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MODULES OVER COPRODUCTS OF RINGS

BY

GEORGE M. BERGMAN (1)

ABSTRACT.   Let  Rq   be a skew field, or more generally, a finite product

of full matrix rings over skew fields.   Let   (R\)\<=\   be a family of faithful  Rq-

rings (associative unitary rings containing  Rq)   and let  R   denote the coproduct

("free product") of the  R^  as i?Q-rings.   An easy way to obtain an .R-module

M is to choose for each   A 6E A U {o} an R^-module  Af^,  and put  M =

(pJlí^Sj;, J!.   Such an  M  will be called a "standard" i?-module.   (Note that

these include the free .R-modules.)

We obtain results on the structure of standard ß-modules and homomor-

phisms between them, and hence on the homological properties of R.   In

particular:

(1) Every submodule of a standard module is isomorphic to a standard

module.

(2) If M and  N  are standard modules, we obtain simple criteria, in

terms of the original modules  M^, N^,   for  TV to be a homomorphic image of

Af,  respectively isomorphic to a direct summand of Af,  respectively isomor-

phic to  Af.

(3) We find that  r gl dim R = supA (r gl dim i?^)  if this is  > 0,   and

%  0 or   1   in the remaining case.

In §2 below we shall state our main results, Theorems 2.2 and 2.3, and derive a

large number of consequences.  In §§3—8 we prove these theorems, assuming,

*o avoid distractions, that R0  is a skew field.  Afterward (§§9, 10) we in-

dicate how to adapt the proofs to the case of RQ  a finite direct product of

full matrix rings over skew fields, examine some simple examples (§12), and

discuss possible generalizations of our results (§§11, 13—15).

Some important applications of these results will be made in [3].

The idea of our proofs goes back to P. M. Cohn's work [8], [9], [14].  I
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am grateful to P. M. Cohn, A. J. Czerniakiewicz, and R. Gordon for helpful

criticisms of an earlier draft of this paper.

1.  Definitions, conventions, and some basic tools.  All rings will be as-

sociative and have   1,  all homomorphisms and modules will be assumed unital,

and module will mean right module unless the contrary is stated.  Sfield means

skew field (division ring).

Given a ring R0, an /?0-ring means a ring R  given with a homomorphism

R0 —► R. An /?0-ring is called faithful if the given homomorphism is an embed-

ding.  The /?0-rings form a category in which the maps are the ring homomor-

phisms that form commutative triangles with the given maps from R0.

Throughout what follows, RQ  will be a fixed ring, and (R\\eA  a

family of R0-rings. We shall denote by R  the coproduct of the R^ in the

category of i?0-rings.(2)

We shall generally use the letter \ for an index in A, and ß for an

index in A U {0}; thus Rß  means one of the i?x,  or R0.

By a standardÄ-module, we shall mean an R-module of the form N =

®MeAu {o} A^ ®¡j   R, where each Nß  is an /?M-module.  (This definition

could, of course, be made over any ring R  given with a family of maps Rß —►

R.) This N has the universal property that given any /?-module P, and given

for each ß an i?M-module homomorphism gß: Nß —► P,  there will exist a

unique extension g:

~*N = (&Nß ®R
1

We shall generally abbreviate   <S)R    to   ®„   or simply  ®,  as above.

(2)   Equivalently:   The fibered coproduct of the  R^  over  Rq,  or the pushout or

colimit of the maps  Rq -» R^  in the category of rings.   This exists by general results of

universal algebra [13, Theorem III.6.1 ].

R   is also frequently termed "the free product of the  R^  over  Rq"  (or "with

amalgamation of Rq")  if the  R^  are all faithful i?0-rings, are embedded monomor-

phically in R,  and are disjoint in R  except for the common image of Rq.  When these

conditions hold one says (in this usage) that "the free product  R   of the  R^'s exists".

I suggested in [4, §7] the alternative statement for the last two of these conditions,

"the coproduct  R   of the  R^'s is faithful (over each  R^)  and separating".

The term "free product" was adopted from group theory, where coproducts are

always faithful and separating.   But it goes against modern categorical usage, and we shall

speak here of coproducts.
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Under the hypotheses we shall introduce in the next section, we shall find

that the canonical maps Rß —*■ R  and /V„ —► N (N as above) are injections

(Proposition 2.1).  Hence we may identify Rß  and N    with their images in

R  and TV.  In particular, a standard module can be thought of as an R -module

TV with a distinguished family of /?M-submodules Nß, having the above map-

ping property; i.e., generating N "freely".

When we speak of a homomorphism (isomorphism, etc.) of standard R-

modules, we shall simply mean a homomorphism (etc.) as R-modules.  But there

are certain special classes of homomorphisms that we shall define in terms of the

standard-module structure.

A homomorphism /: © M^ ®R —► ®Nß ®R  will be called induced

if it arises from a family of homomorphisms /M: Mß —► Nß. Under the in-

jectiveness conditions mentioned above, we see that / is induced if and only if

for each n it carries Mß CM into Nß ÇN.

Another type of map arises from the fact that a free R-module can be

written as a standard module in more than one natural way. Suppose we have

a standard module © Mß ®R, and for some ¡xl, a decomposition M    SB

Mllt  ®Rn,.  Then Mut  ®R^(M'll,  ® R) ® R. Hence if for some ju, ¥=
Ml M i Ml Ml x £

Mi, we set h/t^ = Mß2 ©i?M2,  and for all ß^ßl,ß2, write ¿ij, = MM> we

get a natural isomorphism: © Mß ® R = ©Tli^ ® R. We shall call an iso-

morphism of this sort a "free transfer isomorphism".  From the point of view

that a standard module is an Ä-module M with a certain type of generating

family of R -submodules, a free transfer isomorphism can be thought of as

leaving the module M unchanged, but removing from one M      a free sum-
M 1

mand xRßi   (x€A/)  and attaching xRß2   to another Mß2.

Actually, the free transfer maps will be satisfactory for our purposes only

when Rq  is a sfield, so that all R0 -modules are free. More generally, let us de-

fine a basic i?M-module as one of the form A ®0 R^, where A  is a module

over our base-ring R0. Clearly, the above discussion of free-transfer isomor-

phisms extends to "basic-transfer" isomorphisms, which remove from some

M..t   a direct summand A®nR„.   and transfer it to some Af„„   as A®nR„ .
A*l o     í*l f-2 °     ^2

Note also that when R0  is a finite direct product of full matrix rings over

sfields, all /?0-modules are projective, hence all basic i?M-modules are projective

over R„.

Finally, there is a certain type of automorphism of a standard module

M=©MjU ®R  that we shall need.  Suppose that for some ¿ij, we have an

Rß -linear functional e: M)JLl —► R^ , and let us extend it to an ^-linear

functional e: M—*R  so as to annihilate all M    with ß¥=ßl. Suppose a

is any element of R, and S: R—>R  the map left-multiplication by a.
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Finally, for some ju2, let x&Mß , and let y: R —► M take  1   to x G

Mu   ®RCM.M2 —

Note that if ju2 =£ /Zj, ey = 0.  If Mi = A<2> 'et us insure this by adding

the condition that x lie in the kernel of e. Since  ey is now zero (in either

case), the map 76e: M—► M will be nilpotent.  Hence  6 = idM - y8e is an

automorphism of M. We shall call such a 6 a transvection.

2.  Statements of the main theorems, and consequences. Thoughout this

section the base-ring R0  will be assumed to be a finite direct product of full

matrix rings over sfields; that is, a ring of global dimension zero, and the RK

will all be assumed faithful R0-rings. R will denote their coproduct, as above.

An elementary result we shall obtain in §4 is:

Proposition 2.1.   If M = 0 Mß ®R is a standard R-module, then for

each ¡i, (1) the canonical map Mß—*M is an embedding, and (2) asan

R-module, M is the direct sum of the image of this map and a basic (hence

projective) Rß-module.

In particular, each Rß embeds in R = Rß ®R, and R is projective as

a right (and hence by symmetry of our hypothesis, as a left) Rß-module.    D

Hence we shall make the natural identifications RßCR, MßCM.   We

now state our main results:

Theorem 2.2. Any submodule of a standard R-module can be given a

structure of standard R-module.    D

Theorem 2.3.  Let f. M—► N be a surjective homomorphism of finitely

generated standard R-modules, Af = © Mß ®R, N = © Nß ® R.   Then there

exists an isomorphism of standard R-modules a: M síí,  which is a finite

composition of basic-transfer isomorphisms and transvections, such that fa:

AÏ —► N is an induced homomorphism (i.e., fa(l\^ß) = A^ for all y).   D

Or, to put the conclusion of Theorem 2.3 another way, keeping the same

M, one can modify its structure of standard module (distinguished family of

Rß-submodules) by a finite sequence of basic transfers, and transvection auto-

morphisms of M, so that under the new structure / is an induced homomor-

phism.

(In § 11 we shall see that the class of finitely generated modules can be

replaced, in Theorem 2.3 and hence in some of the Corollaries, by a wider class.)

Proposition 2.1 gives us:

Corollary 2.4. If M = ®Mß ®R, then hdÄ M = supM (hdÄ Mß).
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Proof.   Clearly, this reduces to showing, for each p., that hdÄ Mß ® R

= hàR   Mß.  Because R is left-flat over Rß, —®ßR  takes projective resolu-

tions over R    to projective resolutions over R, and we conclude that

hdÄ Mß®R < hdÄ   Mß.  On the other hand, because R  is right projective

over R ,  restriction of scalars from R  to R    preserves projectives, and hence

projective resolutions, so hdÄ Mß ®R>hâR   Mß ®R.  But M   ®R has

Mß  as a direct summand over Rß, so hdÄ Mß®R>hdR M , giving the

desired inequality.   D

Bringing in Theorem 2.2, we can deduce:

Corollary 2.5.   r gl dim R = sup (r gl dim Rß) if this is positive, or

is < 1  if all Rß have r gl dim = 0.

Proof. From the preceding Corollary,  r gl dim R > sup  (r gl dim R ).

Now let M be a submodule of a free right R-module F. Then by Theorem

2.2 we can write M=@Mß ®R.  Since each Mß  is a sub-i? -module of F,

which is projective as an R -module, we get hdÄ   Mß < (r gl dim R ) - 1, or

= 0 if this is negative.  Hence by Corollary 2.4, háR M < sup (r gl dim Rß) - 1,

or = 0 if this is negative, from which the result claimed follows.   D

(For some further observations on this formula, see §13.)

It is easy to see that the analogs of Corollaries 2.4 and 2.5 can be proved

equally easily with homological and global dimensions replaced by weak dimen-

sions, or indeed, dimensions with respect to resolutions by any class of module

preserved by the types of change-of-base operations used.

Corollary 2.4 and Theorem 2.2 immediately give,

Corollary 2.6.   Every projective R-module has the form ®M   ® R,

where each M   is a projective R-module.    D

(But it is generally easy to find flati?-modules that are not standard.)

Corollary 2.7.  If M=®Mß ®R and N=®Nß®R are standard

R-modules, and for all p., HomÄ   (Mß, Rß) = {0} (equivalently:  HomR(M,R)

= {0}), then every R-module homomorphism f: M—► N is an induced homo-

morphism; thus the natural injection  llß UomR (Mß, Nß) —► HomÄ (M, N) is

a bijection.

Proof.  If / G Horn (M, N),  then the image of each M    under / must

have zero component in the i?M-projective part of N, hence must lie entirely

in Nß.   D

Something we would like to know is whether every extension of a standard

module by a standard module is standard!

The preceding results show that the standard modules play a large role in
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the module-theory of R. We now turn to Theorem 2.3 for more exact informa-

tion about the category of such modules.  For any ring A, let  Mod A  denote

the category of finitely generated (right) A -modules, and let S®(ModA) denote

the additive semigroup of isomorphism-classes, [M],  of objects of Mod A, un-

der the operation induced by direct sums:   [M\ + [N] = [M © N].  Let

Std R Ç ModR  denote the full subcatogory of finitely generated jR-modules

which can be given structures of standard modules, and S®(S£dR) Ç S^ModR)

the corresponding subsemigroup.  For each ß, let qß: S®(ModR0)—►

SB(ModRß), and pß:  S<ßAodRß)—>-Se(StdR) be the semigroup homo-

morphisms induced by the operations  -®   Rß  and  —®ß R.

Se(ModRß)

SB(UodR0)^^l_, ; ^2 SJSMR)cSAModR)
(1)

Let us first consider Theorem 2.3 in the case where / is an isomorphism.

It provides, in effect, a criterion for two finitely generated standard modules to

be isomorphic, namely if and only if one can go from the representations of one

to that of the other by a series of basic transfers. We formalize this statement

(and give the proof in detail) as:

Corollary 28. With respect to the maps pß and qß, the semigroup

S^iStdR) is the fibered sum (pushoui) over Se(ModR0) of the semigroups

S^ModRß).

Proof.  Clearly, the diagram (1) commutes.

Now the fibered coproduct of semigroups in question can be described as

the quotient of the direct sum (simple coproduct), ©M SJiModRß), by the

congruence relation ~ generated by all relations qß(a) ~ qß>(a) (a e Se(ModR0);

ß, ß E A U {0}).  Hence what we must show is that if two elements m =

S [Mß]   and n = S [Nß]   of © S^ModRß) have the same image in

SJStdR):

T,Pß[Mß] =ZPß[Nß],

in other words, if © Mß ®R = ®Nß ®R, then these elements m and n

are congruent under ~.  But indeed, given an isomorphism /: © Mß <8> R —►

© Nß ®R, Theorem 2.3 tells us that by applying to M a sequence of trans-

vections and basic transfer isomorphisms, we can get an induced isomorphism,

which corresponds to equality in © (Se(ModRß)). Now a transvection does

not change the element of © (S^ModRß)) associated with a standard module,
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while a basic transfer corresponds to a change of the form p + qß(a) r-* p + q>(a).

Hence m  and n  can be connected by a finite chain of such changes.  I.e.,

m ~ n, as desired.    D

To use the general case of Theorem 2.3, let us define a preordering on

each of the semigroups S^(UodRß) and S®{StdR) by writing   [N] < [M]

if N is a homorphic image of M. Then the theorem easily yields:

Corollary 2.9.   The preordering < on Se(StdR) is induced by the

corresponding preorderings on the semigroups S^(ModRß). In fact, if n =

2 pß(nß) < m G S®(StdR), then m can be written  2 Pß(mß) such that

for all p, nß<mß in Se(ModRß).   D

For certain applications, e.g., in [3], one wants to restrict one's attention

to special classes of modules.  Let us define an 7?0-stable class of Rß-modules

(respectively, of finitely generated i?M-modules) to be a possibly empty class

Cß of /?M-modules, closed under isomorphisms (M = M* G CM =* M G Cß), and

such that given any (finitely generated) /?M-module M and any (finitely generated)

basic i?M-module P, we have M G Cß * M © P G Cß.

If we are given such a class  Cß  for each ju, let us denote by  C the class

of i?-modules isomorphic to (finitely generated) standard R-modules of the form

©MM ®R, with each Mß G Cß. Proposition 2.1 and Theorem 2.2 easily give

the following Corollary (except that the proof of i?0-stability of C in the finitely

generated case requires Theorem 2.3).

Corollary 210. Suppose that, for each p,  Cß is an R0-stable class of

(finitely generated) R -modules, and let  C be the induced class of standard R-

modules.   Then   C is R0-stable, and if each   C„  is closed under going to

(finitely generated) submodules, so is   C-    □

If Cß  is an i?0-stable class of finitely generated /?M-modules, let

pS®(Cß) denote the subset of S^(HodRß) induced by the modules of Cß-

This will be a preordered partial semigroup.  Let  ©pSe(CM)  denote the class

of formal sums 2 [Mß]   (Mß G Cß) with almost all Mß = {0}.  For each p,

we have an action of the abelian semigroup S®(ModR0) on © pSjiCß), by

"adding basic modules to the p component".  Let ©' pS©(CM),  denote the

quotient of this direct sum by the least equivalence relation equalizing these

actions of S<JiModR0). (If every   Cß  contains   {0}, then every  pSe(Cß)

contains qß(S@(UudRQ)), and ©' pS^Cß) can be described as a fibered

sum (pushout) of partial semigroups over S9(UodR0).  If each  CM  is closed

under   ©, then the qualifier "partial" can be deleted.) We now get from

Corollaries 2.8 and 2.9:
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Corollary 2.11. Suppose that, for each ß,  Cß  is an R0-stable class of

finitely generated Rß-modules, and  C the induced class of standard R-modules.

Then the natural map ©' pS©(C„) —► pS$(C) is a bijection, and the partial

operation  + and preorder < on   pSe(C) are precisely those induced by the

corresponding structure on the  pS$(C„).   □

Note that for arbitrary  (Rß),  the projective Rß-modules form an /?0-stable

class closed under ©.  Since all projective R-modules are standard (Corollary 2.6),

we see that the abelian semigroup of isomorphism classes of finitely generated

projective i?-modules will be the pushout of the corresponding semigroups for

the Rß.

For another more specialized application, recall that a right fir (free, /deal

ring; see [16] ) can be characterized as a ring A  such that the class of free

right .¿-modules is closed under submodules, and the semigroup  S®(FtiQ¿A)

of finitely generated free right .¿-modules is isomorphic to the additive semigroup

of nonnegative integers.  Such a ring is an integral domain, hence if in our present

context, some Rß is a right fir, R0  must be a sfield, and the map

Se(ModR0)—*■ S^(VfLQ2.Rß) will be an isomorphism. We can easily de-

duce:

Corollary 2.12 (cf. [12, §6]). A coproduct of right firs over a sfield is

a right fir.

Our results can also be applied to non-/?0-stable classes.  Suppose that, for

some n > 0, all our Rß  are «-firs (again see [16]).  Then it is easy to see that

the class of standard .R-modules of the form © F  ®R, where each F    is

free over Rß, and their ranks sum to n, is closed under free transfer iso-

morphisms.  It is now easy to recover:

Corollary 2.13 (Cohn [14], [1, p. 202]).   A coproduct of n-firs over a

sfield is an n-fir.

(For some details of proof cf. next corollary.)   D

In [2], we generalized the idea of a free module of rank n  over an «-fir

to that of a "hereditarily" projective module over an arbitrary ring R—a pro-

jective Ä-module P such that the image of P under any homomorphism into

a free module of finite rank, /: P—* F, is again projective.(3) Corollary 2.13

generalizes to:

(3)  Note.   Azumaya's students H. S. Ahluwalia and M. S. Shrikhande use some similar

terms with quite different meanings.
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Corollary 2.14. A finitely generated standard R-module M = © M  ®R

is hereditarily projective if and only if for every standard R-module structure

© Afß ® R that can be obtained from the given one by basic transfers, each Nfß

is a hereditarily projective R-module.

Sketch of proof. "=>" If some Afß had a nonprojective image under a

map into a projective R -module, /: M —► P, then M would have a nonpro-

jective image under the induced map M —* P ®ß R. To prove "<=", note that

by Theorem 2.2, the image of a map of M into a free R-module will be a

standard module N,  then apply Theorem 2.3 to the map of M into N, and

use the facts that the Afß  will be hereditarily projective, and that A^,  and hence

the Nß, are submodules of a projective module.   D

(By duality [2, Lemma 2.15], the same result thus holds for finitely gen-

erated cohereditarily projective modules.  It is not hard to prove the same result

for finitely generated weakly hereditarily projective modules; we do not know

what may be true of strongly hereditarily projective modules [2, §2].)

We now turn to the theory of the general linear group.  It would be nice

if we could say that  GL„   of our coproduct R  was generated by its subgroups

GL„ (R\), and elementary matrices.  It will turn out instead that they are gen-

erated by the  GLn (Rx) and certain matrices corresponding to our transvections.

Only when our rings are «-firs can we reduce the latter to elementary matrices.

If y and e are a column and a row vector of length «  over some Rß,

with ey = 0, and  5  any element of R, let us (for the purposes of the next

corollary) call the invertible « x n  matrix 6=1- y8e a ";u-based transvec-

tion".  Note that a nondiagonal elementary matrix over R  is in particular a 0-

based transvection matrix.

One of the equivalent conditions for R    to be an «-fir [16, Theorem 1.1]

is that for any row and column vectors e, y over R  of length «, with ey =

0,  there should exist ß G GL„ (Rß) such that e/3 and ß~1y have the block-

forms (0, *) and (g)  with blocks of corresponding sizes.  In that case, the

ju-based transvection 6=I-y8e as above is conjugate to ß~i6ß = I + (°  0),

which is a product of elementary matrices.

Corollary 2.15. Suppose R0  is a sfield, and n an integer such that

for all ß, all m<n, and all Rß-modules Mß, we have Mß®R™ =R^=>

Mß = Rß~m  (isomorphisms as Rß-modules).  Then  GL„ (R) is generated by

its subgroups GL„ (Rß) and the ß-based transvections (p ranging over A U

{0}).
In particular (Cohn [14, last paragraph], also [l,p. 202])   ¡fall Rß are

n-firs, GLn (R) is generated by the GL„ (Rß) and the elementary matrices.
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Sketch of proof.  We apply Theorem 2.3 to an automorphism / of the

free T?-module of rank «, M = N = R" = Rq ®0 R. Our module-theoretic

hypotheses insure that at every step in the transformations of M given by that

theorem, the "components" M    will all be free and have ranks summing to n.

Hence we can always keep an «-element basis of M formed from bases of the

current M .

When we perform a free transfer, splitting off a summand xRß    from some

Mß , and attaching xR      to M   , let us precede this by changing our basis

of Af      to one of the form B' U {x}, where B' is a basis of the submodule

Af!,,   complementing xR      (cf. §1). This change of basis corresponds to the
Ml Ml

action of an element of GL, (Rß ). The free transfer itself then becomes a for-

mal redistribution of the basis elements among the Mß.

When we apply a transvection 6, if the indices Mi   and p2  involved

(§ 1) are distinct, then the matrix representing 0  will essentially have the form

(o    *)> a product of elementary matrices, which are 0-based transvection

matrices, while if pt = p2, it will be a pl -based transvection matrix.

Theorem 2.3 tells us that after being composed with these automorphisms,

/ yields an induced automorphism /'. In view of the structure of standard

module we chose for N, this means /' G GL„ (RQ). So / is a composition of

matrices of the sorts described.

The final assertion follows from our observations on ¿u-based transvections

when Rß  is an w-fir.   D

Corollary 2.16 (Units and zero-divisors).   Suppose RQ is a sfield,

and that for all p and all Rß-modules Mß  we have Mß@Rß^Rß=>Mß =

{0}   (isomorphism as R -modules.  Equivalently, any one-sided invertible ele-

ment of R    is invertible.) Then:

(i)  The group of units of R is generated by the units of the R ,  to-

gether with {1-7Se|ey= 0; e, yERß, juGAU{0}; 8 ER}.

(ii) If xy = 0 in R,  then there exist a unit a in R, and sets  U, V

in some Rßi  with  UV' = {0}, suchthat xERUa, and yEa~lVR.

Proof,   (i) is simply the case n = 1   of the preceding corollary.

To prove (ii), consider the homomorphism / = left multiplication by x:

M = R —*■ R, which has y in its kernel. Apply Theorem 2.3 to / as a map

of M onto the standard module TV = f(R). By our module-theoretic hypotheses

(cf. proof of preceding result), the standard module Af* = M we get will have

the form Rß ®R for some p1 (all other components zero). Adjusting by

the isomorphism M = M1, which in terms of the natural bases for M and Af*

takes the form of multiplication by a unit a G i?-in other words, replacing x
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by xa and y  by a~ly—we are reduced to the case where /: M —► N is an

induced homomorphism, and the standard structure on M is M = Rß   ®R.

Now the significance for us of the fact that / is an induced homomorphism

will be that Ker/ is generated by the kernels of the maps fß: Mß —> Nß— in

this case, by the kernel of the one map /„,:  RUt —*-N„, ç N C R.  Call this
M1 Ml Ml

kernel (a right ideal of Rß )  V, and its left annihilator in Rß ,  U.  Thus,

y e Ker/= (Ker fß)R = VR, while by the fact that R is right flat over

RUt, and 0 = /„,(K) = xV, in £, we must have xGRU.   D

Incidentally, it is not hard to verify by Corollary 2.8 that the module-

theoretic conditions in the hypotheses of the above two corollaries will carry

over to the coproduct ring R.

The technique used in the above proof, of first observing by Theorem 2.2

that the image of a map / of standard modules is standard, then applying The-

orem 2.3 to the surjection fi. M —► f(M) to get a description of the kernel,

deserves to be abstracted as a final corollary:

Corollary 2.17. Let f. M—>N be a homomorphism of standard R-

modules.   Then there exists an isomorphism a: M1 = M of standard modules

(namely the one given in Theorem 2.3) such that putting fa=f: Af —*■ N,  we

have Ker/' = © (Ker/' \M"ß) ®R.

3.  Preview of the proofs. In § §4-8 below, RQ  will be assumed a sfield.

In §4, we obtain a normal form for elements of a standard R-module N =

@Nß ®R  (which will immediately give us Proposition 2.1).

We then consider an arbitrary family (Lß) where, for each ß, Lß  is an

/?M-submodule of N. We should like the submodule of N generated by this

family to be isomorphic to © L   ® R. This will, in fact, be true if the ele-

ments of the Lß, expressed in our normal form, are such that no bad "inter-

action" can occur among them under the i?-module structure of N. We shall

write down such noninteraction conditions explicitly, call (Lß) "well-positioned"

(Definition 5.2) if they hold, and prove the submodule of N generated by a

well-positioned family (Lß) is indeed isomorphic to © Lß ® R (Proposition

8.2). We find further (Proposition 8.4) that if a well-positioned family (Lß)

generates all of N, then we must have precisely A^ = Lß  for all ju-

What if a family (Lß) is not well-positioned? We shall show in §6 that

it can then be modified to a slightly "better" family  (/,') generating the same

submodule, and that if (Lß) is "finitely generated" (all Lß  finitely generated,

and all but finitely many equal to zero), then a finite sequence of such adjust-

ments will yield a well-positioned family.  Suppose further that each Lß  is

given as the image of some homomorphism of R -modules, /„: Mß —► Af,
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so that the .R-submodule generated is the image of a map /: Af = © Af^ ® R —►

N. Then the "adjustments" of (L ) described above correspond to transvections

and free transfer automorphisms of Af. These results (Proposition 6.2) combined

with Proposition 8.4 described above, clearly yield Theorem 2.3. We also prove

(Proposition 7.1) that every submodule of N, not necessarily finitely generated,

has a well-positioned generating family of submodules. Combined with Proposi-

tion 8.2, this yields Theorem 2.2.  (Combining Propositions 6.2 and 8.2 yields

a direct proof of Corollary 2.17.)

The methods used here were inspired by those introduced by P. M.  Cohn

to show that a ring with «-term weak algorithm is an n-fir [15], [16], and that

a ring with full weak algorithm is a fir [11], [12], [16].  In the first case, one

repeatedly modifies an m-tuple  (m < n) of generators of a right ideal / till one

gets an w-tuple whose nonzero entries are u-independent and hence linearly inde-

pendent. In the second case one shows that one can choose a u-independent gen-

erating set for an arbitrary right ideal /. Our condition of being "well-positioned"

occupies the place of Cohn's "u-independence". Cohn's method, as he observes

in [16], goes back to Euclid's algorithm [17, Book VII, Propositions 1 and 2]

and its generalization to polynomials by Simon Stevin [23, Book II, Problem

LIII].

4. Normal form in a standard module. We now take R0  to be a skew

field. Hence each i?A  is free as a right 7?0-module, and we can choose for it a

right R0-basis of &* form  Tx u Í1 * 0- & T\)-

For each ju G A U {0}, let A^  be a right .^-module, and let us likewise

choose for each of these modules a right /?0-basis S . We shall write  T for

the disjoint union of the  7*A,  and S for the disjoint union of the S , and

shall say that an element of T or S is "associated" with an index X G A if

it comes from the corresponding  Tx  or 5A.  (Note that elements of S0  are

not considered to be associated with any index.  The idea is that the elements

associated with a given index are those that will "interact", and so must be paid

special attention to, when we multiply by an element of the corresponding ring.

But since S0  is a basis of N0  over R0, we have no "interaction" to worry

about in that case.)

We claim that the standard .R-module © Nß ®R has for a right i20-basis

the set of all products st1 • • • tn  (s E S, t¡ ET, n>0) such that no two

successive terms among s, tlt • • •, tn   are associated with the same index  X.

To show this, let  U denote the set of all such formal products, and let

N denote the free right i?0-module on the set  U. We shall give N a structure

of right .R-module, and show that this has the universal property characterizing

©7VM ®R.
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To make an /?0-module N into an R-module, it suffices to define on it,

for each X, a right /?x-module structure extending the R0 -module structure.

(This follows from the definition of a coproduct of i?0-rings, and the characteriza-

tion of a module over a ring R  as an additive group N with a homomorphism

of R into End(A0.)

For any (i£AU {0}, let us call an element of U "associated with ju"

if and only if its last factor (an element of 5 or T) is associated with ß, and

let us denote by  U„ß  the set of elements of U not associated with ju.  Note

that  U„0 = U.

For each index X G A, let us write N as the direct sum of the free right

i?0-module spanned by Sx, and the free right i?0-module spanned by all other

elements of U. The first submodule may be identified with Nx, and thus given

A^'s structure of /?x-module.  Now each of the remaining elements of U can

be written uniquely ut, where u G U„x, and t is either the "empty word",

or a member of 7\.  But since   {1}U7\ is a basis for RK, we can identify

the i?0-module spanned by all these elements with the free right i?x-module on

the basis  U^-^. Together, these definitions give us a structure of right /?^-module

on the i?0-module N. Since we have this for each X, we have a structure of

right Ä-module.

To show that N has the universal property of the standard module

©A^ ®R (§1), let fß: Nß-^-P (m G A U {0}) be any family of Rß-

module homomorphisms of the A'   into an /2-module P. We define /: N —*■

P first on S, by f(s) = fß(s) (s G Sß), then on U, by f(stt • • • r„) =

/(s)ij • • • tn, and finally on N by /?0-linearity. It is easy to show that this

map is i?x-linear for all X, and so is /Minear. So we have:

Proposition 4.1 (cf. [9], [22], [4,§7]).   The standard R-module N =

(Bnx®R has for a right RQ-basis the set  U of products sij ••• tn  with

s G S, r,. G T, n> 0, and no two successive factors associated with the same

index X G A.

For each  \G A, N is the direct sum as a right Rx-module of Nx  (which

is embedded in N under the canonical map), and a free Rymodule with basis

In particular, we have proved Proposition 2.1 (for R0  a sfield). We shall

call the elements of the basis  U of N monomials.

Given (jSAU {0} and u G U„ , we shall denote by cßU: N—► Rß

the R -linear "right coefficient of «" function, in terms of the representation

of N given in the first paragraph of Proposition 4.1 for ß = 0,  and the

second paragraph for ß # 0.
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There is a slight modification of Proposition 4.1 that we shall need at a

later point:

Lemma 4.2. Let M0  be a right R0-module with basis Q0, and suppose

also that for each X G A we are given another R0-basis of M0, ß0)A.  Then a

right R0-basis for M0 ®R is given by the set of all products qt1 • • • tn,

where t¡ ET, n > 0, no two successive t¡ are associated with the same index,

and if tl   is associated with  X G A,  then q E QQ x, while if n = 0, q E QQ.

The proof is essentially as for Proposition 4.1, except that in defining the

T?A-moduIe structures on the T?0-module Af spanned by these products, one

considers, for each X,  a different basis of the submodule Af0 ç Af.    D

(Note. The arguments of the above section do not really require that R0

be a sfield, but merely that the RJR0, the TVM, and Af0 all be free as right

T?0-modules.)

5.  Support, degree, well-ordering, purity, leading terms, and well-positioned

families of submodules.  Let TV be as in the preceding section.

For p E A U {0}, we shall define the p-support of an element or subset

of TV (relative to the basis we have constructed) to be the set of elements of

U„ß  occurring in the Rß-free part of the representation of these elements de-

scribed in Proposition 4.1.  In other words, uEU„ß lies in the/¿-support of

an element x E TV if and only if cßU(x) ¥= 0.  For p # 0, x has empty p-

support if and only if x ENß; for p = 0, if and only if x = 0. The 0-sup-

port of an element will also simply be called its support.  Note that any finitely

generated R -submodule of TV has finite /¿-support.

We define the degree of a monomial (an element of U) to mean its

length, and the degree of a nonzero element of TV as the maximum of the degrees

of the elements of its support.

Let us well-order the sets S and  T arbitrarily.  A lexicographic well-

ordering (reading from the left) is induced on the set of momomials of each

degree.  If we further consider a monomial of greater degree to be greater than

any monomial of lower degree, we get a well-ordering on the whole of U.

By the leading term of a nonzero element of TV, we shall mean the maxi-

mal monomial in its support, under this ordering.

Let us call a nonzero element of TV \-pure (X G A) if all of its terms of

maximal degree are associated with the index X.  If x is an element of TV

that is not X-pure, some of the monomials of maximal degree in the support of

x will lie in  U^x; let us call the greatest of these the \-leading term of x.

(Thus, X-leading term is only defined for non-X-pure elements!)
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Lemma 5.1.  Let y EN,  tlE Tx , • • •, tnETx , where n > 0, y is

non-X^-pure, and successive \¡ are distinct. Let y be of degree m, with Xj-

leading term u, and suppose u occurs in y with coefficient  1 G R0.   Then

yt1 • ' ' tn  is \n-pure, and has leading term uti • • • tn, again with coef-

ficient 1.

Proof.  By induction, it suffices to prove the result when n = 1. We

shall write t for tv X for Xj.

Let v be any monomial other than u  occurring in v, say with coef-

ficient c G Rq. Note that (vc)t E vRx. If u (unlike u) is associated with

the index X, we see that vet EvRx will have degree < m + 1 = degree ut.

If v is associated with another index, then u < u because u is the X-leading

term of y. The product vet G vRx will be an R0-linear combination of terms

m, t G Tx U {1}. These will be < ut by the nature of our ordering on  U.

Hence ut, which occurs with coefficient  1, will be the leading term of yt.

Further, those terms vr which have degree m + 1  (i.e., r # 1) are, like ut,

associated with the index X.  So yt is X-pure.   D

We shall call an element of TV 0-pure if it is not X-pure for any X G A,

or if it is 0; and the 0-leading term of a non-0-pure element of TV will mean

its leading term. Note that a X-pure element of degree n has X-support con-

sisting of monomials of degrees < n, while a 0-pure element's 0-support con-

sists of monomials of degrees < n.

We can now define a "well-positioned" family of submodules. It is a

rather technical set of conditions, to which I was propelled by the nature of the

proof; I hope that the arguments of the next few sections will give the reader

some sense of why they are the "right" conditions to aim for.

Definition 5.2 Suppose that for each p E A U {0} we are given an

Rß-submodule Lß Ç TV. We shall say that the family of submodules (Lß) is

well-positioned if for each p, it satisfies:

(aß) All members of Lß are p-pure,

and for each p¡,p2;

(b ) The p¡-support of Z, contains no monomial u which is al-

so the pleading term of a non-p^-pure element xa, where x E £ , a ER,

and where if jUj = p2, degree xa > degree x as well.

6. Adjusting a homomorphism /.  Suppose we are given a homomorphism

/: M —*■ TV of standard i?-modules, such that the system of R -submodules

f(Mß) Ç TV is not well-positioned. We shall now describe how to modify /

and M so as to apparently improve things somewhat. We then make this idea

of improvement rigorous, for Af finitely generated, by associating to every
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finitely generated family (Lß) of /?M-submodules of N an index in a certain

well-ordered set, and showing that the "adjustments" described lower this index.

By induction, some finite sequence of such adjustments will reduce / to a map

/': yl/—>N suchthat (/'(Af^))  is well-positioned.

Suppose first that (f(Mß)) does not satisfy condition (ax) for some  X G

A.  Then /(Afx) contains an element f(x), say of degree n, which is not X-

pure: f(x) involves some monomial «G U„x  of degree n. Thus, cXuf(x) is

a nonzero element of R0, hence invertible. Hence the i?x-linear map cKuf:

Mx —► RK  splits, and we get Mx = Af^ © jcí?x, where Af^ = Kei(cXuf\Mx).

(Here, in constrast to the preceding section, we are really using the assumption

that Rq  is a sfield.)

We now transfer the free summand xRx  of Afx  to M0.  Precisely, we

define a free transfer isomorphism i: Af° —► M, where Af^ is defined as above-,

Afó = Mq ®xRq, and AfJ, = Mß  for all ß ¥= X, 0. We then set /' =/i: NÍ

—>N. Note that the X-support of/'(A/^) no longer contains «!

On the other hand, suppose / fails to satisfy (a0),  so that f(M0) con-

tains an element f(x) (say of degree «) which is not 0-pure.  This means

f(x) is nonzero and is X-pure for some X G A.  Let u be any monomial of

degree «  in the support of f(x). Again, we see that c0uf. M0 —► R0  splits :

M0 = Ker(c0u/lAf0) ®xR0. This time, we transfer the free summand we have

obtained from M0  to Afx.

If (bß      )  fails, let u, a, and f(x) (for "x") be as in the statement

of that condition.  Adjusting a  by a member of R0  if necessary, we can as-

sume cßiu(f(x)a) = 1. Put e = cßiJ: Mßi~+Rßi, and let e: M-+R

be the Ä-linear map (killing all other Mß) induced by e. Let 5 : R —► R  be

left multiplication by a; and let 7:  R—*M be the Ä-linear map taking  1

to x. We claim  t = idM - 75 e is a transvection. We have to check that, if

ßt = ß2, e(x) = 0.  But in this case, deg « = deg f(x)a > deg/(x), by the

statement of (bM   M,), so u cannot be in the ß1 -support of f(x), so e(x) =

Note that this t will leave elements of M    fixed for all ß i= jUj, while

each y G Mß    will be sent to the unique element of the form y - xac

(cGRß ) whose jLtj -support does not contain u. In general, this Mi -support

will contain some elements v that were not in the ß1 -support of y, but note

that because u is the ßl -leading term of xa, all such v are <u under our

ordering.

We now want to show that using the above operations, we eventually

arrive somewhere.

Let us take two disjoint copies of U, which we shall call  U0  and  <7A,

and whose elements will be denoted, respectively, uQ  and wA  (u G U). We
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order the union  UQ U UA  by "interlacing" these copies, so that:

(el'ts  of Uq  of deg 1) < (el'ts  of UA   of deg 1)

< • • • < (el'ts of U0   of deg n) < (el'ts  of UA   of deg «)<•••.

Here  U0  and  UA  each keep the internal ordering of U. Clearly,  U0 U UA

is well-ordered.

Let H denote the additive semigroup of almost everywhere zero, non-

negative integer-valued functions on   U0 U UA, ordered lexicographically

reading from higher to lower members of U0 U(/A.  Then H is well-ordered,

because  U0 U UA  is.  (Cf. [13, Theorem IH.2.9].)

If (Lß) is a family of finitely generated (T?M)-modules, only finitely many

of which are nonzero, let the index «((¿M)) EH of this system be defined as

follows:  For each uEU, the value of h((Lß)) at u0  will be  1   if « lies in

the 0-support of LQ,  0  otherwise.  Its value at  uA,  on the other hand, will

equal the number of X G A for which u is in the X-support of Z,A. This will

indeed be almost everywhere zero, because each L    has finite /¿-support.

We now observe that the free transfer isomorphism  i we performed when

condition (aA) failed had the effect of cutting down the module AfA,  and in

particular, eliminating u from the X-support of f(Mx), thus decreasing

h((f(Mx))) at uA. It may also increase the index at certain points of U0,

since Mq  was enlarged; but since these are all of degree < n, they will be be-

low uA  in  U0 Ui/A.  So by our choice of ordering of H, the new index

K(f'(M'ß))) is less than the old value h((f(Mß))).

The transfer we performed when (a0)) failed decreased our index at «0,

while the values at which it may have increased it are all elements of UA  of

degree < n, because a X-pure element of degree n has X-support consisting

of elements of degrees < n — 1.  So again our index was lowered.

Finally, in the (bß   ß ) case, it is clear from the observations we made

on the support of ft(y) (y EMUi) that our index has been decreased at a
M 1

certain point (uA  or u0  depending on /¿j), and possibly increased only at

smaller values.  (Incidentally, this is the one case in which we used the full

ordering on  U. In the other cases, comparison by length was all that was in-

volved.) We have proved:

Lemma 6.1.   If f: M —*N is a homomorphism of standard R-modules

such that M is finitely generated, and (f(Mß)) is not well-positioned, then

there exists either a free transfer isomorphism  i: Af* —> M, or a transvection

automorphism  i of M^M1, such that h((fi(Mß))) < h((f(Mß))).   D

Hence by induction on h((f(Mß))), we get:
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Proposition 6.2. If f. M —*■ N is a homomorphism of standard R-mod-

ules, and M is finitely generated, then there exists an a: if -^M, which is

a finite composition of free transfer isomorphisms and transvection automorphisms,

such that the system (fafá)) of submodules of N is well-positioned.

7. Generating families for arbitrary submodules L.

Proposition 7.1. Let L be an R-submodule of the standard R-module

N. Then there exists a well-positioned family of R -submodules L C.L ÇN,

such that L = 2 LßR.

Proof.   For each ß, let Xß  denote the set of elements of U„ß  which

appear as ^-leading terms of non-/i-pure members of L. Then we define each

Lß  to be the i?M-submodule of L  consisting of all elements whose ¿/-support is

disjoint from Xß.

It is immediate from Definition 5.2 that (L ) is well-positioned!

We want to show that the Lß  generate L.  For any y EN, and any

jUj, let h(y, ß^GH denote the characteristic function of the Mi-support of V,

taken in  U0  if Mi = 0, in  UA  if Mi e A. (One may think of h(y, ßt) as

the index of the system of submodules of N defined to have Mi -component

yRß , and other components zero.)

If the Lß  do not generate L, let v  be a member of L not in  2 LßR,

and Mi   a member of A U {0}, chosen together so as to minimize h(y, Mt).

From this minimality assumption applied to the choice of Mi.  one sees

that y must be Mi-pure.  Since y&Lß , the Mi -support of y  contains some

monomial uGXß , that is, the m reading term  u of some non-Mt -pure ele-

ment x G L. We may take u to occur with coefficient  1  in  jc.

Note that if Mi = 0>  then non-Mi-purity means that x is X-pure for

some X, hence h(x, X) < h(y, 0), since the X-support of x will consist of

elements of degrees < degree x = degree u < degree y. If on the other hand

Mi G A, then one similarly sees by our ordering of H that h(x, 0) < h(y, Mt).

In either case, our minimality assumption tells us that jc G 2 LßR.

But now writing c = cßlu(y) GRß     we have h(y -xc, ß{) < h(y, m,),

so y - xc G S LßR, It follows that y G 2 LßR, contradicting our assump-

tion.   D

8. The submodule generated by a well-positioned system.   In this section

we shall discover the virtues of well-positioned systems.

Let (Lß) be a well-positioned system of i?M-submodules of A^.

Given (i6AU {0}, let us choose for each monomial «  that is the

leading term of some element of Lß  an element q G L    having this leading
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term, with coefficient  1.  For each p, call the set of <¡r's so selected  Qß.  It

follows from the well-ordering of U that  Qß  is an R0-basis of Lß.

The leading term of each qEQß will also be called its "key term".  Note

that if p # 0,  this term is also the /¿'-leading term of q  for all p + p. An

element of L0, being 0-pure, likewise has a X-leading term for all  X G A,  but

for at least one X,  this will not equal its leading term; so we must do a little

more work in this case:   Given  X G A,  we choose for each monomial  u  that

is the X-leading term of a member of L0, an element qELQ  having u as

X-leading term, with coefficient  1, and call the set of q  so chosen  Q0 x. Each

of these sets will, like  Q0,  be an T?0-basis of LQ.  By the "key term" of a mem-

ber of Q0 a, we shall mean its X-leading term.

Now let   V denote the family of all products:

(2)

qtx • • • tn  (n > 0, t¡ E Tx„ \ # X¡+ j),  where either:

QEQq and n = 0,

or q E Qox      and n > 1,

or q E Qx        for some X0 G A; and X0 ¥= Xx   if n > 1.

Lemma 8.1.  If qtx • • • tn  is as in (2), and the key term of q is u,

then the leading term of qtx • • • tn  is utx - - - tn.  Further, no two such

products have the same leading terms, hence the family   V is linearly independent

over Rq.

Proof. The first assertion follows from Lemma 5.1.

To prove the second, suppose we have two distinct elements of  V with

the same leading term.  By the first assertion, these must have the forms

î'i ' * '  tn,      q't\ • • • t'mtl • • - i„,

with leading terms

*! * * •  '« - "Vl  - ' '   C'l  '"   tn-

Thus, u = u't\ '•' t'm.

Case 1. m > 0.  Then the key term u of q  equals the leading term of

Q't'l '" t'm- But 1  an<* l' are taken from two of the submodules Lß ,Lß2,

and this contradicts condition (bM   „ )  with x = q', a = t\ * • • t'm_l.

Case 2. m = 0 (so u = u'), n > 0. Then q  and q' must each belong

either to ôo,\i> or t0  Q\> where  u is associated to the index X.  (See (2).)

As they have the same key term u = «',  they cannot belong to the same set by

construction.  But if one belongs to  Q0>x.   and the other to Qx, we get an im-

mediate contradiction to the condition (bA0).
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Case 3.  m = n = 0.  Like Case 2, but with  On  f°r  ôo,\i'  anc*  0  f°r  Ai-

The asserted linear independence of  V follows immediately.    D

But from Lemma 4.2 and Proposition 4.1, we see that the set of formal

products as in (2) is an /?0-basis of © Lß ®R. Thus we get:

Proposition 8.2.   Let (Lß) be a well-positioned system of Rß-submod-

ules of the standard R-module N.   Then the natural map © Lß ®R —►

2 L R  (Ç N) is an isomorphism.    D

Propositions 7.1 and 8.2 immediately give Theorem 2.2:  Every R -submod-

ule of a standard R-module is isomorphic to a standard R-module.

Now suppose x G 2 LßR has degree 1 as a member of N. Writing x

as an 7?0-linear combination of elements of V, we see that each of these must

also be of degree 1 (lie in 2 Nß), and hence be of length 1 as members of

V (lie in some Z,„).  If further  x lies in some single N„ , we can see that it
M Ml

can involve no terms from any L      (ß2 i= Mi); if it did, the Mi -leading term of

the Z,   -part of x could not be cancelled by any of the other terms occurring.

Consequently we have:

Lemma 8.3.  Let N,  (Lß) be as above, 1 = 2 LßR.   Then for all Mi g

AU{0}, LKNßl CLßi.

If L = N this says Nß   Ç L      for all pl. But clearly if any of these

inclusions were proper, this would give us a proper inclusion of standard modules,

N C L\  Hence, rather:

Proposition 8.4.   Let (Lß) be a well-positioned system of R -submod-

ules of the standard R-module N,  such that 2 LßR = N.   Then for all ß,

Lß=Nß.

Propositions 6.2 and 8.4 give Theorem 2.3.  (Take / surjective, and apply

Proposition 8.4 tó the system (/a(Af^)) given by Proposition 6.2.)

This completes the proof of our main results, when R0  is a sfield.

9.  Finite direct products of sfields. Let KSl't * • •, K^  be rings (ar-

bitrary for the moment), let R0 = K^ x • • •  x K^, and for / = 1, • • •, r,

let e^  denote the element of R0  with  1  in the /th place and  0's  else-

where.  Thus, e^x\ ' ' ', e^  are orthogonal central idempotents of R0, sum-

ming to  1.

For each /, we may identify the class of K^-modules with the class of

i?0-modules that are annihilated by all e^k'  except é". Then every right

(respectively left) i?0-module M decomposes uniquely, as an Z?0-module, into a
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direct sum of right (left) ¿^-modules, Af = ©; Me®  (resp. Af = ©/ e^M).

We shall abbreviate Me^  to Af-)   (and eü)Af to  (/Af).  Thus a right (left)

T?0-module Af may be determined uniquely by specifying for each / a right

(left) ^-module M>  (resp.  UM).

If R  is an T?0-ring, the e"'  need not be central in R. If we decompose

R  as a left module, R = ©^i?, and then decompose each of the right ideals

ÜR  as a right T?0-module, we get a decomposition R = ©;- k ^Rk^  into  (K^,

£(k))-bimodules.  Note that for k ¥= k\ UrWr» = o  because e(fc)e(fc'> =

{0}, while with k = k' we get  0/?*)(*r') ç C/fiO,  Intuitively, these formulas

say that if we write an element of R = © ^i?fc^  as an r x r matrix, putting

the  ^¿R^-summand in the  (j, k)th position, the multiplication of R  is con-

sistent with the formalism of matrix multiplication.  (But R  is not, in general,

the full matrix ring over any ring S.)

Now assume all Ky* are sfields.   The structure theory of R0-modules is

then hardly more complicated than that of vector-spaces over one sfield. An R0-

module Af is determined up to isomorphism by the /"-tuple of cardinals

(rank  ,..M^)¡=i...r, and if we choose for each kfi  a right/T^-basis EP,

then every element of Af may be written uniquely as a linear combination of

the elements of these sets, where each b E SP has coefficient in K^\ and

almost all coefficients are zero. We shall call such an r-tuple of sets, B = (fifi%

a basis for the i?0-module Af.  (It is not, of course, a free basis.)

We see that every right module over R0  is a direct sum of copies of the

modules K^ = e^R0. Hence if Rx is an R0-ring, the basic right T?A-modules,

as defined in § 1, will be all direct sums of copies of the i?A-modules K^^®R   Rx

= Vrx   (j = 1, • • • , r).   Thus, if U = (i/J) is an r-tuple of sets, we can

form the "basic i?A-module on the basis  £/":

© u 0j?A      (u E £//>; u VRx S Vil);, j = 1, ' ' ', r).

Let (T?a)asa  be a family of faithful i?0-rings, let R  denote their co-

product over Rq, and for each /¿GAU {0}, let TV    be a (right) Rß-module.

For each p, and each / = 1, • • •, r, let us choose a /C^-basis Sy  of

TV^.  For each X G A, and each /, k = 1, • • •, r, let us likewise choose a right

£(fc)-basis of ÜRg:  ^T*)  tf/**,  or VtQ U {e0)} if j = k.

Let S denote U S>¡>, and  T denote   (J v7$.  For each t E <fyf>, /

and k will respectively be called the left and right indices of r, and  X the  A-

index of t. A member of S likewise has a right index, and, if it does not come

from TV0, a A-index.

Let  U denote the set of all formal products st¡ • • • r„, where n > 0,

s ES,  t¡ G T, no two successive terms have the same A-indices, but the right

index of each term equals the left index of the next. We define the right index
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and the A-index of a member of U as those of its last factor, and we partition

the elements of U by right index into subsets  {/*  (j = 1, • ' • ,r).

Following the development of §4, we form the i?0-module N on the

basis (ifl) and give it a module structure over each Rx, as the direct sum of

NK  and a basic Rx-module with basis  (U*l\).  In particular, for each u G UQ,

we get an ^-linear coordinate-map cßU:  N—► ̂ Rß. We verify that this R-

module has the universal property of the standard R-module N = © Nß ®R.

We well-order S and   T arbitrarily, define a length-lexicographic ordering

on  U, and define degree, M-purity, leading term, etc. as in §5. The new right

indices are ignored for these considerations.  In Proposition 5.1 we must, of

course, add the condition that the right index of each factor equals the left index

of the next.  Definition 5.2, of a well-positioned family, (L )  of R -submodules,

goes over word for word.

Now let us call an element x of a right i?0-module Af j-homogeneous if

x GM", equivalently, if xe^ = x, and homogeneous if it is/-homogeneous for

some /.  The key point in adapting the proofs of §§6—8 to our new situation

is to work with homogeneous elements.  Note that if an element v  of any R0-

submodule AÇN has leading term u, say with uE.lfi, then the element

x = ye(f)  is/-homogeneous, and still belongs to A and has leading term u;

also that because it is /-homogeneous, we get xR0 = ty?0 s uR0.  Similarly, if

u was the M-leading term of y, we see that xRß = «S„ = uR .

So, for example, when we are setting the stage for a basic transfer in §6,

if we take x /-homogeneous, then the surjective map cßtf: M—► UR is an

isomorphism on xRß, and so yields a decomposition M   = M1 ®x^Rß.

Similarly, we choose the sets Qß  and  Q0 »   of §8 to consist of homo-

geneous elements with the desired key terms.  They will then yield R0 -bases, in

our new sense, for the submodules Lß.

The results of §§6-8 thus go over, and hence Theorems 2.2 and 2.3 are

true for this wider class of base-ring R0.

10.  Matrix rings (a special case of Mori ta equivalence).  In contrast to the

introduction of finite direct products in the preceding section, which was non-

trivial, but straightforward, the introduction of matrix rings into these investiga-

tions is tedious but essentially trivial!  (The main problem is where to write a

new crop of superscripts.)

Let K be any ring, and consider the d x d matrix ring over K, md(K).

We shall denote the matrix units, usually written epq, by peq  (p,q = \,

~',d).

If Af is a right module over md(K) it has, in particular, a structure of

right module over the diagonal subring:
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/■      '■"     °\•   läiK x ••• x K.   (with idempotents  1e1, • • • ,e).

\0        • • • K.J
Hence M can be decomposed into a direct sum of d AT-modules, ©   Afp.

(We are using a slightly different notation from that of the preceding section

—Mp  instead of M''—to avoid conflict when we later combine the matrix and

finite-direct-product constructions.)  But in this case, multiplication by the non-

diagonal matrix units establishes natural isomorphisms between these ^-modules:

peq: Mp -^ Af7.  Hence Af = ©  Ml lep. This direct sum can be represented

as the module xd(Mx) of row vectors of length d with entries in Af1, on

which md(K) acts by the usual conventions for multiplying a row vector and a

matrix.  Conversely, for any right AT-module Af1, vd(Ml) gives us an md(K)-

module.  It is easy to check that every m^A^-module homomorphism xd(Ml)

—► xd(Nl ) comes from a /f-module homomorphism AT1 —* N1. Hence the

correspondence Af = rd(M1)^^*Af1   gives us an equivalence of the category of

right m d(AT)-modules with the category of right ÍT-modules.  (This equivalence,

and the further equivalences to be described below, are special cases of the theory

of Morita equivalence of rings. Cf. [7], [1, pp. 60-71].)  Likewise, a left

md(#)-module can be represented as a module of column vectors with entries in

a left ^-module, Af a* cdCM); and given K, K', d, d', an (md(K), md'(K'))-

bimodule will look like the d x d' matrices over the (K, A^-bimodule  1M1.

In particular, we find that if R  is an md(K)-xmg, it will have not only as a bi-

module but as a ring the structure md(17î1); and the expression of an i?-module

Af as a row-vector module over m d(K): M = xd(Ml) = © Af1 lep  will also be

its decomposition as a row-vector module over m^R1) = R.

Thus, the theory of md(K)-riags and modules over them is functorially

isomorphic to that of A"-rings and their modules. Note, however, that under this

correspondence, the free module of rank  1   over K (or any AT-ring) corresponds

to an m(AT)-module xd(K) which is not free; rather, the direct sum of d copies

of it is free of rank  1. (This is because the concept of a free module is not de-

fined in terms of the structure of the category of modules alone, but also in

terms of the "forgetful functor"   I  I:  UodR —► Set and our constructions

do not respect this functor:   lrd(Afx)l = lAf1 ld.)

Now suppose we have rings Kr*  and positive integers d. (j = 1, • • •, r).

Let R0 = md (A^1;) x • • •  x md (K^).  If we combine the above observa-

tions about modules over matrix rings with our earlier ones about modules over

finite direct products, we see that a right i?0-module Af can be written uniquely

as ©.■ rd.(M';1). Hence there is a natural isomorphism between the category of
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such modules and that of K^1^ x • • • x K\r'-modules KP, if'1. One obtains

the former module from the latter by "repeating the /th factor d¡ times," for

each /'.

We likewise find that, if we represent a K^1^ x • • •  x K^-ring R  as a

matrix of bimodules  ^R*)  (vvith appropriate multiplications defined between

them), then the most general T?0-ring can be obtained from such an R  by re-

placing each  ^Rk^  by a d. x dk  block of copies of itself. Hence the theory

of i?0-rings and modules over these is functorially isomorphic to that of kS1^ x

• • •  x ¿V^-rings and their modules.

But the definition of a coproduct is category-theoretic!  Hence to construct

a coproduct of T?0-rings, we can find the corresponding kS1^ x • • •  x /Cu-

rings, form their coproduct in the category of such rings, then go back up to the

associated /?0-ring. The statements of Proposition 2.1 and Theorems 2.2 and

2.3 are also category-theoretic, hence they will go over from the case jR0  a

direct product of skew fields, T£(1) x • • • x K(r), to R0   a product of full ma-

trix rings over skew fields.

(One can, of course, alternatively, follow the approach of the preceding

section and extend the methods of § §4—8 to cover this case.  But the present

method is far more pleasant.)

11.  Bound and quasifinite modules, arbitrary modules; chain conditions.

Note that in the proof of Lemma 6.1, the hypothesis that M is finitely gener-

ated—equivalently, that all AfM  are finitely generated and almost all are zero-

was used only to prove that the image-modules /(AfM) each have finite /¿-sup-

ports, almost all of which are empty.  Suppose we call a module Af over a ring

R bound if HomfAf, R) = {0} (the usage is due to Cohn), and quasifinite if

every homomorphic image of Af in a free module F lies in a finitely generated

submodule of F. (E.g., any right ideal of a right Ore ring is quasifinite; so is

any extension of a bound module by a finitely generated module.)  It follows

from Proposition 2.1 that a standard module © AfM ® R  over our coproduct

ring Rß  is bound if and only if each AfM  is a bound /?M-module, and quasi-

finite if and only if all the AfM  are quasifinite and almost all are bound.

Clearly, the proof of Lemma 6.1 works with Af assumed quasifinite rather

than finitely generated. Hence we can also weaken "finitely generated" to

"quasifinite" in Proposition 6.2, Theorem 2.3, and Corollaries 2.8—2.11.

I wonder whether any modification of these results can be obtained for

arbitrary standard modules. The proof of Proposition 6.2 suggests that an analog

might hold for nonfinitely generated modules, in which the isomorphism a is

replaced by some sort of topological limit of finite compositions of transvections

and basic transfers, such that only finitely many affect any given element of Af.
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(But will this limit be an isomorphism?) To conjecture a plausible analog of

Corollary 2.8, note that if k  is any infinite cardinal, and Mod* R  the cate-

gory of right R-modules generated by less than k  elements, then the isomor-

phism classes of objects of Mod" R  form an abelian "«-semigroup".

S$(ModK R),  that is, a semigroup with commutative associative addition de-

fined for all families of fewer than K  elements.  Conceivably, S®(Stí.K R)

might be the pushout of the «-semigroups S$(Moc/.K RJ over  S$(ModK R0).

I have said nothing so far about chain conditions in coproduct rings.  Of

course, these rings are generally non-Noetherian; e.g., the coproduct over a field

k of two copies of the Noetherian polynomial algebra k[x]   is the free associa-

tive algebra on two indeterminates, k<xl,x2), which is very non-Noetherian.

But this ring (and in fact any fir) does satisfy more subtle conditions:   for each

positive integer «, R has ACC  on right ideals generated by < «  elements,

and for every right ideal /, R has ACC  on right ideals I 3 / such that ///

is bound as a right module [16, Theorems 1.2.3 and 5.8.2]. The former condi-

tion is also satisfied by any ring R with «-term weak algorithm ([15, Theorem

2.4], but not by all «-firs [15, §4]). These conditions have proved of consider-

able value in the study of such rings (cf. [16, Chapter 6], [5] ).  Hence it would

be worth knowing whether such conditions are respected by coproducts. I

suspect that the methods of the preceding sections can be used to prove such

results. Given a chain Jj ÇI2 Ç • • *   of right ideals of R  (or of submodules

of an appropriate standard ./?-module), let (Liß) denote the well-positioned

system of i?M-submodules generating I¡ (i = 1, 2, • • • ), constructed as in the

proof of Proposition 7.1.  By studying these systems one should be able to obtain

conditions for this chain to stabilize, in terms of the module-theory of the Rß.

But I have not examined this question carefully. Cf. also [25].

12. A class of simple examples:  coproducts of two quadratic extensions.

It is well-known that the one case in which a nontrivial coproduct of groups is

"reasonably" small is that of two copies of Z2. This coproduct, defined by two

generators a, b  and two relations a2 = e, b   = e, is the infinite dihedral

group.

It is likewise easy to see from the normal form results of §4 applied to

R itself that for R0  a sfield, the one nontrivial case in which our right basis

for the coproduct ring R  will be reasonably small is when A consists of ex-

actly two elements, and each Rx is 2-dimensional over R0. We shall examine

a few such cases in this section. As we observed at the end of §4, the normal

form results obtained there really require less than that R0  be a sfield.  In the

following examples, the base ring R0  will always be commutative, but not

necessarily a field.
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Our first example has bearing on the global dimension question to be dis-

cussed in the next section.  Otherwise, the results of this section are not very

relevant to the rest of the paper.

For more on the coproduct of two quadratic sfield extensions of a sfield

Rq,  see Cohn [10, §§7, 8], and for certain other cases, Smits [21], [29].

Example 12.1.   The coproduct over the integers of two copies of the

Gaussian integers, Z[/'].  This ring is generated by two elements, i and i, with

defining relations i2 = - 1, i'2 = - 1.  Let us take new generators i  and x =

ii.  Then the second defining relation becomes (- i)x(- fyx — — 1.  Hence x is

invertible in R, and R  can in fact be described as the result of adjoining to

P=Z[x,x~1]   an element / with square -1, satisfying ix=x~li. (Note.

This is not an "anticommutativity relation" xy = - yx.) Hence iA = Äi for

all A E P,  where ~  is the automorphism of P sending x to x~l.

Let Af be any P-module.  From the fact that R  is projective as left and

right P-module (in fact, it is free on the basis   {1, /}) and contains P as a

direct summand of P-bimodules, we can deduce that hd^Af ®R> hdp M ®R

= hdp Af, hence  r gl dim R > r gl dim P.  But the commutative ring P =

Z[x, x'1] is known to have global dimension 2 [12, p. 174, Theorem 6 and

following exercise], so  r gl dim R>2, though r gl dim Z [j] = r gl dim Z [i']

= r gl dim Z = 1.

Further remarks:  If we tensor this ring with the field  Q of rationals, the

resulting ring R ® Q will be the coproduct over Q  of two copies of Q(i),

hence by Corollary 2.5, right hereditary.  In fact, by [10, §7, Lemma 2] it is a

principal right and left ideal domain.

Note that the center of R  is Z[r], where  t = x+x~x, and that R is

free of rank 4  over this subring.  It is not hard to show that given relatively

prime elements A, BEP, we have  (A + Bi)R nz[i] = (AÄ + BB)Z[t].  Thus

the map A + Bi i-» (A + Bi)(A - iB) = AA + BB is a kind of "quaternionic

norm" of R  into its center.

12.2.  Centers. In fact, the structure of the center in the above example is

typical of a wide class of cases.  Let C be any commutative ring, and  C[a],

C[ß]   two-dimensional C-algebras, defined by quadratic equations a   -aa-a

= 0 and j32 - bß - b' = 0 (a, a', b, b' E C), and let us abbreviate a - a =

ô", b - ß = ß. The coproduct ring R  of C[a]   and  C[ß]   over C will, by

the results of §4, be free as a C-module on the basis  {(aß)", ß(aßf, (<xß)"a,

ß(aß)"a \n> 0}. Now consider the element t = aß + (b -ß)(a - a) = aß +

ßa  of R.  t is central in R. (It suffices to show it commutes with a and

ß, and by symmetry, it is enough to consider a.  Expanding f in a and J3,

and using the formula   [a, aß + ßa] = [a2, ß],  one arrives at   [a, t] =

[a2 -aa, ß] = [a, ß] = 0.) It is also not hard to calculate in terms of our
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normal form that if s is any element of positive degree in the center of R,

then the highest-degree component of s must have the form c(aß)n + c(ßa)n

(c G C),  which is the leading term of ct". We deduce that the center of R  is

the polynomial ring  C[t],  as in the preceding example.  Easy calculations show

that R  is free as a C[t] -module on {1, a, ß, aß}. In particular, it is free on

{1, a} as a right module over the commutative subring C[ß, t], and this yields

a representation by  2 x 2 matrices over this ring:

(Cf. [21, §6].)

The trace and norm of this representation carry R  into  C[t], and are

equal to A *-* A + A  and A h» A A, where   '  " is the involution of R in-

duced by the involutions  "~" of C[a]   and C[ß].

(Except in the case of two quadratic extensions, the center of a coproduct

ring generally lies in the center of the base-ring, R0. Exercise.  When R0  isa

field, prove that a nontrivial coproduct of i?0-algebras has center precisely R0,

except in the two-quadratics case.)

12.3. Idempotents and nilpotents (split quadratic extensions).  For the

study of idempotent and nilpotent elements in an arbitrary C-algebra, it could be

useful to know the structures of coproducts of copies of the algebras Qt](t2 = 0

^C x C,   and   C[v]   (v2 = 0).   Let   Qa]   and   C[ß]  be any pair of

these algebras. The results of the above subsection apply to their coproduct R;

in particular, we get the matrix representation (3) over C[ß, t]. But here note

that there exists an augmentation  C[ß] —► C (taking ß to 0).  Hence from

the representation (3) we get a representation by  2 x 2 matrices over C[t].

Surprisingly, this turns out to be faithful in these cases. We can furthermore

easily write down the resulting subalgebra of m2(C[r]).  The results are listed

below.  (We have made one modification:  when a = i, we have applied a simi-

larity transformation to bring the representing matrix to the form (q    ¡)  rather

than (i   1).) To verify that each of the representations below is faithful, simply

note that the algebra of matrices involved is free of rank 4 as a C[t] -module!

Throughout, E, F, G and H will denote elements of C[t].

(i)  Two idempotents, a = i, ß = i. (This calculation was suggested and

carried out with the author by Alan G. Waterman, and in turn suggested the other

cases.)

R= \\(\-t)G h))'   l=\o i)' l = \i-t tj-
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(ii) An idempotent t and a nilpotent v. Here, depending on which we

choose to be  "a", we get a representation putting i or v in simpler form:

-{(«")!■ -('.:)-(:: :)■

or

(iii)  7vvo nilpotents.

R-\o e + ,h)\   "-(?  o)"' = (o ó)

Finally, an example with noncentral R0 :

Example 12.4. 77ze coproduct over the complex numbers of two copies of

the quaternions. By Corollary 2.12 this ring will be a fir, and in fact by [10, §7,

Lemma 2], it is a principal right and left ideal domain.

R  will be generated over the complexes, C, by two elements / and /',

each commuting with the real numbers, R, anticommuting with i, and having

square - 1.  Let us take / and x = //'  for new generators of R  over C. The

latter element will commute with i, since / and / both anticommute with it;

the defining relation j'2 = - 1  takes the form jx = x~lj.

Now the automorphism induced by conjugation by / on the commutative

subring C[x, x~*]   has the same form as complex conjugacy on the function

ring C[e'e, e~'e]   for 0  a real variable; so let us formally rename x as e'e.

But we also know that C[e'e,e~'e]   is generated over C by the real functions

cos 0 = (ew + e~ie)l2 and  sin 0 = (eid - e~id)l2i. So:

R a C[eie, e~ie] [/] = R[sin 0, cos 0] [i, j] s R[sin 0, cos 0] ® R(i, j),

i.e., our ring R  is the tensor product over the reals of the trigonometric function

ring, and the quaternions. Note that the center of R,  R[sin 0, cos 0], unlike-

R itself, is not a principal ideal domain.  But it is a Dedekind domain (hereditary

commutative integral domain).  In fact, Robson and Small have recently shown

that the center of a right hereditary prime ring with polynomial identity is always

a Dedekind domain [20].

13.  The global dimension formula, and related questions. In the main re-

sults of this paper, we took for our base ring R0  any ring of global dimension

zero (= finite direct product of matrix rings over skew fields).  Example 12.1

showed that the formula for the global dimension of a coproduct (Corollary 2.5)
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fails for R0 = Z,  a ring of global dimension  1. The way in which it failed

suggests that a generalization of the formula might be:

(4) r gl dim R < sup(1 + r gl dim R0; r gl dim Rx  (X G A)).

Added in Proof (June 12, 1974).  I have just learned that this and related

results for group rings have been known to topologists for several years ([30, §2]

and [31, p. 176], cf. [27], [28, Propositions 7, 8]) and that they have been

aware that the same methods are applicable to more general ring extensions R0 C

Rx  (X G A) as long as all Rx  have good left and right /?0-module structures—

e.g., Rx/R0  flat on one side and projective on the other [6].  So it seems that

the "open question" answered by Corollary 2.5 was "open" only among ring-

theorists!

Added in Proof (September 1, 1974).  Recently, Warren Dicks (Bedford

College, London) has obtained by simple methods some beautiful homological

results on colimits of trees of rings, which in particular yield (4) and the corre-

sponding inequality for weak global dimension under only the assumption that R

be left-flat over every Rß   [26, Corollary 7] !    (End of added material.)

On the other hand, Cohn [14, Introduction] suggests that results as good

as those holding over sfields (e.g., analogs of all results in §2 above?) may hold

for coproducts over general rings R0 if all Rx satisfy some kind of generalized

"inertia" conditions over R0. (These would be conditions saying that if an

element or matrix A over R0 factors over Rx, this factorization reduces in

some way to a factorization of A over R0. Thus, the equation 2 = (1 + i).

(1—0 is an example of the no«inertness of Z in  Z[i].)

It would also be interesting to see whether coproducts over a ring R0   with

weak global dimension  0, i.e., a von Neumann regular ring, can be proved to

have particularly good properties.

14.  Coproducts of nonfaithful i?0-rings. In § §2—10, we assumed that all

Rx were faithful i?0-rings.  To examing the nonfaithful case, consider a ring R0

and a family of R0-rings (Rx). Call a 2-sided ideal I Ç R0  X-stable, for a given

X G A, if it is the inverse image of some 2-sided ideal of Rx, that is, if

RJRXIRX is a faithful RjI-nng.  If Rx is not itself a faithful R0-ring,   {0}C

R0  will not be X-stable.  However since the class of X-stable ideals is closed under

intersections, there will exist a unique minimal ideal I ÇR0  which is X-stable

for all X G A. This ideal I must go to zero in the coproduct R  of the £0-rings

Rx; hence R can be considered the coproduct over R'0 = R0¡I of the rings

R'x = RX/RXIRX, and these are all faithful i?'0-rings.

Thus, the study of coproducts of arbitrary rings over a given ring R0  can

be  reduced to a combination of the study of coproducts of faithful ring-extensions,
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such as we have pursued here, and the study of the quotients R'x  of an 7?0-ring

Rx by a "basic" ideal, i.e., one of the form RXIRX (I Ç R0). Note that the

quotient ring R'x = RX/RXIRX  can be described as the coproduct over R0  of

the two rings Rx and R0/I.

What can be said about such quotients R' = R/RIR  (IÇ RQ) in the case

where R0  is a ring of global dimension 0?  (We henceforth suppress the  "X".)

By analogy with the results of §2, we would hope that "good" properties of R

would be retained, e.g., that r gl dim R1 < r gl dim R. In [3, §11] we shall see

that, using Morita equivalence, the question becomes essentially equivalent to that

of what good properties of a ring R  are preserved when we divide out by the

trace ideal of any finitely generated projective module.  It appears that this con-

struction is not as benign as that of coproducts of faithful /?0-rings.  E.g., the

analog of Corollary 2.6 is false.  But our knowledge of the behavior of this con-

struction is quite fragmentary.

For reasons also explained in [3, §10], if we had results about the coproduct

over a triangular matrix ring, R0 = (q   %) (K a sfield), of a faithful i?0-ring R

with the full matrix ring m2(K), this would give us information about the con-

struction of adjoining to a ring the inverse of an arbitrary nonzero map between

finitely generated projective modules, and in particular, the process of adjoining

the inverse of an element.

15. A reduction to category theory? The techniques of §§1-10 involved

us in the study of modules over our coproduct ring R, but hardly ever required

us to look at the ring R  itself.

Now from the point of view of the theory of algebraic structures, if R is

a coproduct as in §1, then the theory of /?-modules, in the sense of [18], will be

the coproduct over the theory of i?0-modules of the theories of /?A-modules

(X G A).  (Or their product, depending on which way one considers morphisms of

algebraic theories to run.)  Suppose, generally, that we are given a family of alge-

braic theories  Tx  over a common theory  T0, and we form their coproduct  T.

Let  S Qjt °  etc. denote the categories of models of these theories.  Can one

directly construct the category  S QÄ     from the categories S QÄ M  and the

given functors connecting them?  If so, and if this category-theoretic construction

has a reasonable form, one might try to obtain the present results from more

general results about this construction applied to appropriate sorts of additive

categories.

(Cf. [24], where for any family (Tx) of theories, it is shown how to con-

struct the category  SoX from the categories S&t    . Here  2  denotes

the "symmetric product" operation on theories. When  Tx is the theory of Rx-

modules for each X G A,  2 Tx is the theory of ®z ¿Vmodules.)
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In any case, it might be of interest to study category-theoretic analogs of

the situation of this paper.  Eg., given small abelian categories  C0, (Cx), and

faithful right exact functors 0X:   C0 —► Cx, will this family have a pushout  C

in the category of small abelian categories and right exact functors?  If so, what

can be said of the homological properties of this pushout   C?

In [3, §12] a different sort of category-theoretic generalization is suggested.

In particular, it is clear from the discussion there that there is essentially no dif-

ference between constructions with rings and constructions with their additive

categories of finitely generated projective modules.
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