =0 in k[t].

This follows by looking at the particular string i* = (1,250..5nt1),

end recalling that the Y53 ere independent indeterminates. For n =d,
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we get a more inbteresting criterions

(27) For n =4, o(y(f, x,) =0 in R=k< X,y >, if and only

d

if f is divisible by 'ITO <p<qg<d (tp- -bq).

To see "if", note that whem n =d, every string i, must bave at least
one repetitions i_ =i (p < q). Hence when we eveluate 3 4 geeesVe 4

pe p = i (p<q) f(ylolo’ ’ylnln)’
the divisibility of £ by 'bp - 'bq will cause the value to be zero.
Conversely, if £ is not divisible by || (tp- tq), let us choose & factor
b = %, which does not divide it. Then we can form en index-string i,

p
with ip = iq, and all other pairs of indices distinet. Then we will

clearly have i‘(yioio,..., yinin) F 0, so gy(f, x5) F 0.

Io formulate the criterion for higher n, we will want some notetion.
If p is an equivalence relation on .{0,..., n}, let -IP _E.:k[t,,]: denote
the ideal generated by { tp— tq | (psq) € 1. ‘ This is precisely the kernel
of the natural homomorphism k[’c*] - k[t(*/{b)], where t(*//f) denotes &
femily of indeterminates indexed by the equivalence classes of y2 (I,o can
be pictured as the ideal of all polynomials f € k[t*] which are zero on the
subspe ce Ar, of affine space AY'! defined by the equations b, = 'bq for
(psq) € P - The dimension of this space is the mumber of equivalence
classes in f‘) Note that if @ Sp', then _IP S Ipr.

Now for any ii}dex-string i*‘ a8 in (23), { (ps q) | i, = ,iq}‘is,.,clearly
an equivelence relation p _oz_;_{'o,.'...n}, and we have f(yioio,..., yiﬁin) = 0
if and only if f e Ip. Further, if f has fewer than d equivalence -

classes, then we cen always refine it to an equivalence relation




(essuming n+l > d)
p' with exactly d equivelence classes, which will in turn be represented

by some other index-string i;, and will define a smaller ideal. Now let
us define En-*l’ 4 to be the set of all equivalence relations on {0y...4n)
it
with exmctly d equivelence classes. Then we see from the above remerkss
(28) If n>d-1, then Ny(f,x‘.) =0 if and only if fe N L.
’ PE Enr1,q

(Remerkss This includes (27) and the n= d=1 case of (26). However, for

n >d the intersection of ideals in (28) is not generally their product as

it is for n = d. For instance, if d =2, n = 3, then E has seven

n+l,d

members - three that partition {0,1,2,3} into two pairs of elements and

four that partition it into a singleton and a three-slement set. Hence

TTIP lies in (tgs tys s t3)7. But M I, can easily be seen to contain

(to-tl)(to-tz)(tl-'bz), which las degree 3, hence will not lie in the product. )
We now wish to ask which elemsnts a(y(f, x,) oommute with y in R.

By (20), this is so if and only if ay((to- ty)f, x,) = 0. 8o (26) and (27)

immediately give:
(29) If n<d, then O(y(f, xy) centralizes y only if £ = 0,

(30) If n=4d, then ,(y(f, Xy) centralizes y if and only if £ is

divisible by all factors LA (0 £ p<g<d)except tg= %3

t
To hendle larger n, let En+l,d denote {pe En+l’d | (0,a) £pl.

Then we claim

(31) 1r n>d-{, then cty(f,x*) centralizes y if and only if

fe N I,.
eEz'1+1_,d P

18
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Indeed, first assume thet £ lies in the intersection indicated above.
Consider any pPe En+l,d' If (0,d) ,ép, then pPe E;x+l,d’ so ite IF. It
(0,d) € p,‘ then ty- td_ € IP So in either case, ('bo-'bd)f € IP, hence
(to- ~bﬁ)f € nEn+l 5 IP’ which is the condition for 'ay(f,x*) to centrglxze Ve

»
Conversely, suppose thab Ve_(y(f, x,) centralizes y, i.e. that (tg=ty)f

lies in ﬂ Then for any PE E!. . we have ('bo-‘bd)f eI,

. I o
En+l,d P n+l,d P
but 'ho- td ff Ip. Now IP is prime, because it is the kernel of a
homomorphism into an integral domein, k[‘b(* /P)], so we conclude thet f € ]5,.

For the case n =d, we can get a precise desecription of the

space of y=centralizing elements of the form qy(f, Xy )e

o, (t_=t_), and let
P <q <d, (P:Q)jé(ogd) p g’

(32) Let n=d, let u=7[
| o<
O(y(u,x,,) = U, Then the centralizer of y in the k-module
k[y} Xy k[y]...k[y] X k[y] has a basis consisting of the

T
elements U(y oxl,---s Yrd-lxd) (ro,..., Ta-1 2 0)-

For we know that the centralizer consists of all elements xy(gu', X )
(g e k[x*]), and by (27), two elements g, g' yield the same member of the
centralizer if and only if they differ by a multiple of to-td. Now the
quotient map k[t,] = k[t,]/(5,-t;) has e section with image k[tg,...,t51)
o k[t*] s and the monomials -bgo...tzciz.;" which fornm e k—bé._,sis for 'bhis subring,
correspond to the elements described in (32), in view of (18).

(One can similarly obtain bases for the centralizer of y when n > d,

but the ealculations become less trivial.)
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The form of our construction considered in this section yields no

centrel polynomials:

(33) PForamy d>1l, n>1, c(y(f,x*) is central if and only if it is zero.

For if 4y(f,x*) is central, then so is o(y(f, YXys Xpseess x,) =
¥ O\y(f, x,). But if A and yA are both scalar matrices, A must be O.
However, we ocennot use (33) to deduce that the elements commuting with
y which we lmve constructed do not lie in Z[y] Indeed, if such an element

could be written Z yr c (°r € Z), we could reduce to the case where sach

T
c, wes homogeneous of degree 1 in each xm, but we could not conclude that
each ¢, lay in k[y] = k[y]...k[y] X, k[y]. For o, -could be a sun of
terms in which the X ocourred in various orders, and we heve not showm .
thet such a sum camnot be central and nonzero.

In the next three ;eotions we shall get out of this predicament by imposing
the relations x;=...= %, and prove the existence of y=-centralizing elements not

in Z[y]. In section 10, on the other hand, we shall sketch how one can study

expressions in which distinet =x; oceur in verious orders.

7. Identities in k< x, y >., and directed graphs. We continue to let
n, d be fixed positive integers, and R =k < x,, ¥ >d’ but now let u;s
also consider the elgebia on two generic matrices, S =k<zx, ¥ >d. We
define the algebra homomorphism t: R =+ S, taking all Xy to x, and

y to y. Thus, writing x for the n=tuple (x,...,x) € 5%, we have
(54) L(dy(-f, x*)) = o‘y(f: i)'
In S, as inR, y will be taken diagonals

(35) x=] X 05 ¥ =25 e
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Thus we have the analog of (24):
X = s s ' = = s 2 ee e XK. . s . o
(36) “y( £, x) Zi* f(ylolo’ ’ ylnln) xloll x‘h-lln ipiy

Note howsver that in~constrast to the oase of (24), the indeterminate

fe.ctors of the expressions

(37) . xioilo -oxin i eioin

are not taken from n disjoint families {xlij},..., {:&xij}’ but from. the
single femily {xi j}' Hence the element (37) may not uniquely determine the

string i i.e. distinet strings i,, i} ocen yield the same term (37);

*l
hence we can no longer assert that the sum (36) will be zero if and only if
each summend is zero.

Nonetheless, this will be true when n is small., We claim

(38) If n<d, then dy(f, X) =0 in S if and only if -
a(y(f,x*) =0 in R. (Equivalently, the restriétion of

the map (¢ R = S %o k[y] x, k[y]... k[y] x, k[y]

is one=to-one. )

The "if" part of the first sentence is clear, by (34), which also
shows the equivelence of the parenthetical version. When n is strictly
less than d, "only if" is also easy. Consider the expression (37)

corresponding to the index-string (l,...,n+l), namely

(39) xlzxZSOJOXn._,n_’.l el,n*l._

If this element also has the form (37) for some other string i,s ‘then
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looking &t the factor €y n+1 We see that :'LO mst be 1l; and if we assume
inductively that i _, =m, and then note that (39) has a unique faotor with

first subscript equel to m, mnamely x we conclude that i, = m+l,

,m+1?
Hence the coefficient of (39) in (36) is precisely f(yll""’an'l,n-i-i‘—)a‘-’""a'nd we
conclude that ogl(f, %) =0 if and only if £ =0, just as for a(y_(f, Xy)-

The key to. showing (38) in the.case -n=d will be to show that a single
repetition among the indices i.o, veoy in is not enough to prevent us from
reconstructing i, from (37). In proving this it will be convenient to
introduce a graph-theoretic viewpoint applicable to the study of the general case n >d.

As in [15], e graph will mean e directed greph, in which several edges are
allowed between vertices, and edges are allowed to connect vertices to themselves,

Let us associate to every element (37) a graph G having vertex-set {io,..-,in)
€ {l,...,d}). For any two vertices i, j, G will have one edge with initial
veri:ex i and terminsl vertex J for each occurrerice of a factor equal to x..

ij
in (37), and also one more edge if the matrix-unit factor of (37) is e3ie

(Note order of indices!) This last will be called the distinguished edge of G.

To capbure some obwvious properties of this consﬁruction, we define & (d,n)-

admissible graph (or when d and n are fixed, an admissible graph) to mean a
connected graph. G with vertex-set combained in {l,...,d}, such that G has exactly

n+l edges, one of which is distinguished, and such that the same number of edges

lead into each vertex as lead out. (In the language of [13] the last of these
conditions says that G is "pseudosymmetric®. Note the need, in our construction
of & graph G from an element (37), to include the distinguished edge and orient
it as we did, if G is to satisfy this condition.)

Two nondistinguished edges e, ®' of an admissible graph G will be called

equivalent if they have the same initial vertices, and the same terminal vertices.

If G is an admissible graph, a traverse of G will mean a seguence
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i, = (io,.....in) of vertices of G, such that for each i and Jj, the nmmber
of values m >0 for whieh (ip_;, i) =(i,j) is the number of nondistinguished
edges of G with initial vertex 1 and terminal vertex Jj, and such that i,

and i. are the initial and terminal vertices of the distinguished edge .of G.

0
(Note that a traverse does not specify which of & family:of equiwalent ‘edges is

"taken" at a given step. It is only required that the number of times one pesses
from i to j equal the number of edges leading from i %o Jj. If one tekes a

traverse and specifies a distinct edge at each step, it becomes equiwvalent to-an

Bulerian circuit of G [13]. Fron [13], P. 239 Theorem 6, every admissible graph

has a traverse, though we will not use this fact. By [13] p. 240 Theorem 8, there
are in fact generally e great number of traverses.) -

It is now easy to see that if u 1is & term which can be written‘ in
the form (37), G the edmissible graph associated with u, and T(G)
{1,...,d}% ] the set of traverses of G, then the total coefficient

with which u will occur in ofy(f, %) is

Thus
(41) o (£, %) =0 if and only if f bhas the property that the
y

sum (40) is zero for all (d,n)=-admissible graphs G.

We now specielize to the oase n = d. (We will oome back to gensral
n in section 9.) Consider an index-string i, with exactly one pair of
equal terms, i_ = i_. .Then the associated graph G- will have -essentially

P q
the following form, where the double arrow indicates the distinguished edge.
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. A
o < \\ .

The graph may be "degenerate"in one or more ways = one of the brepshsx may
be reduced to a single loop, or the distinguished edge may have one or

‘both vertices on the "double point". Nevertheless, it is not hard to sse
that in constructing a traverse for G, when one comes to the "double point"
one must switch from one bremehto the other, otherwise one will never be able
to get onto the cbher branch It follows that the given string i, is the
unique “brav'erse of G, Hence if a(y(f, x) =0 (fe k[t*]), we must have
f(y;.L 1?00 "? yinin) = 0 for all strings i, with exactly one pair of equal
terms. But this is exmctly the set of conditions from which we deduced the
necessity of ou? necessarj and sufficient conditions_for a(y(f, xg) =0 in (27).
Thus for n =d, if o(y(f, X) = 0, then also O(y(f, x,) = 0, which

completes the proof of (38).

8. ~gcentralizing and central elements of k< x, v >,
& y a

In this section we continue to assume n = d., From (20) and (38), it
follows also that ay(f, %) will centralize y if and only if «y(f, Xx)
does, i.e. if and only if f is divisible by all %= by (0<p<gq=<d)
excopt = td. However, the proof that no nonzero element'.e(y(f, x,) is
centrel is not applicable to dy(f, X). We shaell now investigate conditions
for centrality.

Clearly u(y(f, %) will lie in the ¢enter, 2(8), if and only if, first, it .

is diagopal, i.e. centralizes y, and secondly, has all diagonal entries equal.

It is easy to see from our develomment of the conditioh for diagomality, (32),
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that when this holds.., the only nonzsergl terms in the expension (36) of e{y( £3%)
will be those indexed byv strings :.:f that i‘oai’d is the only repeated term,
i.e. strings (igs..., 410 i,) vhere (Lgseees id-l) is & permutation of
{l1,...5d}. For such & seguence, the coefficient of xioil..f x'ld-lio eioiO
will be f(yioio,..., yid-lid-l’ yioio). For e{y(f, X) to have equal diagonal
entries, this must also be the coefficient of Xigiyc e Figa1ig Cipin for all

< . I i ; s 3 oo e X3 s ) ., e e XS 3 > 2
m<d f we rewrite this term as x“mlm-rl xld-l‘-oyloll ®yin e‘-mlm’

we see that its coefficient is f(yimim,..., yid-lid-l’ yioio,..., yimjm).

Since the y;; are independent indeterminates, the condition for these two
terms to be equal for all m can be written in a form independent of the

particular sequence i*; it is

(43)  The polynmomizl £(%gs Byseees Byys to) € K[tgseestyg] is

invariant under cyclic permutations of the d=tuple of wveriables -

(toacoo ’td“'l)'

Now recall from (80) that for all m # 0, d, £ is divisible by both
to= tp enmd G -ty Hemce £(% ,...s ty.3. Bp) will be divisible by (t‘o-tm)z..
Hence by (43), it must be divisible by ('bp-'bq)z for all pAq in {(0,..., d=1}.
Now by (32) end the paragraph following it, f may be chosen to lave the form
f =ug, where u is as in (32) and g€ k[to,...,'bd_l] is unique for the given

central element. Applying the above observations to this f, we easily obtain

(24) let n=d endlet v= (]Tm% 0. (= 4, )(% - td))(TTO<P<q<((itP- tq)?).

Then any element of the cenbter of k< x, ¥y >d homogeneous
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in x of degree d (i.e., every member of kly] = x[yl ...
k[y] x k[y]b, with d x's) ocan be written uniquely in the
form O\y(vh, X), where h &€ k[to,.,.,'bd_l] cen be any
element invariant under cyclic permutetion of the d=tuple

of veriables (tgse«+s ’cd_l).

In pa.r'bioular’, deg(v) = d%- @ will be the least degree in ¥y that any .
nonzero central element of 8 = k < x., vy >d homogeneous in x of degree d
can heve. On the other hand, by (32), nonzero y-centralizing elements of
degree d in x ocan have degreé in y as small as deg(u) = (d2+ a - 2)/2.
Jor d > 3, the latter dezree is smeller, hence the y=certralizing elc.ent

‘cxy(u, x) ocannot lie in the ring 2(8)[y]. Prom (19) we can see that this -
element depends on each Xy only wvia the commutator [rm,y],

showing that the inclusions (6) of Part I are strict, as claimed, at leé.st for n > 2.

Tote also thet il Ny(f,;c) £ i(s)[y], then o(y(f,x*) £ 2(R)[y].
This shows that the class of y=centralizing elements constructed in section §

also contains elements not in the ring generated by y over the center.

Examples. d =n = 2. In this case, the degrees of the smallest central and
y=centralizing elements, computed above, are both 2, and in fact u=v =
('bo- tl)(tl- tz). Here ay(v, X) is the "ancient" central polynomiel [x,y] 2,
In this case, one can exbtend the preceding analysis to show that the
y=centralizing elements of S homogeneous in x of degree 2 do all lie

in 2(8)[y]. (However, we shall see in section 10, peragraph following (61),
thet the y=centralizing element of k-< X9 Xps ¥ >2, o(y(v;, X4)s which’
in this case is [xl,y] [xz,y], does not-lie in Z(R)[y] s completing the proof

that the inclusions (6) are strict.)
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d=n=03 Then the smellest f such that ocy(f,i)' centralizes y is
u = (to-tl)(to-tz)(tl-tz)(tl-t5)(t2-~b3), while to get one such that o(y(f,x) is cen~
tral, one must put an exponent 2 on the middle factor U= tz, getting the
6th degree polynomial wv.

d =n =10, In this case one finds that u hes degree 54 and v les

degree 90,

9. Some observations on general n. Recall that in studying conditions for

e relation d,(y(f,x*) =0 to hold in k< Xpseces Ko ¥ >, we first obtained
one condition for each string of indices i* € {l,...,d}n+1, but then made two
simplifying observations: (i) The conditions essociated to a string i,
really only depends on which peirs of terms of this string were equel, i.e.
on the induced equivalence relation g on {0,...,n}. (ii) If p has fewer
than d equivelence classes, it can be refined to & relation P' with exactly
d classes (assuming n> d=-1), and the condition on f corresponding to this
refined relation implies the condition obtained from the original relation.
Hence we could enumerate our conditions in terms of relations with exasctly d
equivalence classes.

The condition (41) for a relation o(y(fgi) =0 to hold in k< x, ¥ >y
admits corresponding simplifications. The analog of observation (i) above
is that the condition on f corresponding to an admissible graph G depends
only on the isomorphism class of G as an oriented graph”with one distinguished
edge. For isomorphic graphs differ only in the mumbering of their vertices,
and the corresponding sums (40) will then differ only by a relabelling of the

indeterninates-



28

The analog of observation (ii) seys that assuming n > d=1, all the
conditions of (41) are implied by those arising from admissible graphs with
exactly d vertices. We sketch the proof,

Iet G be an esdmissible graph with fewer than d vertices. Let us call
e vertex v of G simple if only one edge enters it, equivalently if only
one edge leaves it. When‘ this is so, "the next vertex after v" will mean
the terminael vertex of the unique edge originating at wv.

Since G has ntl > d edges, but fewer than d verbtices, not all its
vertices can be simple. Let us find a perticular non-simple vertex as follows,
We begin our search with the terminal vertex of the distinguished edge of G,
If this is simple, we go onto the next vertex after it (as defined above); if
that is simple we go on to the mext, and so on. From the connectedness of G
it is not herd to show that we will evenbually hit a non-simple vertex. Let v
be the first one thet we strike.

let the equivalence classes of non-distinguished edges that leave
v be Ejse..s Epe (Here r may be 1, since several equivalent
edges may leave v, or the distinguished edge and a nondistinguished one.)
We shall now construct from G new . ’ graphs Gl’ ey Gr’ sa.ch
having one more »ver‘cex than G. Namely, we construect Gi by adding to G
e new vertex v', diverting the edge along which we arrived at v so that
it terminates at v' instead, and similerly diverting one member 4of ‘the
equivelence class E; by moving its initial vertex to +v'. {The first of
the two edges mentioned may be the distinguished edge. In any case, the
resulting graph Gi is understood %o inherit from G a distinguished edge. )

Note that there is a matural map from each Gi to G, collapsing v' and w,
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of exactly one of Gl,..., Gr' Indeed, given i*, let m be the least walue
such that i‘m is not a simple vertex of G, Then one sees from the way we
constructed v that i, =v. One can also verify that m must be < n.
Hence G has a nondistinguished eAdge from iy =v to inge »If’ Ei is

- the equivalence class of this edge, it is easy to see that the given traverse
i, lifts to & unique traverse of G, (obtained by substituting v' for v
in the mth place only), but not to any other G, .

‘ ‘ Since soffie may not be ‘connected
Not all of G.,..., G need be admissible. Say G,,..., G_. are the
1 r A 1 s
edmissible ones. 8ince any graph having a traverse is admissible, all of
the liftings in question must be to graphs in this subfamily,

It is not hard to verify that if we write down the expressions (40)

associated with these s admissible graphs, sum them, and then substitute

expression (40)

for the resulbting expression is the associated with G,
¥ & L

'Y'v-v viyt? = n

Thus the condition on £ associated with the graph G is implied by
conditions associeted with graphs having larger numbers of vertices. Combining

with our earlier observation sbout isomorphic.graphs, we get:

(45) For n > d-1, the family of conditions (41) for dy(f,':'c) to
be zero is equivalent to the subfamily defined by a set of
representatives of the isomorphism classes of admissible

graphs with exactly d vertices.

The cese n = d treated in preceding sections was so easy to work with
because every admissible graph with exactly d vertices had a unique traverse.
let us now teke a quick look at the case n = d+l. Here an admissible greph

with exactly d wertices will have one of the three forms
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(46) (47) (48)

(Here we have not shown the location of the distinguished edge, which will

not make a difference in most of what we say. As in (42), "degenerate"

case's where one or more branches leve length 1 cen also occur.) One finds

thet & graph of the form (46) alweys has & unique traverse. BEach graph of

the form (47) or (48) has two traverses, unless ithjgm equivalent nondistinguished
edzes, l.e., unless two branches having the seme initial and terminal

vertices both have length 1, but neither is the distinguished edge. In this

case there is again only one traverse.

Exemple:s d =2, n = 3. Up to isomorphism, there are six (2,3)-sdmissible
graphs with d=2 vertices. We list these below followed by the corresponding
conditions of (41) on f(to,tl,tz,t3) € k[to,tl,tz,t3]. The first five graphs
have unique traverses, hence the condition which each gives 1s equivalent %o

a condition I = IrJ es in (28). We describe an equivalence relation p
below by writing pt Sl""’ S’d where Sl”"’ S; are its equivalence classes,
Rather then choosing a member of an isomorphism class of graphs on the vertex-
set {1,2} and labelling the corresponding indeterminates in our condition Yi1»
Va2

indeterminates.

e write {s,t} for both our set of vertices and our set of
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graph condition on £,

5 f(t,8,5,8) =0, i.e. f € Ijﬂ where 1 {0,2}.{1,3}.

Qs/»\tg £(t,%,8,5) = 0, f.0. £ € I, where pi {0,1},(2,3).

0, i.e. f € I/, where o8 {0,3},{1,2]).

C/s/%\\'b:}; (t,5,8,4)

sWth f{tyt,5,8) = 0, i.e. £ € I}o where o {0,1,2},{3}.
/9-’“\‘ CQ' , R

5\&/)’”.&\:& f( s,'c’-t, U) = 0’ icea f € Ip Where P‘ {0}’{1’2’3}0
/‘}‘\\\ ) (';\{,'ugf' . .
s\(_/“c\w\_x ft,ts5,5) + £(Ey5,5,5) = 0. (Weaker than the

conjunction of the two conditions f(t,bss,t) = C,
f(tys5%s%) = O, i.6. f € Ion Ly, where

Lt {0,2,3},{1} and Pl {0,1,3},{2}.)
(49)

Note that the equation corresponding to the last graph does not define an

ideal of k[t]. For instance, f = b= t, sabisfies if, bu ty(%;-t,) does

2
not. In general, for n >d the set of f such that a(y(f, ;c) = (0 1is not

an ideal of k[t,]. However, it is mot hard to show that if we let A € k[t,]
denote the subring of polynomials symmetric in the n=-l indeterminates ty,...,

ty.1s then this set is en A-submodule of k[’c*]. The point is that if i,

end i are two traeverses of the same edmissible graph G, then the terms of

(ij,..,1] ;) ere e permutation of (il,...,in_l). So far a € A, a(tiO,...,tin)

= a(ti',...,ti,), so replacing f by af preserves the property thaet a sum (40)
C S '

be zero.
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10, More gencral identities. We noted at the end of section 6 that the resulis of

thet sechion dealt with elements of k[y X kly] ... ¥[y] X, k[y] s k< x, 7 >
but that these were not the most general elements of k < x4, ¥ >d homogeneous of

degree 1 in each x,. The general element with that property may be written

(50) z-ﬁ dy(flf, X’l’*)

where ™ ranges over S(n), the permutation group on {l,...,n}; where further

(51) Xy denoves the siring x"(l),,.., x."(n>,

‘where

end the Iy (we 8(n)) ar

0
M

n!  arbitrary elements of 1«:[:‘;*} = k["’co,...,tﬂ .

S4ill more generally, for any decomposition
(52) n=mng+t... 7on, (n/u_>_0 for /LA=1,...,V)

we may consider elements of k < xl,..., X0 ¥ >d homogeneous of degree n,

P

in each Xiae These mey agein be written in the form (50), but with ™ now
renging over maps {ly...,n} = {l,...,v} which take on each value pue {ly...5v]
exactly n, Gimes,

For the remainder of this section, we shall assume given, in addition to
d and n, integers v>1 and o (1_<_/u§v) satisfying (52). We shall
write n, for ny,e.., nys 8nd S(n,) for the set of maps {l,...,n} =
{l1,...,V} which take on seach value P exactly 1, times, Nobe that elements
of. S(n*) can be composed on the right with elements of the.pemutaﬁibn group
8(n). The string Xyseees Xp Will be denoted x4, and R will denote the
ring kK< x4 ¥ >4 When we refer to (SQ), the index 7 will be understood

to range over S(n,) (rather then S(n) as stated there. These coincide when

all n, = 1, of course.)
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The graph=theoretic methods developed in the last two sections for the study
of elements of k< x, y >d homogeneous in x can be applied to elements of the

above more general‘sort. Note that (50) has the expension

53 p f s .3 LR ) 3 )x s . seeX . . s 3 o

(53) I:-n—ess(nw),:i.,,e{l,...,,d}n"'l Tr(‘V"-O:‘-O’ Winhn' Fn(1)igi; m(n)i, ;i toln
Now to each term of the form

' . n+l
(s4) (1)igiy ™ (n)i i ®ioly (me 8(n,), i,e{l,...,d} )

let us associate what we shall call an (n,,d)=admissible graph. This will mean

an (n,d)-admissible graph, given with a labeling of the non-distinguished edzes

by integers from the set {l,...,V} such that the number of edges with

label P is exactly 1, Wamely, given the term (50), we form a graph heving
vertex-set {ijs...,i,}, with an édge from i to la.beledf,( for

each factor xﬂij of (54), and a distinguished edge from 1 to j as before if
the fingl metrix-unit factor is €55 Then we see that two expressions (54) are
equal if and only if their associated (ng,,d)-admissible grephs sre the same.

We shall call two nondistinguished edges of the (n*,d)-admissible graph G
equivalent if they have the same initial vertex i, the same terminal vertex Js
and the same label Iy i.e. if they correspond to the same commubative
indeterminate x}nij’ If G is an (n,, d)-admissible graph, we define a
traverse of G +to mean a string

(55) (i*,"‘) = (iO’ w(1), il" cvey in-l’ n(n), i-n):

such that if G hes exactly I}Aij edges from 1 +to J 1labeled P then there
are exe.ctly r)uij values of m such that (im_l,ﬂ'(m), im) = (i, P 3 It
is easy to see tvmt 1y IGI is the {n,d)-admissible greph obtained by dropping

edse~lebels from the (ny,d)-admissible graph G, then every traverse i, of [Gl



lifts to precisely 'IT C{ (Y_ r}lij)" ) traverses (iy, 7#¥) of G.
3 r...d !

lij. ses rvijo

Note also that if (i, M) is a traverse of G, then T e S(ny).
It is now easy to see that if G 1is the (n,,,d)—admissible graph assoéiated
with an element (54), and T(G) <the set of traverses of G, then the total

coefficient of (54) in (53) is

(56) ) 2.0y,

i X ) yii )v
0 n'n

(i, 7 #)e1(G) )

Let G Ve an (n,,d)-admissible graph, and |G| the associated (n,d)-admissible
graph. Note that if IG] has no pairs of distinct equivelent edges, then any
traverse of |G| lifts to a unigue traverse of G . Iow, the considerations from
which we deduced the necessity of our necessary and surfficient condition for

o(y(f, xy) end w (£, SE). to be O when n <d, involved graphs without

o<

edges. (See (42) for the ecase n = d.) Hence the same
previously
arguments {together with the arguments by which we '\characterized y=centralizing

distinet eguivalexn

[

elements) give

(587) If n<d, then the following conditions on a system of elements
£ € k[t,] (e 8(n,)) ere equivalent: (a) § oly(f", X )

centralizes y, (b) ) o(y(fw, xm) = 0, (c) All £, are O,

(68) If n=4d, then Z “y(fﬂ" Xng)= O if and only if every £y is
divisible by ‘bp— tq for all values 0 < p < q<n, while this
element centralizes y if and only if every £, is divisible by

all these elements except 'bo- 'l:d.

The arguments by which we cheracterized central elements of k< x, y >d

of degree d in x generalize to give

34



(59) If n = d, then every central element of R homogeneous of
degree n in emch x may be written uniquely o(y(v Emo Zpa) s
where v is defined in (44), and the g, (Te S(n,)) are elements
of k[tgs...sty ;] setistying

gﬂ'oito""’td-l) = &t(tl’:oogtd_l,' 'bo)

where o denotes the cyclic permatetion (1,...,n) € S(n).
In particular, we may deduces

(60) In 2 generic metrix ring k < Tys Hys eees y >d, every central
identity of total degree < d in the varlables other than y is
s consequence of the single central identitys

(61) Zo cmea o(y(v; X o ) (6 as in (59)).

Tote thet even for d = 2, where centrel identities and y=-centralizing

elements first appear in the same degree (see end of section 8), one finds

that for ny= n, = 1, the k=module of y=-centralizing elements of k < Xys Xps ¥ >y

1
homogeneous -of degree 1 in each of STRNEN is 2=-dimensional, spanned by
[xl,y] [xz,y] and [xz,y] [xl,y] » while the module of central elements is

l-dimensional, spanned by the sum of these two. Hence one sees thet neither

of the former two elements lies in Z[y]. and one can deduce that the
inclusions of (6) are strict for d = 2, n > 2, '

We return to general n aend d. Let us call two (ny,d)-admissible
graphs G and G!' isomorphic if they differ only by a relabeling of their

vertices. Essentially the same arguments used to show (45) give
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(62) For n> d~1, Zs(n | o(y(fx, Xp) =0 if and only if
"
the expression (56) is zero for a representative of each

equivalence class of (n,,d)-admissible graphs G with exactly

d wvertices.

Side remerks If n - has the property that some n pm = 1, then from
any (n,,d)~-edmissible greph G, one can construct another (n*,d)-a.dmissible
graph G' by interchanging the roles of "distinguished edge" and "unique edge
labeled /1", and otherwise preserving the graph and its labeling. In fact,
this corresponds to a map of the k-submodule of elements of R homogeneous
of degree 1 in xu  into itself, which acts by A x B = B x A. That such
an operetor on k < % xz,... > was well-defined was discovered by Yu. P.
Razmyslov, and its properties exploited in his construction of centrel
polynomials. [10]. In [11] I call +this operator "Razmyslov's transposition
and further develop its properties. It is also briefly developed in the last

section of [1].

The two short remaining sections of this paper are appendices. In
section 11 I outline the most convenient way I have found to actually write
down the systems of equations given by (45) or (62), in the hope that some
other workers may find this useful for mractical computations., The walidity
of the method given rests on a graph-theoretic lemme on how all traverses of
an adm ssible greph may be obtained starting from any one of them, which also

seems of interest for its own seke, and which is proved in section 12.
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11. Appendix. Some practical considerations, The graph-theoretic viewpoint

of the above sections has been useful in meking the femilies of strings of
indices we had to work with visualizable, 8o that we could follow proofs
more easily and avoid giving tedious erguments inv excessive detail. However,
in actually enumérating for particular d and n (or m,) the equations given by
(41), (45) or (62), saying when an element will be zero in our generic matrix
rings, we are essentially brought back to strings of indices. For instance, to
emumerate the conditions given by (41) on & function f € k[to,.Q..tn], we take

d varisble-symbols, say s, t,..., 2 %, write down all ways of substituting

*In place of the cumbersome . Y1002 ¥aq° I kept these above so that we would

not forget, in our ring-theoretic considerations, that they were entries of the

diagonal matrix y.

these into the n+l arguments of £, then collect together terms f£(...)
which agree in the choice of first and last weriables, and in the number

of transitions between each pair of variables, and set the sum of each

of these collections to gero. (E.g. in (49), £{t,t,s,t) and £(t,s,t,t) are
the only terms which begin mth t, end with t, and have one (t,t), one (%,s)
and one (s,t) trensition. Hence we set f(t,t,s,t) + (t,5,5,t) = 0.) The
simplification (45) says that we get en equivalent system of conditions if we |
restrict atbention to those collections of terms in whiech all 4
wiable-synmols actually appear, and choose one representative from each
equivelence class of such collections under relabeling of varisbles. ...
If we followed the above procedure as I have just described it, the most
todious part would be sorting the terms f£{...) into families sccording to

number of transitions of each sort. In fact, given one such term, there is e
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shortcut for getting all the others in the same familys: * We shall show
in the next section %hat these can all be obtained by repeeted interchanges of
peirs of disjoint substrings A and B of variables, such that the first
members of A and of B are the same, and their last members are also the same,
For instance from (%,s,t,t) we may obtain (t,t,s,t) by interchanging the
initial string (t,s,t) and the finel string (%).

So to write down a system of conditions (41), we list in lexicographic
order the expressions f{...) which include all d wvariables and which
cannot be transformed, either by relabeliné; of wariables or by interchanges
of strings of the sort noted above, to lexicographically lower expressions.

We then add to each of these terms all those that can be obtained from it by
repeated "interchanges of strings", and set each sum to 0, It is in fact not
hard to tell whether a sitring can be brought to a lexicograph-~

ically lower one by one of these two sorts of operations, and I have found the
above technigue useful in calculating with smell walues of n and d. (Some
conditions are still repeated, because it i-s not so easy to see

when a term can be reduced to a lexicographically lower one by a combination
of the two types of operation; e.g f(,s,’c,’_c,_s.,u,s) > £(5,0,5,L,558) =
f{s,5,5,u,u,5). For small n and d these can be weeded out. Whether the above
technique can be made into an algorithm which for large n and 4 is still
better than "list end sort", I don't know. )

The statement that all terms in a given family can be obtained from any
one by iterated interchanges of appropriaste disjoint strings of variables is
equivalent to saying that all traversesof an admissible graph G can be gotten from one
by & similar kind of cutting and gluing., In the next section ‘bh-is.result is

, _ readable
stated and proved,using the language of.Bulerian circuits, to make i% Aindependen’c of
of the rest of this paper. (The reader can see from the proof a fact that I
implicitly assumed above: tha.f if a term can be carried by a sequence of such
interchanges to a lexicographically lower one, then it can in fact be lowered

lexicographically by the first of these operations.)



]inser‘c) where showns: | (F. Harary tells me that in his language this should "--3,59
be called an Bulerian diagraph G rooted at an arc d. ) ./

U, ”w,m_nww»m.n~¢—w~—-?¢matd---wm . e

|
12. Appendix on Bulerian circuits. Iet G be s fseudosymetric graph (cf, [15]

or section 7 above) with & distinguished edge d.¥VWe shall define an Eulerien
circuit of G +to mean a sequence E = (eoa---: °n) of edges of G such thet
eo = d (not in the standard definition!), each edge appears exactly once, the
terminal wertex of e, 1is the initial vertex of e, (L<i<n), and the

terminal vertex of en is the initial vertex of o

Suppose that B is an Eulerian cirouit of G which can be decomposed

E=XAYBZ

consecutive
where X, A, Y, B, Z are, strings of edges such that A and B heve the same

initial vertices, and the same final vertices. Then clearly XB Y A Z will be
another Eulerian circuit of G. We may allow some of our substrings to be
vacuous:; If A is vacuous references to "the initial vertex of A" must be
understood as referring to the initial vertex of A Y B Z X, and the corresponding
adjustment made for "the final vertex of A"; the analogous statement holds for B.

In fact, we shall require

(83) X, Y end B nonempty.
thet X be nonemplty
The . - condition is needed so that the transformstion
A
(64) XAYBZ w» XBYAZ

conditions that Y and B are nonempty
will preserve the property e, = d. From the - |5 e see that (64) will be

nontrivial. We claim

(65) One can get from any Bulerian circuit E = (eo,...,en) - of .G bo
any other Bulerian circuit E!' = (e('),...,ez’l) by e series of

transformations (64) satisfying (63).



Indeed, let B.#£ E' be given and let p > 0 be the first index such thet

ep ;‘ 81'7' Then eI') can be written eq for some q > p. Now let us note thet
(66) _ (ep"'f’ eq-l} S {ep,... ,en} = {el'),. e ’31'1}'

The faxﬁly on the left side of (66) is nonempty, but it does not contmin the
first-listed member of the right-most family, since that equals eq. Henoce we
can find r with p<r <n such that e; does not lie in the lefte=hand

t t - ' =
family of (66), but el .1 does.  Say o = e, and 8l = O Thus

(67) ' 0<p<t<g<s<n.
We now partition E:z

X A Y B Z

y . N A v -
" ”r I

' ¥ L4l

(eo’o-c, ep‘l’ ep’oacs et-l’ et,...,eq_l, eq,...,es, es+l,oc-, en)

We see from (67) that X, Y and B are nonempty. The first edges of A (oi'

of AY if A is empbty) and B, namely ep and eq, are respectively the

first noncoinciding edges of the circuits E and E', and so they have the same
initial vertex. The last edge of B and the first edge of Y are equal to

e, and e;.+l respectively; it follows that the final vertex of B and the

final vertex of A will coincide. Now if we apply (64) using this decomposition
of E, we get a circuit X B Y A Z which agrees with E' from its beginning
through at least the first edge after X, which is one step longer than E does.
Hence by induction, a series of such operations (64) will eventually carry us

to E'. ' : ;
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