ON GENERIC RELATIVE GIOBAL DIMEWSION O
by George M. Bergman

Ist X be & ring and R a K-ring, thet is, a ring given with & homomorphism

K~ R, Then R has (left) relative global dimemsion 0O (we shall henceforth

suppress the "left") if and only if every short exzaot seguence of left R-modules
(1) O ->A >8>0

which splits as & seguence of K-modules can also be split asz a sequence of.
R-modules. (cf. [1], [2], [8].) We shall see below that most of the known cases
where this is so heve a s‘croﬁger property, characterized in Temme 1.); “Some: ...

further results and examples are then obbteinsd.

1. Al) rings will be mssociative with 1. Recall that if R is & K-ring,
there exist an (R,R)-bimeduls €} K(R) and & K-derivation d; R—?QK(R), which
is universel among K~derivations from R inbo (R,R)~bimodules. This ‘bimodule

can be obbtained as the kernel of the "multiplication" map:
(2) - 0= (1, (R) >RE R >R >0
and. the derivation is given by

(3) a(r) = rel - lor (r e R) (of. [5], [6] and references

given there).

If ¥ is any R-bimodule, and m €& M a K~centralizing element, then
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r +» rm - mr is ocalled the ipper E~derivetion of R inbo M indiced by m. Tote

that the K~derivation 4 defined in (3) is immer- as e derivation R +» R 8 R,

out not necessérily as & derivation R --b_nK(R). In fact, if it happens %o .ba

immer as & derivation imto [ly(R), +¥hen by its universal property, all K-derivatlons
from R into (R,R)-bimoaules are inner.

If A 1is an abellan category, & left R-module _gln_:_jeot in A will mean an

object A of A given with a homomorphism R - é(A,A’)). Defining morphisms . -
in thevebvicus way; one notés.that fhese objects :form an abelian category, - ...~

with kernel and cokernel coinciding with these operetions on 4.

Iemmz 1.1, Let R De & K-ring. Then the folloﬁng conditions are equivalents
(4)  For every abelian category A, every short exact sequence of R-module:
objects of é that splids as a short exact sequencarof E=module objects also
splits as a short emact sequence of R=module objects.

(4') For every ring T, bhe ring R 8y T has relative global dimension 0

over X @2 T.

(4") The ring R @ ROP.

ROP has relative global dimension O over K @

Z Z

(4™) The ring R 6,R°P has relative global dimension O over K 8y K°P,

/4 :
(6) The opimorphism of R-bimodules, R ®K; R —> R == 0, indbced by multiplication
if' ‘R, splits;

(5!') There exists an element 2z € R @K R which centralizes R, eand has imege 1
under the above map R @K R -» R.

(8) The universal deriva‘b_ian dz R - .I'.'.K(R) is inner.

Proof., Lot us first, without essuming any of these conditions, consider a

ghert exaclt seguence

(1) " O =>4 B0 =0



of R-module objects in an abelian category A, which splits as a sequence of
E=module objects. ~ - - . As a-E-module:gbject in A, and in.particula.r a8 an

object of A, wo may ke the identificetion .
(8) B= A®C.

Now let the R-module strucbures of A and € be given by homomorphisms
r T, T a—>\rgé. of R :inbo 'é(A.&A)r anci %(G,C) respectively, If we
write |

A(A,4) g(c,a‘))

(9) A(B,B) = a(wé, ABC) = < A
-7 ala,c) alc,c)

then from the fact that the maps of {7) are R=module~object homomorphisms,
we see that the R-module structure of B is given by a mep R —» .Q_,(BI,B)‘G:E‘.
ﬁhe form

(10 : . (rA S(r))‘

161, 0 T

As noted in [5] 5 the necessary and s.u;‘.‘fi.cient condition for (10) to be a ring.
homomorphism is that 9(R) be a rderivation ‘R - é(c,A). (Here  A(C,A) is an
{R,R)=bimodule via its matural sbructure of (Ala,a), Q(C,C})—bimodule.) Further,
because (8) is & decomposition as K-module ebject, we. have 5|K =0, il.e. )
is a E-derivation.

Now (7) will split.over R if and only if we can perturb the given
é-splitting (8) by an A-automorphism of B of the form ('(1) ;‘) (x € 4(C,4))
so that the imege of .G becomes an R~submodule object. It is straightfofward
to verify that this means that § mist be the inner derivation R - %(G,A)
induced by =x. ®Since d: R _)'QK(R.) is the universal K-derivation of R imbo
an (RyR)~bimodule, a sufficient condition for this bo happen is that d be

inner. This establishes the key impliocation (8) => (4).



As to the other implicatibns, we have (4) =>(4!) =» (4") by first teking
4 ‘to be the category of loft T-modules (or if one prefers, right °P.modules),
then specializing to T = R%P. Skipping (4™) for the moment, we see that (&)

=» (5) because the Re-bimodule epimorphism

(11) R@ R-=>R->0

is-spli'h 85 - (K,R)-bimodule map by r +> 1 ® ». We get (5') from (5) by
teking for 2 ‘the image in R® R of 1€ R, under an (R,R)~&plitting. To
get (6) recall that as & derivation into R @ R, d 1s immer, induced by 18 1.
Hence given 2z a8 in (5'), d will also be induced by 1@ 1 - z. But this
lies in the kernel of (11), which is 1 (R).

The equivelence of condition (4" %o the others_ will be easiestto ses
afber we have nobted some trivial prnperties_ of the above equivalen't conditions,
in Iemma 1.3 below, SO Weé defe:;' it to the e‘nd of this section. Till tﬁen Hthe

equivalent conditions of Lemma 1.1" will mean the other conditiens. |

Definition l.2. If the equiwvalent conditlons of the above Lemma are sstisfied,

the K~ring R will be said to have generic relative global dimension O.

It wight appear that in the proef of Theorem l.1l, the universal derivation
d: R ¢QK(R) served as & "magic™ tool for gebtbing from concrebte condit :ions to
conditions involving arbitrary abelian cetegories. Actually', however, the
direct proof of (5') == (4) is simpler. If in {5') we write =z =Eai@~bi, _
sahd we are given an exact sequence O > A -» B - ¢ -» 0 with a K-splitiing
deseribed by a X-linear projection W of B onto 'hiae image of A, then one
cen easily verify that ) a.m b, is an R-linear projection of B ‘onto the
image of A. Condition (5') is also g;enerally"the easlest Yo verify in explicit

cesesy - 0 we shall see in the next secbtbion thet the three main "classical®



results on relative global dimension O were all proved by displaying, in-'smne
guise., an eloment z = Sai @b, =asin (5'). But perhaps universal derivsbions
have heuristic power: I discovered Lemme 1.1 by looking at the property of
heving exrdinary rélative global dimension O from the peint of view described
in the first two paragraphs of the proof. |
We now note some trivial properties of the concept we have defined. A4ll
follow easily from charscberization (4) andfor (4*). To get (16) ome first notes
+hat it is true fo;c the tensor pz;oduc*b over %, by (4'), 'and -,bne then uses the
éurje_cctivi*by of the ring homomorphisms § @7 T = 8 ¥g T (s = R; X). To .ge*b {17)

one uses opposite categories A and ACP.

Ieyme 1.3, If E =-» I =» R are ring homomorpiisms, then

(12) If R s goneric relative global dimension O over 1L, and L has
generic reletive global dimension O over X, +then R lms generic relative
global dimensien 0 over K. |

(13) If R has generic relative global dimension O over K;, then R hes

generic relative global dimension O over L.

o If KX - R K =» R, are ring homomorphisms, then

1? 2
(14) Ryx R, bas generic relative global dimension O over K if and only

if Rl and Ré each have .generic relative global dimension ¢ over K.

(18) If XK >R is surjective, then R has generiec relativg global dimenéion 0
over K. _

{18) If R hms generic relative global dimension O over K, where R end K
are algebras over a commubative ring k, <Tthen feor any k-algebra T, R @k T

has generic relative global dimension 0 over K @k .

(17) If R Ims generic reletive global dimension 0 over K, then the

opposite ring ROP res generic relative global dimension 0 over K%, “



We can now get the equivalence of condition (4™) with the property of generio
relative global dimension O as defined by the other conditions of Lemme 1.1,
Assuming R has generic relative globel dimemsion 0O over K, look at the

induced ring homomorphisms

18 K® K°° = K& RP -» R & ROF.
(18) z - %

Applying (16), (17) and (12) we conclude that R @, R°®? ies generic relative

&
globel dimemsion O (and hence ordinsry relative global dimension 0) over
K o, K°?, ‘pi'oving (4™, Conversely, if‘ (4™ nolds, then applying to the
composition (18) the observation (13) (or rather, the corresponding observetion
for ordinary relative global dimension 0) we get (4"), completing the proof.

We rerark that the,ana-}'.ogs of (12)-(15) a.l.l hold for ordimary relative é;lobs.l
dimension O, by the same arguments. In the next section we shall see examples
of K~rings R of relative global dimension O but not generic relafbive glo‘bal
dimension 0. In view of (4') this means that the a.na.lb’g of (16) is nﬁt true Hor
ordinary relative global dimension. |

I don't know whether the analog of (17) is true for ordinary felati.ve glebal
dimension Q. It is true for absolute glebal dimension 0 by the cbe.ractérization
of rings. R with this property ("eompletely reducible rings") as the semisimple
Artin rings, which are finite direct products of matriz rings over diviéion rings.
But I don't know of any more elementary argument, and the correspoﬁding stateme nt
for global dimension 1 is false [6]. The amalog of (14) for fabsolute) global
dimension O is still clearly true; (15) has no analog and thet of (18) is of

course false; (12) and (13) mmve analogs with relative global dimension over K

replaced by global dimension. Iet us write these down, relabeling "L" as "'

(19) If R las relative globel dimension O over XK, and K has global

dimension O, then R Ims global dimension 0. If R Ies global

dimension O then 1t has relative global dimension O over (any) K.



9. Examples. The following are the five large classes of exzmples of K=rings
of relative global dimension 0O +that I know of. We shall see that all but

the last have generic relative global dimension O.

Example 2.1. Group rings. Maschke's classical theorem says that a group

algebra of a finite g;rbup ~Gs over a field K in which [Gs l] is invertidble,
is semisimple, i.e. of global dimension 0.' Group theorists are familiar with
the stronger result that If k is any commuta tive ring, and H e & are groups
steh that [G:H] is finite and invertible in k, +Then kG has re]a'bix;‘e global
diﬁlension 0 owver kH. Still more generally, suppose k 1is any ring, +& a’

8 family of
groups-shd; R & k-ring containing elements r, (z € ) such that

(20) each: r, is invertible.in R,
(21) Xk 15"g::=".‘t'g k(g e G),
22) r, r € r_ _k € G

(25)‘ R =8, rgk. |
{It:follows from’ “@20.:):-9.»:1&'_‘(:m)athatg: :3.-3.:9;3:311{;1) Naw-.;-lét: H be eny siubgroup of
G such that [Gs.H] is finite and invertible in K. We claim that R has
generic relative global dimensien O over the subring X = ®H k.

Indeed, let 8 € G be a set of left H-coset reprosentatives, and let us

imitate the key step in the proof of Maschke's Theorem by sebbing

‘ ‘ -1 -1
= » . .

(24) z [GsH] Xs r_®r R &, R

Clearly the natural map R @ R = R carries =z %o 1. To show that z
centrelizes R, it suffices to show that ) s ¥s @ r;l commutes with every
®€ k and every rg (geG).

Now note that for € k and g€ G, (20) and (21) give I';lol rg e ks K
-1 _ =1 -l _ " -1 -1
Hence o r &r = r Br " = r r =
e o} L er(se(rs) . erﬁ(sﬂs)rs

(Z I‘SVQ r;l ) ote



Second. » let o: G > & be the natural projection. Then from (22) we see

that for g, g, € G, ‘we have ks K.

-1
T r r g r . -
0‘(8182) 51 gg_ U(glgz) 1@182

L e _ ) ' .1 .
So for eny g € G we have T Yo T8 }:S ro‘(gs)(rc(gs) Ty rg) © r_

- - -1 -1
= 25 To(gs) ® (ro'%g_;s) Te rs) rsl = (}:‘i Tolgs) @ r‘cr(gs)) Tg ° ( Zs re 87y ) oo

as required.

Exemple 2.2. Matrix rings. Probably the first case where relative global

dimension 0 wes proved under thet neame was Hochschild's observation in [2]
that for K any rings, the nxn matrix ring Mn(K) had relative global
dimension O over the subring X of scalar metrices. The proef he . .= .~
give:-is equivalent to noting that the eleﬁxen‘b z =% 57 00y, SR O R

4

satisfies (57).

Exsmple 2.3, Green's criterion. let @3 ¥ > R be a ring homomorphism. We

noted in (18) thet if P is surjective then R has (generic)relative global

dimension O over K. If a family Opsee0s Oy of orthogonal idempotent-

elements of R summing to 1 is given, then  E. L. Green [3] has given a

strong generalization of this fact. For each i, 3 < n 1ot Kij -
{ne x| aiqa(«:g) = P (&) ej}’ i.e. the set of elements of K ocerryirg
e R into e R and the complement of ej
One finds that Khi Kij < Khj’ whence one can put these additive subgroups

R into the -complement of o; R

of X +%ogether to get & "matrix ring" T (x) = ((Kl 1}, and there is
o 3o v 2By J

61.

a natural ring homomorphism' T (K) = R, defined by o> ei?(c!) = () e
n

e 1,»«, e

(& e K, Green shows that R has relative global dimension 0 over K

3

if this map is surjective, and applies this result to the study of .



an impo’rté.nt class of algebras in [4] His proof reduces,ifrom elr polht of
- satisfies (5')

view, b0 8overifiecabioncthab: olo.ars Z ei ® ei € R @K R4’ so here too we
in fact ha&e generic rélative global dimension O

Despite the apparent similarity of the last two examples, neither is a case
of the other: In the context of Example 2.2 one finds that ©;18 e;; does
not centralize R, while in the context of Example 2.3 there is no amslog of
the elements e and TR Of oourse, formally one could encompass 2ll three
of the @ eceding examples in the following setup: |

let _43‘: K-> R be & ring homomorphism, and 8qs+evs Bps Byseee, b eloments
of R. Then it is immediate to verify that - sufficient conditions.fer . |

(R

the element: z =E 8. 8 bi: A% B:-?QEKQ R tGS&tiBi&'(ﬁ!)aretﬁhﬁ:’b_zﬁiyi =), -

and ek foriovery: r€R Shere: should exist _..in?-z:;felgmen‘hs: of ;. j\e_,Kj suph that

(25) r e.;-‘ZJ aj‘?(*(ﬁfij) (1 f_.n) and Ziip(qij) by = bJ r (3 <n)

Bub it 1S not clear that & formulation of this sort is particularly useful.

Exaumple 2.4. Epimorphisms.  (Clearly, a trivial case in which the bimodule mep

R @ R >R splits is when it is en isomorphism, :.. This is known to happen

- if and only if ®#7 X - R is an epimorphism in the category of rings_, PR
giving another generalization of (1) (since the epimorphisms in this category
are & larger c_lass than the surjective homomorphisms.) In this case we can
teke z =18 1 in (8). |

(Note that the "general setup® of (25), which encompassed Examples 2.1-2.3,

does not cover this case unless P is sur jective. For an e:ca;nple of how l@i
can be R=centralizing when ? is not surjecbive, and hence a2lso an example U
showing that the sufficient condition (25) is not necessary:, consider the case

where R 1is generated over K by iunverses 1 of elements x € K. Then we



compute s x_l(l & 1l) = e (xxY) = (x~t x) @ £t (1o 1) xﬂl. Here we
have moved x lei‘twa;'ds across the tensor-sign, rether than moving things
rightwards as in previous sxamples. Cf. [6],} ]:7].)

We remerk thet epic K-rings R are not the only examples in which
condition (5') can be rsa'bisfied -by-.'.a,‘,;ra.nl‘ﬂi:-lﬁ"he%léor;:-—::z-r:rye a ®b, If R is any

algebra over a commubtative ring k, with a pair of one-sided inverse elementss
(28)  eb=1, baftl,

and we let K denote the subalgebra k + b R &, .then one finds that (5') is
gatisfied with z = a®b. However the inclusion K & R i8 nobt an epimorphism;
this may be deduced from the fact thet be € R cenmbralizes K bubt not all of R

Finally, we have

E‘mmpleiéi.& Rings of global dimension 0, 4s no‘ced. in (19)','if e ring R

has glebal dimension 0, it will have relat;lve global d:ﬁnension 0 ._ova',any

X. let:\.n'bhls 'éér,sé it need not havé 'géﬁéi:im‘- -rglati%e;ﬁgiahéli_f&imsﬁsion 0.
For.instance, &fr Ksuisim . Fieddfands Roda K-algebra then &y [ i, u¢ GO s
necessary condition for R to have generic relative global dimension O over .
K is tl:iat“:_.:i‘orl every extension fisld I/K,R @K L still have global dimension :
0. (Apply (16) with k =K, T =1L Sinoe K@ L =1L isaginsa field, (19)
requiresthet R € L also be of  gldbel dimension 0.) Bub if, for in.s‘cance, .!
we take for R an inseparable or transcendental field extension of K, and

set L = R, this clearly fails.

Since all the above examples of relative global dimension 0 arise from

one of the implicatiens
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R hes generic relative
global dimension O over XK.
33 R has rsletive global

dimensien-:Q:lover K.
R has global ::ﬁﬁ:zi?

dimension O.

(27)

and since the two conditions on The left are lefi-right symmetric (ef (17)),
2ll our examples of relative global dimension O also have right relative global
dimension O. As I mentioned ea.riier, I do not know whether there exist K-rings

of left but not right relative global dimension 0.

3, Throughout this sechiony K 'will be a ring of global dimension O.

We have seen that in this caese the bobtom implication of (27) becomes
reversible ((19)) but the top implication does not (Bxample 2.5). In this
section we shall investipgate which R will in feot bhave generic relative global
dimension 0 over swh K. -

Note that 18

(28) 7z = &b

}: i=1’-- Py &j’ i
is an element of R O B, ’che;i for é.ny other fini¥s generating set ai,..., 8';1"
of the right K~submodule ZaiK S R, we can got an expression “z= ) - al ® bi.

Hence as Z aiK is a direct sum of simple submodules, we can write zny -z «in

the form (28) so that we also have:

(29) Bach &y generates & simple right K-module, and the sum of these

K—submodules in R is a direct sum.

For eazch a.i we cen find a minimal idempotent ey € K (an idempotent which

- 18 not & sum of two nonzero orthogonal idempobents) such that

(30) 8y = 830, (i=lgeessn).



We then bave 8y ® b, = 8,0 2] bi = 8, @_eibi' Hence replaclng‘eaoh. bi by

s D, e as8
e4b; Wwe can as ume

(31) b, = eibi (1=1y.005n).

Iemma‘S.i. Suppese K is a semisimple artin ring, and R & EKe-ring of
generic globel dimension 0. Iet 2z € R @ R Dbe chosen as in (5'),rand
written as in (28)-(31). Then the left K-module Z; Kb, is & right ideal
in R. |

Proof. It follows from {29), (30) and the complete reducibility of R as a
left K-module that for esch j <n We can find & right K-linear functiomal
8: R =» K such that |

4 ey if 1=
(82) 0.(a,) = {
| Jos 0 if 1435

Now for any r € R, let us apply o idy: R @ R >R %o the equatim

saying that 2z centralizes r, nremely
Y ey @b 7= §ora; 00y
Recalling (31) we see that this gives -
- (33) by ¥ = ¥i ej(rai) b, € VK 'b.lf
The conclusion of the Lemme clearly follows. ||

Note that since % 8;b, = 1, the clements bl,r...,b

n have zero copmon

right ermihilator. Hence

(34) Under the hypotheses of Lemme 3,1, R has a right ideal with zero

right annihilator, which is finitely generated as a left K-module.

iz



Now by (19) we knew that R is itself a semisimple artin ring, and by (1)
we can even-reduce to consideration of the case where R is a matrix ring over
& division ring. It is tempting to think that we can deduce from (B4) that R
will necessarily be finitely generated a.s- g left K-module {(and by = symnebric
argunent, 2s & right K-module). But in fact, we cen only get this conelusion

under additional hypotheses. The simplest such case is

. Corollary 3.2. If K< R are division rings and R has g;eneri.é relative

gloval 'di.mens:‘x.on 0 over X, +%hen R. is right and left {inite~dimensiomal

over K. In fact

(35) [Rex] , = [Rex], . =0 J

where n is the number of berms in any expression (28) such that the ag

are right K«lineerly independent and the bi areg left kelinearly independen;h.ﬂ

Corollary 3.3. Suppose K is a field and R a K-algebra of generic relatiwe

global dimension O over K, Then R is a finitew-dimensional semisimple

K~algebra. In fach
(26) [Rix] < u?
where n is the number of terms in any expression (28).

Proof. Ileft nultiply (33) by &y and sum over J. We get

Rszi_‘;j as Kb = S aibj K. |}

Note that in the case R

#

Mn(K) the upper bound (36) is stbained, in
conbrast to the bound (%5) when R is & division ring.
The method of Corollary 3,3 can be used In :slightly more general ocase;

we leave the details of the proof to the interested readers

13
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Corollary 3.4. Suppose K S R are algebras over & field k, K is finite=

dimensional over k and semisimple, and R Ihas generic relative global

dimension O over K. Then R is alsb.finite-dimensional over k. |

(This is false without the hypothesis thet X is semisimple! For
instar_ice, if we let R Dbe the 2x 2 metrix ring over the free associative
algebre k< xl,...., x> (r > 1), or, for instance, over = division ring
ratiomily generated by this :E‘r_ge algebra, and ESR is the (r+3)~dire nsional -
subelgebre having for basis the matrix-units ejy, egzs o715 and the v
elemsnts 815 Xis then it is well known that K -» R is an epimorphism of
rings. Hence R las generic relative global dimension 0 over X, +though
B is i-.zif:i.'nite-dimensional.)

The main result of this_. section is the following precise characterization

in the situation of Corcllery 3.3:

Theorem 3.5. let K ™e a field. Then the K-a.lgebras of gemeric relative global

dimension O are precisely the finite direct products of matrix rings

(37) Mnl(nl)'x veu % Mnr(Dr)

where each Di. is 2 finite=-dimensionpl division algebra over K, whose

center is & separabie extension fleld. ofi: K.
Proof, We already know that any K-algebra of generic relative global dimension O
will be-finitesdimendiomsliand of global dimension 0, i.e. will have the form (37)
with each D; finite~dimensiomal over K. By (14) it suffices to consider the
case r = 1, where

R = ¥ (D).
The center ¢ of D Will be the center of R, If C is inseparable over X,

it is easy to deduce that R @K R - R is:non-split as-a.papiof C & C-medples,



15

ﬁence as a map of R & ROP modules.

On the other hand, if C 1is sepa‘rable, then ¢ @K C is_'cbmpletely reducible,
so C @K-G -» ¢ splits over that ring, and so € has generic relative global
dimension © over K. Rurthermore, over C the rings 'R and B°P &re’ fihite-
diménéional central simple algebras, hence so is R @, R°P, so this is completely
reducible, so as above we see that R has generic relative global dimension O

over C. So ty {(12) R Ims generic relative glotel dimension O over K. ||

In the more géneral sibuabion of Corollary 3.4 I don't know whethsr such
a nice criterion can be found, but it would be worth investigating whether

some condition such as "center of R separable over its lntersection with K"

Jjust might werk.

Let us now show why we could not deduce in. the:situsbion of. Lems 3.1

that R was finite-dimensional as a left K-module, without additional restrictions

such as those of Coro’lle.ries 3.2=3,4,

Exemple 3,6. An infinite=-dimensional . E~ring of generic relative global

dimension 0. let X be a field with a field endomorphism T such that
[(K:§(k)] = @, Lot R =M (K), but let us mke R & K-ring via'the mp

oy [ O R
of E- . - == . .
QP( .) _(:0 w(m)) We note thet R zi:.]i 2 X ei;j’ and thet the two sumnmands

with i = 1 each have left dimension 1 over ¥(X), while, bubt the summe nds
with i = 2 each have loft dimension [K: ¥(X)] = o Hence R Ims infinite
left gimension {and by a similar argument infinite right dimension) as e vector
spece over £{X).

To show that R has generic relative global dimension O over cp[Kj, we

use z = Z ey1 8 ep3 ‘just as in Hochschild*s proof for full matrix .



rings, Example 2.2 above. In that example, the need %o dis’ci_.nguish one index
(teken to be 1) seemed an inelegant necessity, bubt now it is what makes things
WO]‘.‘kll For o€ K we lBve &05p = _éilﬁ?(tx) and P (d)eq; = ey tbhough
the o responding statements for éiz and o, are false} so Zeil oy
eentralizes R, {though 2612 8o, does not.)

4, Rex-narks.

I am not enbirely heppy with the term "generic®. (Hochsehild points oub
that its use in algebraic geometry suggests "almost everywhere" rether than
the "everywhere" that I mean.) But it seemed the best oubt of a large mmber of
torms that I and others could think of. Among others suggested by condition (4)
were "absolube", which unfortunately f:onfliots with "relative homological
dimension’, é.nd "eategorical®, which~I didn't use because all homological algebra
is categorical. Condition (B) suggests "hereditary", which is obviously out of
the question, "universal" which. is used by algebralc geomebters but whidh
conflicts with "universal construction"; Yeonservative® and "persis*té nt® whiéh
have already been used by P. M. Cohn toidesbribe. particulsi-behiviours uiderio:
exbension of . scalars by & pure transcendental field extension, and Msenaoious”
or "incorrigible", which seemed to emphatic for the case at hand. "Strong"
would ‘heve conflicted with the existing coneept of "weak global dimension'.

I leave the development of more general "generic relative homological
algebra” to those with more homological background than myself. Noter. that one
apparently cennot eliminate the "relative™. For instanee, ne ring R has
Boeneric global dimension 6" in the sense ‘it every short exmct = quence of

R=module objects in eny abelian category splits — consider the category of



% [t)/(%2)-modules. On the other land, it might bo of interest to consider
{relative ‘95 absolube) homological properties of R-module objects in specizl
classes of abelian ca-.tegories.' For instance, is condition (5) squivalent to
the seme condition with T restricted to be commutative? (For some vaguely
enalogous considerations, of. [9].)

One generalization of the concept of relative globel dimension O (ordinary
or generic) which suggests itself is to consider rings and homomorphisms
K =» R =» 8, with the property that every short exact seguence of S-modules
that splits over X splits over R. This is comparable to Isbell's generalizati ﬁn
of the concept of an epimorphism K -» R +to "™bhe dominion RS S of a
7 morphism K -» S" ['T]

A "Bapmach-Tarski paradox” : :
5. Appendize i *A_ML in field theory. If K is & division ring, and R

& K-ring of generic relative globé.l dimension 0, as in §5, then on left

multiplying (33) by 2 and swming, we get
38) .. &, Kb, =R.
(28) L,y By EE TR

When I wes first attempting to proeve R finite~dimensionzal over K under

some hypotheses, I noted that if the a. are invertibdle, (38) can be written

J
. __-1
39 . e, Ka., G = R
(9) zi,a ( J J ) ij
where cij = aj’oi. Now if R hes infinibte left dimension over K it will
also have infinite left dimension over each s.j K a;.'l. This says that for each

Js R is a direct sum of infinitely many, bub not a sum of finitely memy additive
subgroups (ea.":j:1 K aj)o (c € R). This mede: it seem highly unlikely that R

could be writben as & finite swm (39) sithers:

17
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But I found an exemple, which I will now give, showing that this intuitien
was quite wrong.. This =13 "u a field B witﬁ twe subfields, over —eagh of
which E is infinité-dimensional, bub such that B is the abelian-group sunm
of these subfields. In fzct, one subfield will be the image of the otler mder
an automorphism of E of order 2, so by going to & twisted group ring R over
E v can get this aubomorphism to be inner im R, and get an equation of
precisely the _form (38)s But we will say no more of this, since the co-mmuta’cive
example is inberestingifer.itself; while the gusstions of 83 are now settled.’

In the next Lemme infinite~dimensiomslity is, of c.;oursel, implicit in the

stronger statement (42). Ve o TR P TP EL,

laws 5.1. Let k be a field of characteristic # 2, E an extension fisld

of ¥ such that

(40) tr.deg, (B) = [Bax].

(which happens if ahd enly if tr.deg.k(E) > HO + |k|)s and 7  an aubomorphism

of B over k¥ of order 2. Then there exists an inbermediste field k € K £ E such that

(41) ©+ © X 1is purely transcendental over Xk,
(42) E is transcendental over K (and hence also over TK), bub
(43) * B = K+ TK

Froof, &Since we are in charecteristic ;4 2, we have
(44) E=EF 0B,
where B ={ x€B | T¥x=x} and E-={xeE Tx = =x}.
If we setb
(45) o = 'br.degk(E) = [Bsk]
and make he sbandard ldembification of o with the least ordimal of cardinality el
then by (44), (45) we ‘can write

T (48) P =Z ep k, with P (E"0E") - {0} (B<e)

A<a



Noto that B will be algebraic over the subfield E. It is ea.8y to deduce

that

(47). each of BT, E - contains a transcendence basis for B over k.

Wow let us fix any element wu € B *transcendental over k. We shall

construct our subfield K € E so that
(48) W is transcendental over K,

thus sssuring (42). We now proceed 1;0 construet a genesrating set for X &s.a
field extension of k. Iet us suppose inductively that for some pA<d, we have

chosen elements x, (y<p) such that

(49) the elements u, Xy (¢ <p) are algebraically independent over X,

Because b ~has:smeller cardinaliby than «e%, we can now clearly choose an element 4,

such that
(50)  tp is not algebraic over k(u; Xy (Effﬁ?s-;?’p);ﬁ

{for 'e’i,;?;-f.é_ee':(46;));; and: by {(47) we can impose the further condition

L]

. o B
(81) By e{

E* if ep€ E .

1f e, € EY

We now define

(52) g = ta * o) |
From (49) end (50) it follows that the family {(u, %y ) is algebraically
ysprlo

indeperdent over k. A8 algebreio independence . is:preserved’.on going to wions of

transfinite chains, and the (=0 case of (49) is given by (48), we get & femily

(xﬁ}_p <y Such That, ifwe set . L. o, ey

K = k(x, (p<d)),

19
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(41) and (48) (hence (42)) hold. We alsc note that
vx, = F ‘tﬁt .eﬁ ([&<c{)

where the signs depend on the case of (51) helding for the given p+ Ineny

case, we have

) ‘
w ol + '3 E +TK
°p = 2Fpt T, TR
which by (46) gives (43), completing the proof of the Lemms.}|

We could, of course, easily pget all kinds of wvarients of this e¢xample if
we wished — with tr.deg.K E as big as tr.degk E; with an subomorphism T
of arbitrary order; with K algebraically closed instead of purely transcendental
(since going to the algebraic oclosuré does not affect (42)); ... . Nobe Lhat' for
[E:k] .. countable the.above préof does not require the axiom of choics.

From analysis one can get a "mtural" example -of:a similar: sort..  Let
$ denote the Riemann sphers |

§=¢0Cu{m}.

Iemme 5.2. et E bs the field of all meromorﬁhic functions on the punctured
plane 8§ = {0, .m }s X +the subfield of functions meromorphic on the complex
plane ¢ =8 - {®w}, and T¢: E -> E the .aufomorphism £(z) w £(z"1). Then (42)
and (43) hold.

Proof (suggested by M. Rosenlicht). (42) is innnediate; in fact K is clearly
algebraioally closed in E bub distinet from E. To prove (43) take any £ € B,
find an annulus

’ A={z|r<|zi<i*+€}

in which " £ has no poles, and expand £ +there in a Iaurent series. This mey
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may be written as the sum of & power series in 2z and & power series in z-lz

1

£, defired and amalytic on {z | 0% |z] <r +g}

£, dofined and amalytic on {z | r < |z] < o).

(53) : £=1r +f, oni,

By (53) £, end £ -i‘z coincide on A. Since £, is enalytic for

0<|zf <r+e end £~ £, ismeromorphic for r <|z< w they picce bogether

to give a meromorphic exbtension of fl on S = {m)}, hence an olement of K.

2
S - {0}, hence an element of <TK. By (53) these functions sum to f on A,

Similarly f, and £ - fl piece together to give a meromorphic function on

hence by anmalyticity their sum must be f wherever it is defined. So f£ € K +7K. |

The above argument can .clearly .be Used to show that if X, ¥ S § are
closed sets which can be separated by an annulus 4, and _such thet §-X -Y
is conmcted, then any functien f meromorphic (respectively holomorphic) on

. {holemorphic)
§~X~ is the sum of a zunc'bn.e:n meromorphlc on & - X and & function

(ho lomorphic) 7
meromorphic on § - Y. I would suppose that this should be true even if
"separable by an amulus" is weskened to "disjoint" and S replaced by any
Riemann surface; does anyone know?

| The results of this section are so easily come by that I would imagine

they should be known somewhere; I would welcome any references.
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Addenda to "OW GENERIC RBIATIVE GLOBAL DIMENSION O vy George I Bergman

Another class of examples. Suppose K is eny ring, ds; K -» X a derivation,

R = Ma(K)',:-.andr let . us map Ki-s"R byé:-‘tﬁg map “F(x) = (g dz). One can prove
Tomme A.l, If 2 is(invertible in K, %hen R has generic relative global
dimension 0O over <«(K), using the sl =18% e .0..

‘ ) )s g the slement z ];,?gzi -813%31 € R Qcp(}() R.

On the other hand if XK is a commutative integral doms.'i‘]n in which 2 is not

invertible, and d # 0, then R does not have generic relative global zereo
over @(K). (Computations of proof availeble on request, )|

Example A.2. Iet k be & field, X = k(t) = siple transcendemtal exbtension of

k, and di K -» K <the derivation carrying t to 1. Define = ...

R = Mgg@K)_‘.;and‘,q?ie.sja;bove?;....‘. Yhen R will have generic relative global dimension

zero over P(K) if and only if cher k # 2, ° . Nobe that the intersection

of P(K) .and the cenber of R, “i.e..thé largest subfield over which both R :

and ¥(K) are algebras, will be the kernel of d in K. This is k if char k = 0,

and k(P) if char k = p # 0. In the former case X and R are infinite-dimensional

over this subfield; we shall say no more about that nows in the latter, we note

that :..(center of #(K))=#(XK) is inseparable over E(tB), . . On p.15 line 10

we wondered whether separability of that extension might be a necessarwy and

sufficient condition for generic relative global dimension 0. We see by the

odd-cheracteristic case of this example that it is not necessary. The -

characteristic 2 case shows that &'corvédt:criterion fu: generic relative globtel

dimension O -+ . . must be quite subble, since the cases-arée supeprficially - . -

parallely (I would imagine we can get analogous examples not having

generic relative global dimension O in odd characteristic p, by using an

indecomposable p x p mebtrix-representation of an inseparable field extensim.)
Jncidentally, the condition mentioned is certainly sufficient; for by

Theorem 3.5 it implies that R has generic relative global dimension O over the

intersection of K with the cember of R; henoe by (13) R has gereric relative

globel dimension O over K. L T

,Gemra.lizing Green's criterion (Bzemple 2.3). |

[ S

Lemme. A.3. Suppose P: K ~» R is a ring homomorphism, 81s-+5 8, € R are
orthogoral idempobents summilng t0 1, and T =.T@13""3en(K) = ((Kij)) is
defined &s in Example 2.3. Then if R has (generic, respectively ordirary)
relative globel dimension O over T, it has (generic, respectively ordinary)}
relative global dimension Q over "K as well. S : .; ' _
Preof. BEven if T ~» R is not surjective, the compubation upon whiclx Green's

" result is based shows that the indicated element 2 of the (RyR)7imoduls-R 8y R




centralizes the image of T in R. Hence if a short exect segquence of
R-modules in an abelian category A has a K-splitting, 2z glves a T=
splitting, and thie gives an R-splitting for appropriste A (dependiggi on

our hypothesis om R and T.}||

This Lemme does not follow from Example 2.3 by (12), because Exemple 2.3
does not work by proving T +to have generic relative global dimension O _
over K ~ indeed, T is in géneral not & K-ring; we merely bhawe a-diagrdm IT{}R

J.oleb us show that the converse of the lemma is false., let k be a field
of characteristic 0, K = k[z| a polynomial ring in one indeterminate, and

ds K = K +the derivetion taking x to 1. Teke R = M (K) end P: KX >R
as in Lemma A.l. Then by that Lemma, R has generic relative global
dimension O over K. XNow if we take for the system of idempotents in Green's

construction "e‘li; %0 € R, we find that T = (]é‘ g) < R. T has global dimension
0, so gl.dim. (R,T) = gl.d@im.(R) = L. Clearly this could not happen if K =» R
fa.c'bored through T“-i- R. _
Transfer dimensien® O - ' '
T Given &ny ring nomomorphisms II{‘}R apd a right R-module €, let us say
that € is (K,L)-transfer-projective if every short exact sequemce (1) of
R~modules that splits over K splits over L as well. We can similarly
define other (K;L)-transfer homological concepts. In particular it is matural
say that R has "generic global (X,L)-transfer dimension O" if every short
exaot sequence (1) of R-module objects in any abelian category which splits
over K splits over IL; equivalently if all Rwmodule objects in all abelian
eategories are (K,L)-transfer projective. (I suggesbed. in the abstract a
more limited case of this concept on p.17.) Then the proof of lemme A.3 actually
- (54) In the context of Green's constr., R has gemeric (K,T)-transfer dimension O.
‘Other easily verifiable results are

(55) If R has generic (KsL)~bransfér dimension O.and gemeric (L,M)-transfer
dimension O, then R .has generic {K,M)-transfer dimension 0.

(56) If LSXK SR, then R las generic (K,L)-transfer dimension O.

(57) If L <SR is the dominion of KR [7], then R has gen.{X,L)-tr.dim. 0.(of.2.4).

(58) If w e R is invertible and K S R, then R has gen. (K, uRu™)~tr.din.0:"

If R hes generic (K,L)-transfer dimension O, and we let S denote the
subring of R generabted by the images of K and L, then for any short exact
sequence of R-module objects (1) splitting over ¥, we get a splitting over L,
and 1% is natural to ask whether we will even get o splitting over 8, is. whether
R will have geperic-global (X,S)-transfer dimension 0. Consider the following.

N

example. let k be a field, R +the upper triangular matrix ring ( ok
K%k xk the subalgebra spanned by the idempotents (é é), (g "i), and LEK
the subalgebra spanned by 8y1 and 9"

Then b{ gither (54) using the
idempotents ey, and ©50s OF (58) uBfng wu = (0 %), we find that R lhas

generic (K,L)~transfer dimension 0. Bub. K- apd: L gensrate all of R,
which does not have relative global dimension 0 over X,

D. Sarason tells me that the proof of Iemma 5.2 can indeed be adapted o
the case where O and m are replaced by disjoint closed subsets of § with
commected complements. Whether S can be replaced by & more general Riememn
surface he didn't know. '



