HOMOGENEOUS ELEMENTS AND PRINE IDEALS IN ZZ-GRADED RINGS

George M. Bergman

Throughout this note, R will be a ZZ-graded ring, that is an associative ring given with a decomposition R = 0 R_i such that $R_i = R_i + 1$. Our main result will be

Proposition 1. If P is a nonzero prime ideal of R, then any 2-sided ideal $I \subseteq R$ properly containing P contains a nonzero homogeneous element.

We small make frequent use of

Definition 2. If $0 \neq r \in R$, then $r_+ \in R$ will denote the nonzero homogeneous component of r of highest degree (the "leading term" of r), and $r_- \in R$ the nonzero homogeneous component of lowest degree.

We define the breadth of r to be the nonzero integer $br(r) = deg(r_+) - deg(r_-)$. Note that this is 0 if and only if r is homogeneous. We also make the convention $br(0) = -\infty$.

During most of the proof of Proposition 1 we shall want to assume R itself is a prime ring. This will be possible because in the contrary case, a stronger result is in fact true:

Lemma 3. If R is not a prime ring, then every prime ideal of R contains nonzero homogeneous elements. (Equivalently, if P is any prime ideal of a Z-graded ring R, and H(P) the largest homogeneous ideal of R contained in P, then H(P) is again a prime ideal of R.)

<u>Proof.</u> If R is not prime, let a and b be nonzero elements such that a R b = 0. Then it is easy to deduce that a_+ R b_+ = 0, hence any prime ideal of R must contain one of the homogeneous elements a_+ , b_+ . To deduce

the parenthetical assertion, note that R/H(P) will again be a Z-graded ring, and in this ring P/H(P) will be prime and have no homogeneous elements. Hence this ring must be prime, hence H(P) is a prime ideal.

(Remark 4. The key idea in the above proof is that a Z -graded ring is prime as a ring if and only if it is prime as a graded ring, i.e. for all nonzero homogeneous a, b there exists homogeneous c with acb \neq 0. The same results are true if the grading group Z is replaced by any right orderable group, or still more generally any semigroup with the u.p. property.)

Lemma 5. Let I be any nonzero two-sided ideal of R, and $u \in I$ a nonzero element of minimal breadth. Then for all $r \in R$, $u r u_{+} = u_{+} r u$.

Proof. It will suffice to prove the indicated equation for r homogeneous.

In this case, $u r u_{+} - u_{+} r u$ will clearly be an element of I of breadth less than br(u), hence it is zero.

nonzero

Digression: Suppose we call elements u_* v of a ring R parallel if urv = vru for all $r \in R$. (If R is prime, this is equivalent to being associates over the extended centroid.) The conclusion of the above Lemma implies that all homogeneous components of the element u are parallel to u_+ . This leads to another special case in which we can get a stronger result than Proposition 1 (though we will not need it below), namely

Corollary 6. Let R be a Z -graded ring in which any two parallel homogeneous with same centraliser elements have the same degree. (E.g. a free associative algebra.) Then any nonzero two-sided ideal of R contains nonzero homogeneous elements.

To see how to proceed with the proof of Proposition 1, let us note why the result is true for the special case of a polynomial ring over a field, k[t]. Here an element of minimal degree in any ideal turns out to be a generator, and an inclusion of ideals corresponds to a divisibility relation among generators, but a nonzero prime ideal will have irreducible generator, hence any larger ideal must be generated by a unit, hence contain 1, which is homogeneous.

The next result is an analog of the statement that an ideal of k[t] is generated by any element u of minimal degree. (To see this analogy, consider (1), "ignoring" the homogeneous elements h and u_{+} , and also the r which may without loss of generality be taken homogeneous.)

Lemma 7. Suppose R is prime, I is a nonzero two-sided ideal of R, and u a nonzero element of I of minimal breadth. Then for every nonzero $w \in I$ there exists nonzero $x \in R$, and homogeneous $h \in R$, such that

(1) FreR, xru=whru,

<u>Proof.</u> We shall use induction on br(w), the case br(w) < 0 being vacuous because w is required to be nonzero.

Given w as above, let us take any homogeneous element $g \in R$ and define

(2) $w' = w g u_{+} - w_{-} g u_{-}$

Because of the cancellation of the terms w_+ g u_+ we see that $br(w^*) < max(br(w), br(u))$, which equals br(w) by choice of u. Now if $w^* = 0$ for all choices of g, we get w_+ r u = w r u_+ for all $u \in R$, and we get (1) by taking $x = w_+$, h = 1. In the contrary case let us use any g such that $w^* \neq 0$. Then applying our inductive hypothesis to w^* , we can find a nonzero $x^* \in R$ and a homogeneous $h^* \in R$ such that v = v = 0 and a homogeneous v = 0 such that

If we substitute (2) into (3), and apply Lemma 5 to the last term, we get

Because R is prime, (3) tells us that $\deg x^i = \deg w^i h^i \leq \deg w^i + \deg h^i$. By (2), $\deg w^i \leq \deg w + \deg g + \deg u$, so we get $\deg x^i \leq \deg w + \deg g + \deg u + \deg h^i$; hence adding to x^i the homogeneous element $w_i \in u_i$, h^i cannot send it to zero, i.e. $x \neq 0$.

shall

We can now prove Proposition 1. We begin with the analog of the observation that in k[t], larger ideals have generators of smaller degrees. This is not true in general for graded rings (consider (t-1) and (2t-2) in Z[t]) but it is when the smaller ideal is prime and without homogeneous elements. (More generally, if it is right or left "homogeneous-prime", i.e. a $Rh \subseteq Q$ (resp. $h Ra \subseteq Q$) implies $a \in Q$ when h is homogeneous.)

Proof of Proposition 1. We may clearly assume that P itself has no nonzero homogeneous elements, and hence that R is prime.

Let w denote an element of minimal breadth in $P = \{0\}$, and u an element of minimal breadth in I - P. Since w_+ is homogeneous, $w_+ \notin P$, so as P is prime, we can find nonzero homogeneous $g \in R$ such that w_+ g $u \notin P$. Hence w_+ g u - w g u_+ is an element of I - P of breadth $< \max(br(w), br(u))$. But it must have breadth > br(u), by choice of u, hence br(u) < br(w).

It follows that u is of minimal breadth in $I = \{0\}$, and we can apply Lemma 7 to this u and w, getting (1). This result, together with the primeness of R, implies that $br(x) + br(u) \le br(w)$, but it also says $x R u \subseteq P$, hence $x \in P$, hence $br(x) \ge br(w)$. It follows that br(u) = 0, i.e. u is homogeneous.