A NOTE ON GROWTH FUNCTIONS OF ALGEBRAS AND SEMIGROUPS

George M. Bergman

Let R be an associative algebra over a field k%, generated
by a finite set X. Let V be the k-subspace of R spanned
by Xe{1}. One is interested in the rate of growth of the
function gA,R(h)_= dimk(Vn), where V& is the subspace of
R spanned by all products of n elements of v (equivalently,
of X.) We show in section 1 below that the growth function
of any k-algebra is also the growth function of a semigroup
with O, and vice versa. In section 2 we show that any such
function with less than quadratic rate of growth hss at most
linear growth, recovering a result of f ?

In section 3 we give examples of various growth-behaviors.

1. Irreducible monomislg. All semigroups will have 1, and

all rings and algebras will be associative with 1.

Let k be a field and R a finitely generated associative
k-algebra. To be a little more formal than above, let X be
a finite generating family for R, i.e. a finite set given
with a map into R, x> X, whose image generstes R as a
k-algebra. Let us choose a total ordering for X, and totally
order the free semigroup (X? on X by setting a<b if =
is shorter than b, or has the same length as b but precedes
1t lexicographically. We now define the subset WK,RC—: Xy

of "irreducible monomials" by taking aJ?WX,R if and only if
the image ag of a in R is not equal to a k-linear combin-
ation of the elements by where b<a in <XP?. It is not
hard to see that the elements ap (afiwx,R) form a k-basis for
R, and that gx’R(n) = card {aEEWX,RI length(a) < n7.

A semigroup with mero will mean 2 pair (8,0), where S
is a semigroup, and C an element satisfving 20=0a=0 for
2ll a € 5. When we speak of genersting such an object, it
will be understood that C, like 1, is given to us free.
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If (S,0) 1is generated by the finite family X, we define

gy (s o0)(n) to be the number of nonzero elements of
X, (8,0) = \

and if X is ordered we define WX (s,0) t0o be the set of
b H
a €<X such that no relation ag= 0 or ag = bg (b< a in <X7)

holds in 8. For ordinary semigroups S we likewise have
have obvious definitions of gy g &and Wy o If (S,0) is
¥ ]

a semigroup with zero and k a field, the semigroup-with-zero-
algebra %k(S,0) will mean the factor-algebra of the ordinary
semigroup algebra kS by the 1-dimensional ideal spanned by OE£S.

Lemma 1. Let X be an ordered set, W a subset of <X7,
and k a field. Then the following conditions are equivalent:

(i) W= Wy (5,0) for some semigroup with zero (8,0)
H s
generated by an image of X.

(1) W= Wy R for some k-algebra R generated by an image
b
of X.

(i#) Bvery subword of an element of W lies in W.

Further, if S 1is a semigroup generated by an image of X,
By é“saiﬂihs the above conditions, and conversely, if W € X
H
satisfies the above conditions, then either W or Wofa} for

some a€ <Xy has the form W for some semigroup S.

X,5
Proof. We get (i)=> () by forming the semigroup-with-zero-
algebra k(S,0). (ii)=> (iii) follows from the observation that
if an element =z¢{X) satisfies a relation &g = 2 1< 4 %p Py
in R, then any element a'aa" of which it is & subword also
satisfies such a relation, (a'aa")R =y Ay (a’ba")R. For

(ti) =(i) we construct (5,0) by identifying together all
elements of <{X2 not in W into a single element O.

Given a semigroup S, we may adjoin a zero-element,
whence we see that Wk,s satisfies {({)}. Conversely, given
a semigroup with zero (8,0), we may regard S as an ordinary
semigroup, and we find that W will have =2t most one

X,
element more than WX,(S,O)'”



2. Growth rates. et X be gz finite set, and W a2 subset of

the free semigroup <X, such that every subword of an element

of W 1lies in W. We shall find it most convenient to ldok,

" not at the function "number of elements of W of length £n",

but at "number of elements of W of length exactly n". We

shall show that unless this function exceeds n for all n, it

is bounded. HNamely;cififbrisome d» C W contains <d words of

length d, we shall show that every sufficiently long word in W

can be broken into a short initial segment, a long periodic

segment of period <£d, and a short final segment, and that the

number of possibilities for each segment is bounded. '
(Originally I planned on a compactness proof, in which I

would consider the set W of infinite words a: % —>» X, which

were "limits" of words in W, show that these were periodic and

finite in number, and then work back to W. The idea of looking-

gt infinite words was helpful —— I would probably not have found

‘the proof without it. But the lemmas needed to make this proof

work turned out to yield the desired result more easily without

reference to infinite words.)

We must begin with some Lemmas. For any m>0, we shall

say that a word a = a,...a8, of length n » m has period m

. _ . <5 .
if a; =a;,,  for 511 3 such that 1<1i, i+m<n. (Remark:

under this definition, & word & may have periods which are

not multiples of its minimal period. E.g., (xxy)rxx, in addition
to the periods 3, 6, ..., 3r, alsoc has periods J3r+l, 3r+2.
This phencmenon would vanish if we restricted the definition

of period by requiring xngrv@, asﬁmaymbeﬁdedmcgd from the next
Lemma..) |

Lemma 2. Suppose a = Bq-e-2, € M is periodic, of minimal

period mg¢n. Then if a has two equal subwords

(1) a

R e B i e

of length r > m-1, then their locations in a differ by an

exact multiple of m, i.e. mlj-i.



Proof. By the periocdicity assumption wé_may define a mavp

a: Z'nm —> X by 5(1) = a; (1¢ i€ n); we may think of a

as a "cyclic word". If r>m, (1) tells us that this cycle

is invariant under translation by j-i, from which it follows
that & has period g.c.d.(m,j-1i), hence so does a. As m

is the minimal period of a, we must have ml j-i, as claimed.
If r = m-1, +then by comparing the number of occurrences of
each element of X on each side of (1) and in a, we deduce
that the unique terms of a not represented on each side of (1},
which we may write é(i) and é(j) respectively, must be
equal, so again (1) implies that a is invariant under translation
by j-i, whence again m ] j-i .B

Lemma 3, Suppose & = a,...8y € Xh, and d° is a positive

integer such that a has <d distinct subworsfs of length 4.

(i) If n» 24, then a has a subword aj+1':‘aj+r periodic
of some period ng¢d, and having length r 2d+n.

(ii) If

(2) 8341 Bi4p

is a subword of a whose minimal period m satisfies

(%) m<d (small enough pericad),

(4) T > d+m (long encugh word),

(5) iz d-m+1 (enough room on left of 2. in a),
then the subword BgeeBiin formed by adding one more term from
a to the left end of . {2)  is also periodic of minimal

period m.
(iii) Iikewise, if (2) is a subword of a whose minimal

period m satisfies (3), (4) and

(6) i+r 2 ' h-(d-m+1) (enough room on the right of £2) in a)

e

then the word 8,908y is also neriodic of »neriod m.
Hence

{(iv) If h22d then for some m<£d; ~a may be written
as the product of a word of length d-m, =z word periodic of

period m, and ancther word of length d-m.



Proof. (i) The subword ay..-8,4 Of a has d+1 subwords
of length d, hence at least two must be egual. Say

(7) a,

It is easy to see that the word a

j+d T Zjen+1t P 4n+a (iz0, n>0,.j+ngd).

is periodic

j+1"'aj+n+d
of period n, as required.
(ii) By possibly dropping an initial segment of a,

we may assume for notational convenience that
(8) i = d-m+1 (cf. (5)).

Now, as in (i), let us find j and n such that (7)
holds. From (4), (7) and (8) it follows that the two sides
of (7), as subwords of a, each overlap (2) in at least their
last m-1 terms. But by (7) the last m-1 terms of these two
words are the same. Applying Lemma 1, we conclude that mln.
Now from (8) and the last ineguality of (7) we can deduce that
i< i, hence the left-hand side of (7) contains the term a.

i
which we wish to attach to (2). The corresponding term on
the right-hand-side of (7) is &4, Which by {4) and (8) is
a term of (2). Hence as min, the value of a. 1s indeed

i
the value needed to extend the periodicity of (2).
(1ii) holds by the symmeiric argument, and (iv) follows.f

We can now deduce

Proposition 4. Let X be a finite set, 2nd WwedX) a set of
words such that abe VW = aew, beW. If for some integer d>0
W has €4 words of length exactly d, then for all h>d,

W has :sd3 words of length exactly h.

Proof. Let .2a€W be a word of length h>d. If hg2d4d,

we see that a 1is detsrmined by its initial subword of length

d and its final subwerd of length d;_ and there are at most d
possibilities for each, hencé:at,most;:dg:fPOSSibilities ;

for. a¢. .. If hp2d, then by our above result a can be
written 318283_ where &, is a pericdic word, of some period
m<d3d, and Bys Bz each have length d-m. It is not hard 1o
show that a,a, is determined by the first 2d fterms of a

(by (i) we can find a periodicity beginning in this segment,
and by (iii) this will propagate to the right), i.e. by two
blocks of length 4, and az 1is determined by the final



block of length ~d, giving édB possibilities in all. R

3. Examples and remarks.

3.1. Example. Let d Dbe a positive integer, and take any
family of infinite periodic words, &,...,8 € X% , whose
minimal periods sum to d, and none of which is a tranmslate
of another. Let W Dbe the set of 211 finite subwords of these
infinite words. It is easy to see that W has at most 4
elements of any length h. If h>»d, then one can show using
Lemma 2 that no subword of length h of one of cur infinite
periodic words can coincide with a subword of length bk in
another (use the fact that the sum of the two periods is «d),
and deduce that there are precisely d distinct words of
tength h in W.

3.2. Example. Let p, g be positive integers and 4 = p+q+t.
Let W consist of all words in x, ¥y, 2 whose subwords of
length d all belong to the list of 4 words

prq+1 ’ LU yXp+q, Xp+q+1 ] Xp+q2, * e Xp+1Zq.

Then for h2>2d, W contains all words of the form

e Xh—e—~f. Kf

y (0Oges&p, 0<£f<aq),

or {e+1)(f+1) elements in all. Taking ewf we get (e+1)(f+1)
z:d2/4. This is the lzrgest number of words (as a function of 4)
that I have bheen able to realige

3.3, Remark. The above examples iliustrate two ways of getting
setd8 W satisfying the hypothesis of Proposition 4 and having
fairly large numbers of words in each degree. In the first '
example we had a large number of possibilities for the

pericdic part of &z word; in the second, a large number of
possibilities for the initial and final subwords. I suspect
that these twec approaches are incompatible, in a sense which

I will sketch. It seems likely that 1f the periocdicity of =
word a breaks off e terms before the left-hand side, then
the e subwords of length &, BeesBygy BoeeeBg 19 roey

a_ e«ssda

o d+e’ first of all caunnot occur in the verisdic part



of any word in W, and secondly cannot occur at the left~hand
side of any word with periodic part different (up to translation)
from that of a . Hence if words of W involve both several
different periodic parts and several different beginning- and

and end-segments connecting with each, ou# system is low on
interchangeability of parts, and we cannot get a large total
number of words. Note that if the above isuggestion that a

given initial segment is not compatible with more th%% %gg tn
periodic part is true, it follows that a word in W Ais defermined
by its initial length-d segment and its final length-d segment,

reducing the estimate in Proposition 4 of the number of such
2

" words to 4°%.

3.4, Example. TLet d Ye any positive integer and let W
consist of 2ll words in x and y whose length-d subwords
all belong to the set of d+1 words

d-1 -2 d-1 d
X y,x.'d; Zyx, resy ¥YX s X

Then W contains the free semigroup generated by yxd"1 and

x, and so has exponential’rate of growth. 8o in Proposition 4,
the hypothesis that W has no more than 4 elements of length
d cannot be weakened to "no more than d4+1 ...".

%,5. Txample. Let S be an arbitrary subset of the positive

integers, and'let W consist of all words in x, y of the forms
Xlg le’ yxl, yxly _

where i 1is unrestricted in the first three cases, but in the

last case, the length)i+2,is required to lie in B. Then any

subword of a word in W belongé te W. The number cof words

of length hz2 in W 1is 4 if he S, 3 otherwise. This

shows that the count functions associsted with such sets W

can be quite disorderly even if bounded.

%.6. Example. Let f, g Dbe nondecreasing positive integer

valued functions on the nonnegative integers, such that

f(n), n/f(n), gl(n), n/g(n)

are g11 unbounded functicns of n. Let W denote the set of



all words in x, y, z of the form

xiy3E  such that 1<f(j) if kA0, and k<f(j) if 140,
Again, any subword of a member of W lies in W. The rate of
growth of W 1is essentially that of a f(n) g{n). We omit the
details, but this example shows that one can achieve any.growth
rate (modulo the appropriate equivalence relation’ between linear
and cubic (or if we look at the growth of the set of wordis of
less than or equal %o a given length, between guadratic and

fourth degree) and by easy modificationsYwe can get the rate of -

‘rowth of thi ick
growth of x® for any o21. is tric



