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2bstract

Epimorphisns in the category-theoretic sense, and dominions in the sense
introduced by Isbell, are studied in the categories of finite-dimensional end
erbitrery Lie algebres over any field K, and finite-dimensional and arbitrary
p-lie algebras over a field K of characteristic p. In the arbitrary lie case,
the finite=-dimensional Lie case when char K f 0, and the arbitrary end finite-
dimensional p-lie ceses, the theory is found to be triviel: all subalgcbres
are difference-kernels, so the only epimorphisms are the surjective homomorphisms,

Most of the peper studies the characteristic O finite=dimensional Lie cese,
from the point of view of finite=-dimensional representetion theory. Here
nonsurjeotive epimorphisms do occur. These are related to the concept of
"parebolic" subalgebras, but ere more gemeral. A further concept, that of
"immer dominion", arises naturally in this category, end twrns out to be
relsted to the concept of Malgebraic subalgebra™. Among negative results,
it is shown that no nonsurjective homomorphism of ILie algebras with solwble

range, or with unimodular image, is en epimorphism.
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I shall fry to meke the oategorywthecretic oconcepts used meaningful to the
non-categorists On the other hand, I reocall for the non=expert (like myself) in
representations of Lie algebras wvarious definitions fram that field; 80 I ask

the pe.‘!_;}epce of both kinc}s of experts among my.readers.

1. Definitions and background.

if g is a category of algebras’ (in the general sense: groups, rings,

modules etc.) and their homomorphisms, B an algebra in ¢, end A € B e subalgebra,
s cfe also Mazet [ggjl it
then Isbell (e.g. [‘?]‘) says that A dominates an element b € B if for eny
two homomorphisms in 2 from B to a common range object, £, £f's B =% C, one
has .
(£la = £1]a) = (£(b) = £1(b)).

(E.gep if ¢ is the category of all rings, or all semigroups, and & € A hes
e two-sided inverse b € B, then A dominates b.) The set of elements of B
dominated by A will be e subalgebre of B containing A, called the dominion
of & in B, Clearly, dominion is a closure oper(;'fl;iocn?oi subalgebras of B,
The dominion of A can be written as the intersection of @ifference=-kernels of
a set of pairs of maps, fi’ ﬂ;_t B :::Ci (ieI). If one can 'form in g the

pushout (universal term to go in the lower right-hend corner, end give ecammutativity)

D of the diegrams

I
= . '
(1888 E -2 D (= B_nA B),

then the dominion of A in B oan in fact be obtained as the Mfﬁ@noe-kernel

of the Bingle pair h, h's B =3 D; alternatively, if we can form in g the



direct product € =TJ C; for e femily (fi, £]

a5 ebove, then this dominion is the difference kernel of the single pair of

R Ci) defining the dominion of A

induced maps £, f£'s B =% C.
Recall that e map gs A =» B in an erbitrary category g is called an

epimorphisn if for amy f, £f'¢ B3 C in ¢ one has the cancellation

propertys
(fg = £1g) = (£ = £).

Clearly, if g \is a cetegory of algebras, this is equivalent to saying that
the dominion (with respect to g) of f£(A) €B is all of B, The class of
epimorphisms in e category of algebras always includes the surjective
homomorphisms; these may be all, as in the category of groups', or the
epimorphisms ocan form e larger class, &s in the category of associative rings
where they include all localization-maps. Note that to know which maps ere
epimorphisxns;, it suffices to know which. inclusions of subalgebras A S B are

epimorphisms, i.e., which subalgebras A have all of B as dominion.

(However, if e eubalgebra A<S B -hes domini.on By < B, fthe inelusion A < B,

mey not be en epimorphism, because there oan be maps f, f' defined on Bl

which do not extend to B, Thus the dommon construction can be iterated to
give a possibly transﬁm'be desoending ohain of subalgebras, B2 By2By® ...

i

conteining A, whose ewentual oonsta.nt value D 1sbell oalls ‘the steble

dominion of A in B. This is the la.rgest subalgebra D € B in which A is
- : 4 & - L -

1nn1uded epimorphl cally. )
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3 % K be a field. We shall show in"Theorem 2.1 thet im u., estegory of all

!.

e nlge'braa over K, the only epi.morp]:ﬂ.m are the lurjootlw w;ﬂusms,

and more generelly, that eny Iie subalgebre A S B is its own domi.nion.



In other words, if A is a proper Lie subalgebra of B, we can find a pair of
homomorphisms of B into a Lie algebra C — equivalently, a pelr of -
;i;;;reaentations of B on the same vector-space V = which agree on A but
non"l:u?n »all of B; end whose difference-kernel is in fact iprecisely A.

It is natural then to esk, if B is finite-dimensional, can ¢ (or V)
also be teken finmite-dimensional? That is, do the ebove results hold also in
the ce:begory of f:.nite-dn.menslonal L:Le e.lg;ebras over K‘? We slnll discover
that the answer ;.;_-yo_s__i.;' -ohar 'K = p )‘ 0 (Theorem 2,33 and simila:r]y for
p-Lie algebras, Theoram 2.2) but no in the oharacberistic 0 ocase, which we
study in #83-7.

(Note: Some ocategorists have adopted the excessively subtle oconvention
of calling e morphism satisfying the above cancellation property en "epi", or
"epic morphism®, while restrioting Topimorphism" to its eerlier sense of
"surjective homomorphism® — making it e not purely oategory=theoretic term,

since surjeotivity cannot be defined dn en abstract category. We are not .

following that oonvention here, of course. )



2. $he trivial casess charsoteriatic Lmd,/or arbl trary dimension.

To study epimcrphisms end dominions of erbitrary Lie algebras over = field
K, we shall use their universal enveloping algebras, end an elegent result of
L. Bilver on epimorphisms snd dominions in the category of associative algebres.
(Whenever we speek of associative rings or algebres, we shall understend "with m,)

, following Silver

let Rc § be associative algebras over a commubative ring K, and, form the
K=module S OR 8. This is not e ring; nevertheless I claim that the dominion of
R in S is the difference-kernel D of the two K-module maps 8 ~» s8l and
s » 18s of S into S OR S. Indecd, we mote that - =
given two homomorphiéms of associative elgebres, f, £'s S=3 T agreeing on R,
the K-submodule f£(§)£'(8) € T will be e homomorphic image of 8 @, §, so the
maps £ end f£' will agree on all members of D. On the other hand, $o. -
construct such e pair of maps whose difference~kernel is exzmctly D, note that
565 isan (8,8)-bimodule end take for T the split extension 5 @ (S€.S),
end for f, f'1 S =2 R +the maps s = (5,0) end s -» (s, 581 - 1@s). To
see without scrap-paper that the latter map is en algebra homomorphism, note
thet it mey be written s =» u"1(s,0) u, where u = (1, 101) € T.

Note thet if K is & field emd R, 6 are finite-dimensional over K, then
this test=objeet T will mlso be finite-dimensional, so D is also &
difference=kernel in the category of finite-dimensional associative K-algebres.

when 8 is finite-dimensional
We conclude thatathe daninion of R in 8 is the same in the categories of all
aaan‘iative K-algebres end of finite-dimensional associative K-algebras.
Tow let AcB be Lie algebras over a field K, and, K[A] Q_:'#[B their
universal enveloping algebras. We can choose a toté.lly ordered KQ-baais for

B such thet en initial segment of its elements form e KX-basis for A.



Applying the Poincaré-Birkhoff-Witt Theorem to the universal enveloping elgebras
K[A] < X[B], we sce that the latter will be free as & right module over the
former, on a besis conteining l.’ By e symmetric argument, K[B] will also be
free as a left K[A] -module on & basis containing l. It follows immediately
that in K[B] eK[A] K[B], one has u8l = 1u if end only if ue K[A]s so the
dominion of K[A] in K[B] is just K[A], and in particuler, we get two maps

of K-algebres K[B] —2 T with difference-kernel K[A]. If we now regard these
es maps of Lie algebras over K, and compose them with the cenonical inclusion

B - K[B], wo get two Lie maps B =3 T whese difference-kernei: K[A]n B = A,

Hence:

Theorem 2.1. In the caetegory of arbitrary Lie algebras over e field K, every

subalgebre A of e Lie algebra B is its own dominion.. In particular, a
homomor phi sm L& :% wlowur is en epimorphism in this category only if it is

sur jective. ||

Next, let E bo a field of characteristio p $ 0, end oonsider p-Lie -
algebras (= restricted lie algebras = lie algebras with pt,h power operation #..
[S], Bv.7) over K. For these one egain has & unmiversal enveloping slgebra

oonatriobioen, -K_[B]ﬁ.’ with e normal form ke that glven iy tis, Polmoard= s «
- |4

-

Birkhoff-Witt Theorem, except thet ~the exponeirt (of each basis element aaf « Bt
{n an allowed monomial may now not exoedd p=1 { [§], Thenrem Hil2) vMe.agmin: e
Bee that for A = p-lie subalgebra of B, K[B]P will be free as a right snd

t&l.."ht‘t K[A] =module on bases comtaining 1, and that -x[;]i,nx_a =4, 80 We

om ..pp]q,r the same reaaoning as before. But =~ *’: Cuize we oan Say mores
W # 0. Thes SRR o
1f dmxB-n<m,then dinkK[B] p”‘<m, sointhiauuﬁitoat-

----- SR
ob;]eot T used in determining the dominion of K[A] in K[B] wlll. a.ho e

finite=dimensional. Thus ¢ =tz



Theorem 2.2. lLet K be a field of characteristic p f 0, Then in the

category of p-Lie algebras over K, and also in the category of finite-
dimensional p-Lie algebras over K, every subalgebra A of an elgebra B
48 its own dominion. In particular, & homomorphism in either of these

categories is an epimorphism only if it is a surjection. ||

- wi>r There is a verient of the ebove oonstruotioﬁ,' used in
[8] 8vi.3,which, though nonfunctorial (it imvolves arbitrary choices)
allows us get the seme result for efdimerygo-; <. ordiver; £I-°% Sz o 1.
Lis elgebras over a field of finite characteristios

Iet K Ybe a field of cha.ra.cteristic r }‘ O and B a ﬁnite-dim.ensional
lie algebra over K. Choose & basis {ul,....l\n] for B over ‘K. For each i,.
the infinite family of weotor-space endomorphisms of B, (eud ui)P (s4- ui)p,...
must be linearly depemdent, 80 we can choose & polynomial of the form '
fi(t) = tpn(i)+ O(n(i)_l’cpn(i)-l + 4o +°(1tp, such that fi(a.d ui) =0 €
Endg.13,(B). From the properties of pth powers end derivetions in charscteristic

p (see [¥] for details) one finds that the elaments z, = fi(ui) € K[B] will all

concludes i _
be central, and'\that h[B] has e K=besis oonsisting of all monomials
ry T 8 8n n(1i)
zl ceeZo Wy ersl, where 0<ri, 0<si<p .

If we now let I ¢ K[B] denote the 2-sided ideal generated by the

central elements %, and put S = K[B]/I, we can see that § will.be finite-

il N\
dimensiomel, with K-basis consisting of all monomials u:]-...us,n (o< s, < pn(i))’

u:d ltill contein B a5 a Lie -subalgebra. Now let A be “ A en Iie subalgebre of
B, atid essuwme the basis {u; } of B chosen so that {ul,...,un] un K=basis of

r r
A, for some m < n. Then the monomials ull...umm will clearly spnn



a Bubalgebra RS 8, such that A = Ra3B, and S is right ﬁjoe as an
R-module on & basis conteining l. Reversing the ordering of fhé‘;f‘ui'. we
find - thet S is also free as a left R-module on Buch a basis. So once
more, R will be a difference-kernel in S as finite-dimensional associative
algebres, and so A=BnR is & difference=kernel in B as finite=dimensional

lie algebras. Thus we haves

Theorem 2.8. Let K be & field of characteristic p # O, Then in the

oategory of finite-dimemsional Lie algebras over K (es in the oategory of
all Lie algebras over K: ses Thcerem 2.1) every subalgebra A of an elgebra
B is its own dominion. In particular, & homomorphism in this oategory is

en opimorphism only if it is surjective. ||

The next four sections will be concerned with epimorphisms and dominions
in the category of finite-dimensional lLie algebres over e field K of
characteristic 0., However, many of the results will be formulated end proved

' ‘ general

without assumption on char K. Thus, e.Aresult about difference-kernel (dominion)

subalgebras will apply to erbitrary subelgebras when char K £01



3. General representetion-theoretic characterizations of dominions and epimorphisms,

The key idea iB the next two results, of comparing the annihiletors of
A and B in a representation, wes shown. " to ms by Linde Rothschild.
The ections of elaments of e Lie elgebra B on elaments of a B-module

(representation of B) will be indicated by superscripts.

Theorem 3.1, let A S B be finite~-dimensional lie algebras over a field K.

Then the following conditions ere equival ents

(i) A is the difference kernel of a pair of homomorphisms of B into a
finite-dimensional Lie algébra C; equivalently, there exists two representations,
b B (i=1,3) of B on & finite~dimensional vector-space V, such that

A={(beB|Y¥YveV, v

= vb'z}.

(11) There exists @ B-module W finite~dimensional over K, and a direct=sum
decomposition as vector-space, W =X @& Y, such that A = {be B | xbs X, Ybs Y).
(iii) There exists a B-module Z finite-dimensional over K; and an element

z € £, such thet ={beB|zb=0}.

Prot;f. The two statements of {i) are &quivalent because a flnite-ﬁimensional
Lis elgebra has e finite=dimensiomal fa.i.th.ﬁ‘xl module (Ado's tmd Inha'ln:'a

a.'i‘

Theo reams. )



(1) = (ii). Given V and two representations as in (i)., let W=V oYV,
let X< W be the diagonal subspace {(v,v) | ve V}, end Y S W the
subspace V ® O, Clearly, W=X® Y, Ifwe let B scton W by (u, v)P
= (ubi, !rbz), then B, and so in particuler A, respeots f, while tho set
of elanents of B respecting X is clearly precisely A, giving the desired
descri ption of A.

(1) = (iii). Given W=X®Y as in (ii), let 2 = Endy ﬁ, end let B
act on Z by the adjoint of its actionon W. let 2z & Z be the projection
of W onto X along Y. Then the desired description of A is immediate.
(1ii) = (i). Given 2 end 2z es in (1ii), define a Lie algebra structure
on C=B@2z by [(b,s), (b )], = ([o, v'], g - '1tb). The two maps
of B into C givenby b w> (b, 0) and b (b, z°) will be Lie

homomorphisns, and they have difference-kernel A, as desired.l

If B 4s a finite=dimensionsl Lie algebra, it is easy to see that
the class of subalrebras A ¢ B oharacterized by the above theorem, the
differénce-kernels, is closed under finite lntersections; so by finite~
dimensionality of B it is closed under erbitrary intersections, and thus - .-
forms e closwre system ([6], 82.1). The olosure of an arblirary subalgebra
under this system will olearly be its dominion in B (with respect to the
eatecgory of finite-dimensiomal Lie algpbras), We shall here (experimentelly,
risking a confusing terminology) oall the difference=kernel subelgebres of B
the dominions in B (or the dominion~subalgebras of B). Thus, .the dominion of
i;i;;:balgebra A< B is the least dominion in B ocontaining A. (An elternative
would be to drop Isbell's term "dominion" entirely, and spesk or.ﬁtforenoe-
kernel subalgebras" and "difference-kernel hulls®. ) |

From the charscterizations of dominions in our category given by Theorem 3.1,
we cen now write down conditions for a subalgebre A of B to heve B

for dominions
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Corollary 3.2, lLet Ac B be finite=-dimensional lie algebras over e field K.

Then the following conditions are eguivalent.

(1) The inclusion A € B is an epimorphism in the cetegory of finite=
dimensional lie elgebras over K. Equivalently, arny A-module structure on a
finite-dimensional K-vector-space V, which can be extended to & B-module
structure .oan be extended uniquely.

(31) If a B-module W has a direct-sum decomposition X ® Y as an A-module,
then X and Y are also B-submodules of W.

(iii) 1In every ﬁnite-;dimensional representetion 2 of B, the annihilators

of A and B in 2 eare the same, |

Note that in condition (iii), we may restrict attention to subdirectly

irreducible B-modules Z.

4. Examples, ‘gounterexamples wrid remarks.

Proposition $.1. ILet K be a field of charecteristic 0, let B = s1(2,K)

= ((;_ﬁ) | % f,y € K}, and let & be the subalgebre (5 4)). Then the inclusion

AS B is an epimorphism of finite=dimensiomal lie algebras.

Proof, By [B], Theorem III.8, all representations of B are completely

reducible. The irreducible representations 2 are desoribed in [8], Theorem III.12.
The onJy one for which Ann, A # 0 is tho ome corresponding to m=0 in that

Theorem, andthere  .sv Amn, A = Anng B = .Z. So condition (iii) of the

above Corollary is satisfied. Altermatively, condition (i) cen be deduced

directly from the déveloment preceding Theorem ITI.12 in [¥].] .

.
i
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We oan use this exmmple to get others. ILet R be a.ny finite=-dimensional
e.ssoc:.at:.ve algebre over & field K of characteristic 0, and V a K-subspace
of R, conteining 1. The 2 x2 me.‘brlx ring § = (R R) oontains a lie subalgebra.
A= {(3 _:) |«e K, v €V}, which i'n turn conteins the algebra [(3 _u *, fe K)
of the preceding Proposition. Thus, the dominion of A in S will contain
s1(2,K), end hence will coﬁtain the lie subalgebra B £ § generated by
81(2,K) and (g g); and we see that by the same e.rg\ments‘, the i.nclusion‘A c B
will be an epimorphism. In general, the form of B is not clear. Note,

however, that for all r, r* € R one has

G5, Q9 =G
O G M-@G

[© 9, (5= &' )

O-rr

It is easy to see from these relations that when R is commutetive, and
generated as an associative algebre by V, then B will be precisely &l(2,R);
thus the inclusion A < sl(2,R) is an epimorphism. 1In this situation B
cen have large dimensionality while A is small. (The game tm.ck“is usgd de.
in the study of epimorphisms of associative algebras in - [7, p.268] ; ofi.also
[}, Example 10.2].) < ¢ preprint of [1]>

For en explicit example, note that for any positiVe in’ceger n, the
direct produc'l: algebra g0+l 55 generated by the unit (1,...,1) and the

element (0, l,..-pn). Toke i‘or V +the subspace of o 2 sparmed by these

n+l Hef’

two elements. Note that sl(2, £1) oan be wrttten s1(ZEY as o algobre.

Applying the preceding observetions with R = Kn+ we gets



Corollary 4.2. Let K be a field of characteristic O, n & positive integer,

and A the lie subalgebrs of s:l(z,K)n+l
&= (3 2 BEE), ees (3B o Bug e KD

Then the inclusion of the S-dimensional subalgebra A in the 3(n+l)-dimensional
semisimple Lie algebra sl(2,K)n+l is an epimorphism of finite-dimensional

Lie algebras. u

One cen - construct many more such exemples. Note that if we teke

13

R = k[t]/(tml), then 51(2,R), egein 3(n+l)-dimensional, now has Sm-dimensional nil

readical, end again has a 3-dimensional epimorphic subelgebre.

J. Wolf has observed to me that the key to Proposition 4,1 seems to be -
the fact that the subalgebra of s1(2,K) in question is parabolic. We reoall
that an algebraioc subgroup G of a limear algebralc group H 4is said to be
parabolic if the homogeneous space I;/G is complete as an algebreioc variety.
This is equivelent to & condition on the Lie algebras A< B associated with

c H, namely thet when one extends ecalars to the algebraioc closure K of K,
then AE-{ contains e maximal solveble subelgebre of By (of. [3], Cor.16.13).
Hence & subalgebrs A of an arbitrary lie algebra B (not necessarily eoming
from sn algebraic group and subgroup) is elso.called.perabolic when this
pondition holds. | T oo S dne bor, 3o

v a4

i = pr—

. However, not all epimorphiams of Lie mlgebras correspond to parabolic

aubélgobras; The A of the preceding Corollary is not para.boltu._ﬁ

I suspeoct thet A S B being epimorphic corresponds (in some d.inile.r sen se)

‘o -hombgeneous spaces -H/G which have no nonconstent polynomiel functions; e

woeker condition than completeness. For a motivation, note that the condition

/ref. ?/
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that H/G have no nonconstent polynomial functions is equivalent to seying that
ell Geinveriant polynomial functions on H eare constent, i.e., H=invariant,
and compere this with Corollary 3.2 (iii). I do not know enough of the relevant
'l';heo bto pursue these ideas further., I leave it to those who do to check
?Iin characteristic 0) : yu .

whether parabolicity does indeed imply eplmorphlsm, and whether amything can I——
be made of "no nonconstant polynomial funoctions on I-]/G" as a general
eriterion for epimorphi sm.

I also wonder whether parsbolic subalgebras A € B might not be
cherscterizable es those subalgebras that ere epimorphic in all intermediate

subalgebras B, (A < B

0 € B); perheps K should here be algebreically closed.

0

Wo know from Theorem 2.3 that the inclusion {(% fL)} ¢ 51(2,K) is not
an epimorphism when cher K # 0. We can also show this by a simple explicit
exemple. To make the exsmple work uniformly in characteristic 2 and odd prime
characteristic, let us use a slightly nonstandard definition of 81(2,K). If
K is any commutative ring, s1(2,K) will denote the Lie algebra free as &

K-module, on & besis {c,d,e}, with Lie operation given by:

[c.l,d] = ¢, [c,e] = d, [d’,e] = 9,

It 1/2 € K (in particular, when K is a field of characteristic O or en
odd prime) this describes, as expected, the algebra of trace-zero 2x2 matrices

over K, vie:
1,00 1,10 0 =1
( ) ).

° 10 =3 (o1 e =(y o)

For 1/2 ¢ K this is not so. In particular, for: K e ftold of
trece=-zero

characteristic 2, the metrix algebra is nilpotent, while the algobra. wo

have agreed to ocall ,81(2,K) is simple,as in other characteristics. This

is the point of the definition.



Our example is based on the representetion of the next lemma. Note
thet if p is an odd prime, then for eny integer 1 one has. (i+p) &
(!) ‘mod 3), while modulo 2, (3% = (3). Here ( ) demotes the binomial

soeiTicient i(i=-1)/2.

Lomms 4.3. let K be a commutative ring, end r a positive integer such
i+
,)

g d " (52') in K. Then for any elements o, B¢ K,

thet for all integers i,

the Lie alge'bra. sl(z,K) (a8 deﬁ.ned a.'bove!) has an action on 'l:he free

. o
Frv Ferolnd

K-'module on T genere:bors x, (1 € z/rZ) given by:

¥ k‘*"""‘ ot
o - .
T S
du(1+0) x, (i e 2/rz)

° = ((3) +ia+p) =z

Proof. By choice of r, the last formule mekes sense., The computation

is immediate. j ' 2 J

PR S RS R

lIet us cell this | 51(2,K)~module v(a,p; K, r).

Now 'bake any K, ¥5 s p 88 above, and oonsi.der V(d,f; K. r) end
V(o( p+l, E, v) as two representations of sl(z,K) on the same spaoce
x°K+...+x‘__lK. The subalgqbra of 81(2,K) on which these r‘epresen'batl‘ons
a.grae i8 precisely oK + dK, 8o this subalgebra is a dominion in sl(z,K).,
in contrast to Lemme 4.1. ' _
{This example shows other things. Note that the element «g:a-E X

under any representetion of this form satisfies P = x; 80 © aotl non=

nilpotently. On the other hend, if we form the 2~dimensionnl commutebive



K-algeb‘ra K[E] with £2 = 0, end look &t the representetion V(E..'e; K[t], r)

of sl(z,K[EJ ), then d acts on x; by multiplication by 8., which 4s -
.nilpotent. Hence if we regmrd this es & 2r-dimensional representstion of

81(2,K), we see that under this representation, d acts non-semisimply.

Cf. ;elﬂ’ Theorem VI.2.)

.« Jote thet condition (i) of Corollary 3.2 is not equivalent to the wesker
condition that a B-module be determined up to isomorphism by its A-module structure.
For instence, when eoher K = 0, the subalgebra -dK < 31(2I,K) has this property

{cf. [B], Theorem II.12), but this inclusion ié not en epimorphism (e.g., epply

Corollary 3.2 (iii) to the adjoint representation of B,) On the other hand, it

seems pleusible that in characteristic p, even this weak condition masy imply A = B.

&. Some further general results.

We shall need the followlizz:at:ﬂt' the proof.of pert{o):ofthe next Theorems
Iemme. 6.1. Let B be a Lie algebra over a field K, and V a B-module.
Then there exists an action of B by derivetions on the exterior elgebra Av,
exbending its action on V. Let X be amy subspace of V of dimension n < @ -
end write N*X=32K<S AV. Then {be B| x° c X} = {b e B 2L e zK}.
Proof. The first assertion is well=known (of. [3], Prop.5.4). In the

second, “c" is clear. Conversely, for b € B such tiet xb ;é X, take x € X

w’lthxb#x. Then xaz = 0, 80 :cAzb=-bez;40, 80 zb‘d zK. |

Part (c) of the mext Thearem was suggested by Isbell’'s corresponding
peBult for milpotent associative algebres, [7], 2.3. ‘Part (d) was shown to

me' (with & slightly different proof ) by Warren Dicks.. - F ya)im™

Y 4 i e
o = T
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Theorem &,2. let B be a finite-dimensional Lie algebra over a field K,

end A S B a proper subalgebra. Then the inclusion A € B is not en

epimorphism if either

(a) A lies in e proper ideal I < B, or

(b) A is reductive in B (i.e., B completely reducible as an A-module) or

more generslly, if A lies in & proper direct surmend of B as A-modulej or

(¢) A is nilpotent, or more generally, unimodular (acts trivielly on its
highest nonzero exterior power); or

(d) B is solveble.

Proof. (a)s Immediete by looking at the fector-map end zero-map, B =3 B/I.

(b) Sy B=X@Y as A-module, with A S X end Y # 0. If the inclusion

A S B were an epimorphism then by Corollary #.2, X and Y would be

B-submdules, leees jdenls of B, contredicting (a).

(¢) Let Z be the n®h exterior power of the adjoint representatlon of B, where
= dimK A, and 2K c Z the l-dimensional subspace corresponding to A. By

unimodularity, A = 0. If As B were an epimorphism this would imply zB 2 Q,

g0 by Lenme 5.1 A would be an ideal of B, egiin contradicting (a).

(d) B will have a nonzero sbelian ideal; Let I 4B be a minimal such,

If A+ 1 # B, then the map of A imto B/I is nonsurjective, end by
induction on dim B, we conclude thet it is not an epimorphism. It follows
thet A c B is not elther.

If A+ I =B, note t}nt An I must be properly contained in I,
ﬁﬁaause I is en ideal of B, A~l is an ideal of A, and becausé I is
lﬂnlia.n, AnI is en ideel of I; henoe it is an ideal .of A +IXI =3B, 8o by

the mininelity assumption on I, we have AnI =0, i.e. B=A @I, 4s

the summende ere A=-suhmodules of B, +the inclusion of A in B 18

not en epimorphism by (b). ||
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Note thet part (c) implies that eny epimorphiam w:;th nilpotent domain
is surjective. This is not true, however, of epimorphisms with unimodular
domain, since anmy Lie algebra cean be written as a homomorphic image of a
unimoduler one.

We shell see in the next section that a milpotent , or indeed e l=dimensional
subalzebre of a finite-dimensional Lie algebra B need not be e dominion. (That isl,
the dominion of such an A, though it cennot be all of B, can be strictly larger
than A.) I don't kmow whether every subalgebra of a solvable Lie algebre is a

dominion, nor whether every semisimple subalgebra of an erbitrary ILie algebre is,
Loe o drndrns

If B is a Lie algebra over a field K, and E is e field extension
' . over E
of K, let BE denote B @y E, made a Lie algebraﬂin the natural menner. For

any subalgebra A € B, AE can be identified with a subalgebra of BE. Given

BE over E, on the other hand, there will exist subalgebras
C,sCysB such that (CO)E cCsg (cl)E’ which ere respectively maximal and

minimal for these inclusions to hold. Obviously, there are a large number of

e Subalgebra C ¢

possible connections between dominions of related subelgebres of B and Bg that
one could investigete; and still more relations arise if we consider restriction

a8 well as extension of scalars. Here we shall only éonsider the simplest cases

> ot TIPS
o ISl

b
. Li i
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Proposition 5.3, Let A< B be finite-dimensional Iie algebras over e
field ﬁ, let C denote the dominion 9f:A in B, and let E be an exbensi‘on-
ifield of K. Then the dominion of AE in BE’ es lie algebras over E, 1is
Ck. In perticular, the inclusion AE < BE is an epimorphism of finite-
dimensionel lLie algebras over E if and only if A€ B is an epimorphism over K.
Proof, One direction goes easilys C is a dominion in B, so it satisfies the
equivalent conditions of Theorem 8.1. Choose date as in eny one of those
conditions, €.g., 2 and z as in (iii). Extending sealars %o ﬁ, we get
corresponding data ZE’ z for CE c BE’ s0 CE is a dominion inB’E s over E.
Thus, since CE contains AE’ i.‘b contains the dominion of AE

To get the reverse inclusion, let D denote the dominion of 'AE in BE
over E, Again, since D is a dominion it will satisfy the equivalent conditions

of Theorem 3.1, this time over the field E, so let us again choose Z, & as.in tla t

Theorem, 8ince A.n.nBE £ = D, we have in particulaer zAE = 0, BO zA = 0.

Now if the field extension E/K is finite=dimensional, we ocan restrict
operators and regard 2 as a B-module finite-dimensional over K. Since zA =0
the definition of C implies zc = Q, hence C < D, henoe CE € D, as desired.

If E/K is not finite-salgebraio, we reduce to the finite-algebraic case
by & specialization. The method is standard so I won't go through the details. /referen
The point is that if some o© € C does not lie in ﬁ, we take a specialization
E~F with F fipite-algebraic over K, whose domain of definition includes
the finitely many structure constents of the Bg-module Z, eand which does
mt_‘_?mi}‘ﬁlate (some coefficient of) the nonzero element L e Z. We then epply
'I:h;’preoeding ergunent to the B

F

-module induced by 2. 8Sinoe A annihilates
Z, but © € C does not, we have a contradiction, |
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6., Inner dminlons.

Condition (ii) of Theorem 3.1 maturally leads one to consider the simpler
condition (ii) of the following theorem. ‘One might even expect them to be

equivalent, but we shall see that they are not.

Theorem 6.1, Let A € B be finite=dimensional Lie algebras over & field K,

Then the following oconditions ere equivalents
(i) There exists a finite-dimensionel B-module 2, and & l-dimensional
K-subspace 2K S Z, such that A = (beB | zb € zK},
(i1) There exists s finite-dimensional B=-module W, and & K-subspace
Xc W, suchthat A={beB |x c X},
(1ii) There exists a limear elgebraic group H over K (e_sub-group-schemg of some
GL{n,K))s » en algebraic subgroup G < H, and & homomorphism £ of B into
the associated Lie algebra T(H) of H, such that A = f-l(‘l‘(G)).
Further, every dominion A € B satisfies the ebove conditions.
Proof. We first show thel eny dominion A € B will satisfy (i), We choose
e B-module and element, 'ZO € Zo, setisfying condition (iii) of Theorem 5‘. 1,
thon let 2 = K @ Zy, with B eoting trivially on K (B= (0}). Then z = (1, z,)
will have the desired property.
Further, (i) == (ii) is clear, &nd so is (1i) = (iii) if we bake H =
Aut(Wj, end G +the subgroup stabilizing X
(1ii) = (1) is & Lie algebra version of Chevelley's Theorem (E}],
expose 10, Prop.5), which says that given e linear algebreic group H and an
-algebraic subgroup G, there exists & linear-algebraiag- a.ot!.tnuht-'x" on a
Pinite-dimensional veotor space Z, and e 1-dimensionsl . pubspace II, suoh that

G is the stabilizer of zK in H, Now-hoterthad in-this pituation,: 2 will
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become & T(H)-module. If cher K = 0, then by "oxponentiation™ we oan see that
™G) = {(ue T(H) | z% € zK}, hence in the situation of condition (1ii), we

got A = £ X1(6)) = {be B | L £(P)

€ zK}, esteblishing (i), If char K # 0,
then by Proposition 2.3 and the preceding remarks, every subalgebra A £ B
satisfies (i)=(1ii), end the question is trivial. (The general hypothesis

of ['-IJ, where Chevellgy's Theorem is proved, is thet K is algebraically closed,
but this is not needed in the simple proof of that result.  Note . that
(ii)= (i) cen be seen directly from Lemma 6.1. This is equivelent to & step

in the proof of Chevalley's Theorem. )|

It is clear from condition (ii) that the class of subalgebres A of a
lLie algebra B cheracterized in the ebove Theorem will be closed under
intersections, and so form s closure system. Since the closed subalgebras
of this system include the dominions, the closure of an arbitrary subalgebra
-A c B will be contained in its dominion, so we shall call it the inner
dominion of A in B; The class of subalgebras defined by the above Theorem
ivill be called the immer dominion subalgebres of B.

(In oldfashioned language, the immer dominions in B are the subalpebras
that cen arise as isotropy subalgebres of points of projective spaces under
infinitesmel linear actions of B, while the dominions are tlose that arise
as isotropy subalgebras of points of veotor spaces under such ections. )

(Recell that if H if an algebraic Lie group, .and B = T(H) the
mssooiated lie algebra, then a subelgebra of B isa called algebraic if it

(R,

osn be written T(G) for some algebraic subgroup G < H, and the assoclated

1xe

closure operator on subalgebras of B is called "the" a,lgebraio hull" The

class of algebraic subalgebras, however, does not depend on the Lie algebra



B alone, but also on the representation B = T(H). The concept of immer
dominton is & modificetion of this, which removes this dependenoe. The

4dea suggested 1n B4, thet it should be possible to relete the conditions

"4 ©B epimorphic™ .and "g/G is a variety with no nonzero constant sections",

cen probebly be cerried out in e similar mermer. )
That the concepts of inner dominion end dominion are distinot is shown bys

Proposition 6.,2. If A is a proper subalgebra of e finite=dimensional lie

algebre B, then the irmer dominion of A is also a proper subalgebra. In
perticular, every maximal subalgebra of B is an inner dominion.

Proof, The normalizer of A in B, {veB | [& b] c A), is by construction
an inner domlnion, and contains A. If it is e proper subalgebra of B, we

are done. If mot, A is an ideal, hence & dominion (of. Theorem 8.2 (a)).

hence en immer dominion. |

On +the other hand, from condition (i) of Theorem 6.1 we can see that '
every inmer dominion subelgebra of B contains a dominion subalgebre of B,
of codimension < 1, so the two classes are not that fer apart. The

following observation might be of some uses

lerme 6.3, let B be a finite=dimensional I.ie algebre, and A € B an imer
dominion subalgebra. Sey A = (b€ B l lb = x}. for some subspace X of some
finite=dimensional B-module W. (E.g., X n.:a;%!:aﬁ 1l-dimensional. )

8uppose that the dusl A-module, X%, can be embedded in some B=godule TU.

Then A is in feot e dominion subalgebra. (E

Sketok of proof, Let 2 be the B-module W @y U. The A-sutmodule . X8 X* S 2
tan be identified with 'End.K(x). The element 2z oorresponding to id, will

be ammihilated by A, but not by ary other member of B.|

-
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Note that X* oen always be written as e hamomorphic image as A-modules
of the B-module We., It becomes an A=-submodule of W¥ if X is & direct
sumend in W as A-modules. So the condition of the above lemme generelizes

that of Theorem 3.1 (ii).

G. P. Hochschild has shown me two examples of Lie subalgebras which ere
not imer dominions; these are given (in slightly modified form) below, His
motivetion of these in terms of algebraic hulls is whet suggested condition
(iii) of Theorem 6.1,

Recall the notation for sl(2,K) set up in B4,

Lems. 6.4, Let K bewa field of characteristic O, Then the l=dimensional
subalgebre of s1(2,K)° spenned by the element (c,d) has for inmer
dominion (and domimion) the 2-dimensional subalgebra spanned by (¢,0) and
(0,d).
Proofs The 2-dimensional subalgebra nemed is 'bhé centralizer of the given
elanent (or of itself), hence is en annihilator subalgebre of sl(z.K)2 under
the adjoint representation, hence is e dominion ('l‘heore:g 8.1 (iii)). It
will hence suffice to prove that the inner dominion of (c¢,d)X oconteins
this subelgebra.

Now by the representation theory of s1(2,K) in characteristic 0
([%], IX.8) the motion of ¢ in eny representation is nilpotent, while that
of 4@ is semisimple. Hence on any sl(Z,K)z-module W, (0,0) and (0,d)
will have commuting, respectively semisimple and nilpotent actions. If the
0.01;11011 of (o,d) belongs to the (associative) subalgebra of Endi(I') taking
some subspace X S W into itself, then its nilpotent and smnisi;}if:le parts
(c,0) and (0,d) must also belong to this subalgebra ([?], Theorem ML 16). 8o

these 1lie in the immer dminion of (c,d) in 81(2,1{)2, as olaimed. ||
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LB_IEIDB. 6.4& let K be & field of characteristic 0, properly copteining the
field S of rational numberss and lot X be any element of K = Q- Then the
1-dimensional subalgebre of sl(Z,K) spe.nned by the element (d,e(d) has for
imner dominion (end dominion) the 2~dimensional subalyebra spammed by

(d,0) and (0,d).

Proof. For the same reasson as before, the 2-dimensionel subalgebre named will
contain the dominion of the given l-dimensional subalgebra, end it suffices to
prove that 1t lies in the immer dmminion thereof.

This time, we use the fact that in any represemtation of s1(2,K), d

ects semisimply with half=integer eigenvalues. ([3], p.85, Lemme 5, whéie

= 2d.) Sinoce (d,0) end (0,d) commute, any s1(2,K)%-module 2Z can be

decomposed 2 = & zij’ where (d,0) acts on Zij a8 multiplication by i/2,

and (0,d) es multiplication by j/2.
Now suppose (d,(d) sends some l-dimensional subspace 2K € 2 inbo

3 . (4, xd) 1 .

® bt g € . = e q s s
itself, Write 2z =) 2440 where zi;j zij Then & - | 2(i. +c:l:])z:|_'J
For this to lie in 2K, all the ccafficients %( i +& j) essociated with nonzero
components Zij of 2z must be equal in K. But since a;! 9, mno fwo such

terms are equal, so there can be at most one nonzero compomsnt =z, .. 8o
1J

z is an eigenvector for both (d,0) and (0,d), so these teke 2K into itself.

Thus, they lie in the inner dominion of (d,«d)K & 81(2,1{)2, a8 olaimed. |

Note that the inclusions of these l-dimensional subalgebras 1n their

dominions are not epimorphisms, since these dominions are abelil.tb Hence the
dominion construction in this category must indeed be iterated more than once

to got Isbell's "stable dominion™ (see parenthetioal discussion on p.3 ).

A 2



Wo Bec thet in charscteristic 0, we have the following distinot classes

of subspaces of a general finite=dimensionsl lie algebra Bs
{ideals} & {dominions} < {imer dominions} & (subalgebras}-.
while the last three fall together in finite characteristic.
An interesting contrast. to the above fwo exemples is given by:

lerms 6.5. Let B be a lie algebra over a field K, and let P = pK

be the l-dimensiomal Lie elgebra over K. Then for any by € B, the
l-dimensional subalgebra (??bo) S PxB is e dominion. In particuler,

the subalgebras of P x E:l(z,K)2 spenmed by (p,c,d), and by (p,c,oc) (any

o € E) respectively, are dominions.

Proof. (p,'bo)K C PxB 4is the graph of the Lie algebra homomorphism P =» B
teking p to bo; end the graph of eny homomorphism f3s A =» B is a difference-

kernel, nemely of the two maps AxB -» B given by (a,b) = £(a) and (a,b)=> b. |

The snelog of Proposition 5.3 holds for imer dominions, with essentially
the identiod proofs (It is most convenient to work in terms of condition (ii)

of Theorem 6.L).

Theorem 6.6. let A € B be finite=dimensional Iie algebras over a field K,

let ¢ denote the immer dominion of A in B, and let E be an extension-

field of X. Then the immer domimion of Ay in BE’ as lie algebras oyer E, .

i gl - _
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7. Pre-finite-dimensional algebras *

In this last section, we look at our results on epimorphisms of
ﬂﬁ;.to-dimansioml lie algebras from another point of view.

Let us ocall e Lie algebre A over a field K pre—finite-dimensional“

if it cen be written as & subdirect product of finite=dimensional Lie salgebras;
equivalently, if the intersection of all ideals of finite codimension in A

is {0}. (Equivalently, if it is embeddable in a pro-finite-dimensional Lie
algebra as usually defineds en inverse limit of finite-dimensional ones. )

We meke the same definitions for module s etec..

Then it is not hard to see that if A & B are finite-dimensional Lie
algebras, the dominion of A in B will be the seme in the categories of
finite-dimensional and pre-finite-dimensional Lie algebras, though we know
thaet for char K = 0, this is not the same as dominion in the cetegory of
all Iie algebras over K.

Thus, the study of epimorphisms and dominions in the category of
pre=-finite-dimensional K=algebras generelizes the finite-dimensional theory
presented above. Note that for pre-finite~dimensional lLie algebras A < B,
the dominion of A in B can be computed as the intersection of all
difference-kernels of peirs of maps of B into finite-dimensional Lie slgebras
Cs which egree on A.

I oan now state what I-really had in mind in Corollery 4%2: In the

oategory of pre~finite~dimensional Lie algebras owér a field K of

s V)

%P8 & K} in the infinite-dimensionsl Lie algebra sl(2,K[t]) is an

charecteristic 0, the inclusion of the 3-dimensionel subalgebra {

epimorphism,

S Sl e o N";d.‘ny ik ‘d';tuu;n\ }



Likewise, the problem of determining "the'generel ferm of B* mentioned on

P9 can now be formulated more meturally., Iet R be the free asBociative algebra

on n indeterminates, KQL.L’""I:? and let V denote the K-subspace of R spanned
w 1, X)s sees Kpo Then as pre-finite-dimensional Lie algebras, the
n+2~dimensional algebra of matrices ("é Z“) ke K, v € V) will be epimorphically
included in the Lie elgebra B of matrices over R generated by 81(2,K) end
the (g gi) (i<n). The problem, then, is to describe this B. (B will be
pre-finite~dimensionzl because the Lie algebra of all 2x2 metrices over R is,
because R is, as an associative algebra. Note alsos R has an involution & W e
changing the signs of the generators {end by definition of involution, reversing
the order of multiplication.) One gets from this an involution on 2x2 metrices
@b

over R: (: g) > B will be contained in the lie algebre of anti-

symmetric elements under this involution; possibly this might equel B.)

We observed in B2 that epimorphisms and dominions in the cetegory of
finite-dimensional essociative EK=algebres were the seme as in the category of
arbitrery associative K-algebras. However, epimorphisms in the category of
pre=finite-dimensional associative K-algebras need not be! on= wey Ll fockinz
The trouble :is.o . .. that though' S & (S o 8) will be finite-dimensional
whenever S is, it may not be pre-finite-dimensionel if § is — the tensor
product § OR S mey have elaments which are killed whenever we kill an ideel
of finite codimension in S§. . R

~Indeed, thet this does ocour cen be deduced from the e:a.steme of
nonsur,]ectlve epimorphlsms in the oategory of f:.n:lta-di.mnsional Il.o algebras!

By [95], Exercise VI.7, 8 (p.206), the universal emveloping elgebra K[B]
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finite-dimensional Lie algebra B over e field K of characteristic 0 1is
pre=finite~dimensional as an essocietive algebra. Now let AcB beasa
nonsurjective epimorphic inclusion of finite=dimensiomal Lie algebras. In the
category of all essocistive K-algebras, the inclusion K[A] < E[B] is not an
epimorphism; in fact, the proof of Theorem 2,1 shows thet K[A] is a dominion
in K[B]. But eny two maps f and f' of E[B] into & finite~dimensional
associative K=algebra C which egree on K[A] can be looked at as Lie maeps
of B into C egreeing on A, hence they will be equal, by the essumption on A < B,
It follows that the inclusion, K[A] < K[B] is an epimorphism of pre-finite=
dimensional Lie algebras. (Thus we see that epimorphisms end dominiions of
finite=-dimensional associative K-elgebras agree with those of both arbitrary
and pre-finite-d imensional essociative K=algebras, though the latter do not
agree with each other?!)

In the ebove situation, we can deduce that the K[B]-bimodule

K[B] OK[A] K[B] end the coproduct over K[A] ("free product algebra with

amelgamation of K[A]") K[8] -Ll—x[.a.] X[B] both feil to be pre-finite=dimensional.

The universel pre-finite-dimensional image of each of them will be K[B].

<INSERT on p.22, efter first paragraphs>

To the three squivalent conditions of Theorem 6. i, one may add a fourths
(i:%).' There exists e finite-~dimensional associative K-algebra S, a subalgebra
2{‘&3, end e lie nlgebra homomorphism of bf ‘BioinBo (8 (madeTh:Iié algebra by
commutator brackets) such that A -'f'l(n). t 4

The implications (ii) = (iié) =» (i1ii) are immediate, the i;ttér via
"zroup of units", It is alsb easy to show that in (11%) end (111), the
homomorphism £ oan be taken to be an embedding.
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ADDENDA %o "EPIMORPHISNS OF LIE ALGEBRAS" {tobe—ineerpereted—in-Linal version)

The following paper has been brought to my attention, of which E€85=8
have considerable overlap with the present works

G. A. ‘Reid, Epimorphiams and surjeoctivity, Inventiones math. 9(1970)255-307,

One result which Reid obbains which we did not is that epimorphisms are
sur jective in the category of (finite-dimensional) real compact ILie algobras;
this uses the corresponding result on Lie groups, which is proved using the
Peter-Weyl Theorem.

Hochschild has shown me that every subalgebra of a nilpotent Lie algebra
is & dominion, using results on extension of representations, and that any
semisimple subalgebra of an arbitrary Lie algdbre is a dominion.

The question of whether every subalgebra of a solvable Lie algebra is a
dominion seems to be. :quibe.di-fficult,

The examples of epimorphisms given in 84 were based,eitheron .parabplicity
alone (Prop.4.1) or parabolicity combined with "sub-lie-algebra generated by"
(Cor,.4.2), Here is an exsmple which also involves immer dominionss
Let B = s1(2,K) x sl(2,K) (K a field containing Q), let ofbe an element of k~-Q,
end let A S B be the subalgebra spamed by (d, =d), (e,0), (0,e). Then no
subalgebra of A is parabolic in a larger subalgebra of B. (Explicitly, one
verifies that any subalgebra €< B not contsined in A has a solveble suba lgebrs
lerger than Cw A.) Howevér, the immer.dominion of A in B is the subalgebra
spanned by (¢,0), (d,0), (0s0), (0sd), which is parabolic in B by Prop.4.1,

80 the dominion of A in B is B, i.e., AS B .:isiapis,

It would be-interésting to know.whether all epivs -and:domsgiofLie’alg, s arise by
combination of parabolicity, inner dominions, and generation. I.e., if A < B
is a sub-lie=algebra (closed under genersbion), which is an ivmer dominion
(i.e., closed under the operation of inner dominion) and such that if A. ¢ A
is parabolic in B,c B, then B, S A (closed with'respsct to parabolicity?, then
(1) does A € B epimorphic impiy A = B? (ii) more generally, must A always be
2. dominion in B?

The corresponding (perhaps equivalent) question for Lie groups is the
following: lLet E/G be a homogeneous space of & linear algebraic group H,
whose function sheaf has no nonconstant global sections; i.e., such that H
has no nonconstant polynomial functions invarient under G-transletions. If‘H/G
is positive~dimensional, must it have a complote subvariety of positive dimension
which: is the homogeneous space H./GnH, for some subgroup Hy & H? (I.e., if
G ¢ H is epimorphic, must there be a case of parebolicity, GnHy € H,, which
shows it is not "parabolically closed"?  Bzamples let H/G be the projdctive
plane minus & point, H its full group of linear transformstions. Then any
projective line not containing the deleted point will give the desired complste
subvariety. Hartshorne tells me that a reasonsble varieby without noriconstant
global soctions of its function sheaf will contain a complete curve; the problem
is whether one can ehoose this to be homogoneous under Some subgroup of H.)

If the answers to (1) and/or (ii) above are affirmetive, one would also
like to know whether the operations of inner dominion, parabolic partial-extension,
and subalgebra-gencrated can each be performed once on an arbitrary subalgebra
to get its dominion (or at least, to get B if it is epimorphic), or whether
iterations, of possibly arbitrary length, may be needed.

Finally, what cen one say in genersl ebout the inner dominion operation?
Are the examplos of Lemmas 6.4 and 6.4: somehow canonical? If so, does the
oporation really break down into two oferationss "separating" purely additive
and purely multiplicative summands, end separating . . purely multiplicative
sumands with incommensurable eigenvalues?

C. Praeger (M.Sc. thesis, Oxford, 1970, unpublished; present addresss
Austral.Natl.U.) examined epimorphisms in some varietles of nlgebras, and
found that the equivalent of Prop.4.1 above holds for K the field of 3 elements,
within the variety “generated by B = sl(2,K).
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