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A NOTE ON FACTORIZATIONS OF FINITE GROUPS

GEORGE M. BERGMAN

Abstract. In Question 19.35 of the Kourovka Notebook [1], M. H. Hooshmand asks whether, given a finite
group G and a factorization card(G) = n1 . . . nk, one can always find subsets A1, . . . , Ak of G with

card(Ai) = ni such that G = A1 . . . Ak; equivalently, such that the group multiplication map A1 ×
. . .×Ak → G is a bijection.

We show that for G the alternating group on 4 elements, k = 3, and (n1, n2, n3) = (2, 3, 2), the answer

is negative. We then generalize some of the tools used in our proof, and note a related open question.

1. The example.

In this section we develop the example described in the Abstract.

Definition 1 (after [4, §1], cf. [6, p. 6]). Suppose G is a group, k is a positive integer, and A1, . . . , Ak are
subsets of G. In this situation, if the multiplication map A1 × . . . × Ak → G is bijective, we shall write
G = A1 · . . . ·Ak, and call this a (k-fold) factorization of G.

(If G is finite, we see that the above bijectivity condition can alternatively be expressed, as in [1, Question
19.35], by the conditions G = A1 . . . Ak, and card(G) = card(A1) . . . card(Ak).)

Observe that if G = A1 · . . . · Ak is a k-fold factorization of G, then for 1 ≤ j < k, G =
(A1 . . . Aj) · (Aj+1 . . . Ak) is a 2-fold factorization. Though the example we are working toward is a 3-fold
factorization, the key to its proof will be a property of 2-fold factorizations, namely

Lemma 2 (cf. [5, Cor. 2.14(a)]). Let G = A ·B be a factorization of a finite group. Then the order of the
subgroup of G generated by A is a multiple of card(A), and the order of the subgroup generated by B is a
multiple of card(B).

Proof. Let H be the subgroup of G generated by A. For each b ∈ B, the set Ab is contained in a single
right coset of H; hence every right coset of H is a disjoint union of sets of cardinality card(A), hence
card(H) is a multiple of card(A). The statement about the subgroup generated by B is seen in the same
way. �

We will also use the following observation.

Lemma 3 (after [4]). If G = A1 · . . . · Ak is a factorization of a group G, then for all g, h ∈ G,
(g A1) ·A2 · . . . ·Ak−1 · (Ak h) is also a factorization of G.

Hence if for some positive integers n1, . . . , nk, G has a k-fold factorization with card(Ai) = ni (i =
1, . . . , k), it has such a factorization in which A1 and Ak both contain the identity element e. �

We can now prove

Proposition 4. Let G be the alternating group on 4 elements, a group of order 12. Then G has no
factorization A1 ·A2 ·A3 with (card(A1), card(A2), card(A3)) = (2, 3, 2).
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Proof. Recall that the elements of exponent 2 in G form a normal subgroup N ∼= Z2 × Z2, that G is an
extension of N by a group of order 3 whose action by conjugation cyclically permutes the three proper
nontrivial subgroups of N, and that all elements of G not in N have order 3.

Suppose G = A1 · A2 · A3 were a factorization with card(A1) = 2, card(A2) = 3, card(A3) = 2. By
Lemma 3 we can assume without loss of generality that A1 and A3 have the forms {e, g} and {e, h}
respectively. The orders of the groups these sets generate are the orders of g and h, and by Lemma 2, are
even. But the only elements of G of even order have order 2, hence A1 and A3 are in fact subgroups
(which may or may not be distinct).

Since A1 and A3 are contained in N, for G = A1 A2 A3 to hold, A2 must contain representatives of all
three cosets of N in G. Moreover, elements of G act transitively on the set of 2-element subgroups of N ;
so A2 must contain an element g that conjugates A1 to A3.

Hence when we multiply out A1 A2 A3, the result contains A1 g A3 = g A3 A3. But the multiplication
map A3 × A3 → A3 is not one-to-one; from which we see that the multiplication map A1 × A2 × A3 → G
cannot be one-to-one, contradicting the definition of a factorization. �

This completes our negative answer to [1, Question 19.35] for k = 3. What about larger k ? If we allow
factorizations with some factors equal to 1, then for any k, a negative example with cardinalities n1, . . . , nk

yields negative examples for all k′ > k, by keeping the same G and n1, . . . , nk, and taking nk+1 = . . . =
nk′ = 1; so the only remaining open case is k = 2. However, Hooshmand (personal correspondence) has
indicated that he intended only factorizations of card(G) into factors > 1. With that restriction, the problem
remains open for all k > 3; I do not know whether there is an easy way to modify the present example to
cover those cases.

Hooshmand posed the question for k = 2 in [3], and refers to that case in [1] as of particular interest;
his preprint [4] concerns that case, and also mentions the case k > 3 at the end, as Problem IV. The case
k = 2 is also studied in [2], after a discussion of the history of the subject of group factorizations.

2. Strengthening our lemmas

In the context of Lemma 2, the order of the subgroup H of G generated by A can change on left-
multiplying A by an element g ∈ G, a fact we implicitly used when we applied Lemma 3 in the proof of
Proposition 4. In the next result, modified versions of that subgroup are noted whose orders are not so
affected. Also, while Lemma 2 is applicable only to the first and last sets A1 and Ak in a factorization
G = A1 · . . . ·Ak, part (iii) below obtains a similar, though weaker, condition on the cardinalities of the other
Ai. (This will be slightly improved in Lemma 7.)

Lemma 5. Let A1 · . . . ·Ak be a factorization of a finite group G. Then
(i) card(A1) divides the order of the subgroup of G generated by the set A−11 A1 = {g−1h | g, h ∈ A1},

which can also be described as generated by any one of the subsets g−1A1 (g ∈ A1). Moreover, that order is
also the order of the subgroup generated by A1 A

−1
1 = {g h−1 | g, h ∈ A1}, equivalently, by any of the subsets

A1 g
−1 (g ∈ A1).

(ii) Similarly, card(Ak) divides the order of the subgroup of G generated by Ak A
−1
k , equivalently, by

any of the subsets Ak g
−1 (g ∈ Ak), and that order is also the order of the subgroup generated by A−1k Ak,

equivalently, by any of the subsets g−1Ak (g ∈ Ak).
(iii) For 1 < i < k, card(Ai) divides the order of the normal subgroup of G generated by A−1i Ai,

equivalently, by any of the subsets g−1Ai (g ∈ Ai), equivalently, by Ai A
−1
i , or by any of the subsets Ai g

−1

(g ∈ Ai).

Proof. (i) Combining Lemma 2 and Lemma 3, we see that for every g ∈ A1, card(A1) divides the order
of the group generated by g−1A1 (the argument that we implicitly used in the proof of Proposition 4).

Moreover, given g, g′ ∈ A1, the group generated by g−1A1 will contain (g−1g′)−1(g−1A1) = g′
−1

A1; so
the groups generated by g−1A1 are the same for all g ∈ A1. Clearly their common value can also be
described as the group generated by A−11 A1, so the groups named in the first sentence of (i) are indeed
equal.

The groups in the second sentence of (i) are equal to one another by the same argument. Moreover, for
any g ∈ A1, A1 g

−1 = g (g−1A1) g−1, so the group generated by A1 g
−1 is conjugate in G to the group



A NOTE ON FACTORIZATIONS OF FINITE GROUPS 3

generated by g−1A1. Hence the order of the group in the second sentence is the same as that of the group
in the first sentence.

(ii) holds by the same reasoning.
(iii) For each i we similarly see that the not necessarily normal subgroups generated by the subsets of

G named in the first half of (iii) are all equal, and are conjugate to the common value of those generated
by the subsets named in the second half. Hence the normal subgroups generated by these sets are all equal.
Let us call their common value N.

The condition G = A1 · . . . · Ak implies that G is the disjoint union of the sets hAi h
′ for h ∈

A1 . . . Ai−1, h′ ∈ Ai+1 . . . Ak, and clearly each of these sets is wholly contained in one coset of N, namely
hN h′ = hh′N = N hh′. Hence N (and, indeed, every coset of N) is the disjoint union of a family of such
sets, so N indeed has order a multiple of card(Ai). �

We also note an easy strengthening of Lemma 3.

Lemma 6. If A1 · . . . · Ak is a factorization of a group G, then for all g0, g1, . . . , gk ∈ G,
(g−10 A1 g1) · (g−11 A2 g2) · . . . · (g−1k−1Ak gk) is also a factorization of G.

In particular, if for some positive integers n1, . . . , nk, G has a k-fold factorization with card(Ai) = ni

(i = 1, . . . , k), then it has such a factorization in which all Ai contain e. �

A choice of k + 1 elements g0, . . . , gk as above actually gives one more degree of freedom than is needed
to make all the Ai contain e. This might be used to replace some particular term by a chosen conjugate of
itself.

Returning to Lemma 5, one may ask whether in statement (iii) thereof one can replace “normal subgroup”
by “subgroup”, as in (i) and (ii). Not as far as I can see. For though G is the disjoint union of the sets
hAi h

′ referred to in the proof of (iii), these lie in cosets of different conjugates of H; namely, hAi h
′ lies

in a right coset of hH h−1 (and also in a left coset of h′
−1

H h′), and such conjugates in general partially
overlap one another, so we can’t get a nice decomposition of any one of these cosets from our hypotheses.

The result (iii) is very weak; e.g., if G is a simple group, it tells us nothing that isn’t evident from the
definition of A1 · . . . · Ak being a factorization of G. We give below a somewhat stronger, if not as easy
to state, result. To keep the statement from being too complicated, we shall not use the “strengthening”
gotten by replacing the sets in our factorization by translates containing e, but simply understand that if
this is desired, it can be achieved by combining the result as stated with Lemma 6.

Lemma 7. In the context of Lemma 5(iii), let K, H and K ′ be, respectively, the subgroups of G generated
by A1 . . . Ai−1, by Ai, and by Ai+1 . . . Ak. Then card(Ai) divides the order of the subgroup M of G
generated by the conjugates of H by all members of K, and also the order of the subgroup M ′ generated
by the conjugates of H by all members of K ′.

Proof. As before, G is the disjoint union of the sets hAi h
′ for h ∈ A1 . . . Ai−1, h′ ∈ Ai+1 . . . Ak. Now

hAi h
′ ⊆ hM h′, which can be rewritten as M hh′ because M is normalized by h ∈ K. So each set hAi h

′

lies wholly in one right coset of M ; so each right coset of M is a disjoint union of sets of cardinality card(Ai),
yielding the first of the asserted divisibility statements. The second holds by the analogous reasoning. �

The two conditions on card(Ai) obtained in the above lemma differ, in general. For instance, if G is a
simple group, and we take k = 3, let A1 = {e}, let A2 be a proper nontrivial subgroup H of G, and let
A3 be a set of right coset representatives of H in G, then the multiplicative bound on card(A2) given by
the first assertion is its actual cardinality, while that given by the second is the order of G.

Though I have noted why we cannot expect that in this situation, card(Ai) will in fact divide card(H),
I don’t know a counterexample, so let us record the question. It clearly comes down to

Question 8. If a finite group G has a factorization G = A1 · A2 · A3, must card(A2) divide the order of
the subgroup H of G generated by A2 ?
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