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Abstract
Given a countable Borel equivalence relation E and a countable group

G, we study the problem of when a Borel action of G on X/E can be lifted
to a Borel action of G on X.
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1 Introduction

1.A Automorphisms of equivalence relations

A countable Borel equivalence relation (CBER) is an equivalence relation
E on a standard Borel space X such that E is Borel when considered as a subset
of X2. Let πE : X → X/E denote the quotient map.

Let E be a CBER on X. The automorphism group of E, denoted AutB(E)
(or NB[E]), is the group of Borel automorphisms of E, that is, Borel automorphisms
T : X → X such that x E y ⇐⇒ T (x) E T (y), under composition. The inner
automorphism group of E (or the full group of E), denoted InnB(E) (or
[E]B), is the normal subgroup of AutB(E) consisting of the T ∈ AutB(E) such
that x E T (x). The normalizer of InnB(E) in the group of Borel automorphisms
of X is AutB(E). By a result of Miller and Rosendal [MR07, Proposition 2.1], if E
is aperiodic, then the natural map AutB(E)→ Aut(InnB(E)) is an isomorphism.
The outer automorphism group of E, denoted OutB(E), is the quotient group
AutB(E)/ InnB(E).

Let E and F be CBERs on X and Y respectively. A function f : X/E → Y/F
is Borel if the set {(x, y) ∈ X × Y : f([x]E) = [y]F} is Borel, or equivalently by
the Lusin-Novikov theorem [Kec95, Theorem 18.10], if there exists a Borel map
T : X → Y such that f([x]E) = [T (x)]F . The Borel symmetric group of X/E,
denoted SymB(X/E), is the set of Borel permutations of X/E under composition.
There is a natural map AutB(E)→ SymB(X/E), defined by sending T ∈ AutB(E)
to the permutation [x]E 7→ [T (x)]E. This morphism has kernel InnB(E), so there
is a factorization

AutB(E) OutB(E) SymB(X/E)
pE iE .

A Borel permutation of X/E in the image of this morphism is called an outer
permutation. In other words, f ∈ SymB(X/E) is outer if there is T ∈ AutB(E)
such that f([x]E) = [T (x)]E.
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1.B Lifts of Borel actions on quotient spaces

Let E be a CBER on X and let G be a countable group. We write GyB (X,E)
to denote an action of G on X by Borel automorphisms of E, which is equivalent
to a morphism G→ AutB(E). An action G yB (X,E) is class-bijective if πE
is class-bijective, that is, the restriction of πE to every G-orbit is an injection, i.e.,
g · x E x =⇒ g · x = x. A Borel action of G on X/E, denoted GyB X/E, is
an action of G on X/E by Borel permutations, which is equivalent to a morphism
G→ SymB(X/E). An action GyB X/E is outer if G acts by outer permutations,
or equivalently, if the morphism G → SymB(X/E) factors through iE. Every
action G yB (X,E) induces an action G yB X/E by composing with iE ◦ pE,
and πE is G-equivariant with respect to these actions. We initiate in this paper
the study of the reverse problem: when does a Borel action G yB X/E have a
lift to an action G yB (X,E)? In other words, we are interested in the lifting
problem

AutB(E)

OutB(E)

G SymB(X/E)

pE

iE

which we will break up into steps by going through OutB(E).

1.C Main results

We give in Section 3 examples of CBERs E that show that even the first step of
the lifting problem

OutB(E)

G SymB(X/E)

iE

does not always have a positive solution, i.e., that there are Borel actions GyB

X/E which are not outer. In all these examples, E admits an invariant Borel
probability measure (i.e, it is generated by a Borel action of a countable group
that has an invariant Borel probability measure). On the other hand, we show
in Theorem 3.5 that the full lifting problem has a positive solution, in a strong
sense, when the CBER E admits no such invariant measure or equivalently (by
Nadkarni’s Theorem) that it is compressible (i.e., there is a Borel injection that
sends every equivalence class to a proper subset of itself).
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Theorem 1.1. Let E be a compressible CBER. Then every Borel action GyB

X/E has a class-bijective lift GyB (X,E).

This theorem follows from a result (see Theorem 3.6) about links (see Defi-
nition 3.3) of pairs E ⊆ F of compressible CBERs that was also proved (by a
different method) independently by Ben Miller. Our proof uses some ideas coming
from [FSZ89].

We do not know if there are non-compressible E that satisfy Theorem 1.1. Using
this result and a variant of [KM04, Corollary 13.3], we show, in Corollary 3.11,
that the full lifting problem has a positive solution generically for an arbitrary
aperiodic (i.e., having all its classes infinite) CBER E.

Below if GyB X/E, we let E∨G ⊇ E be the CBER defined as follows:

x E∨G y ⇐⇒ ∃g ∈ G(g · [x]E = [y]E).

Corollary 1.2. Let E be an aperiodic CBER on a Polish space X. Then for any
Borel action GyB X/E, there is a comeager E∨G-invariant Borel subset Y ⊆ X
such that GyB Y/E has a class-bijective lift.

In Sections 4-6, we study the lifting problem for outer actions. A lift of an
outer action is a solution to the following lifting problem:

AutB(E)

G OutB(E)

pE

Below we use the following terminology. If a group G acts on a set X, we
denote by EX

G the induced equivalence relation whose classes are the G-orbits. An
action of group G on a set X is free if for any g 6= 1 and x ∈ X, g · x 6= x. If
the set X carries a measure and the action is measure-preserving, we only require
that this holds for almost all x. A Borel action of a countable group G on a
standard Borel space X is pmp if it has an invariant Borel probability measure. A
countable group G is treeable if it admits a free, pmp Borel action on a standard
Borel space X such that the induced CBER EX

G is treeable, i.e., its classes are the
connected components of an acyclic Borel graph on X. For example, all amenable
and free groups are treeable but all property (T) groups and all products of an
infinite group with a non-amenable group are not treeable.

We now have the following results (see Corollary 6.14, Corollary 5.12 for (1),
and Corollary 5.10, Theorem 6.13 for (2)). Below a CBER is smooth if it admits
a Borel set meeting every class in exactly one point.
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Theorem 1.3.

(1) Every outer action of any abelian group, and in fact any group for which the
conjugacy equivalence relation on its space of subgroups is smooth, and any
locally finite group has a class-bijective lift.

(2) Every outer action of any amenable group and any amalgamated free product
of finite groups has a lift.

The proof of Theorem 1.3, (2) for the case of amenable groups makes use of
the quasi-tiling machinery developed in the work of Ornstein and Weiss [OW80],
[OW87] and also uses some ideas from [FSZ89]. Also the proof of Theorem 1.3,
(2) for the case of amalgamated free products of finite groups also uses some ideas
from [Tse13]. We do not know if the conclusion of (2) can be restrengthened to
having a class-bijective lift.

On the other hand we have an upper bound for groups that have this lifting
property (see Proposition 4.11). The proof of the next result is motivated by
[CJ85] and [FSZ89].

Proposition 1.4. If every outer action of a countable group G lifts, then G is
treeable.

We do not know a characterization of the class of countable groups all of whose
outer actions have a lift or a class-bijective lift. Section 7 contains a summary of
what we know about the classes of groups all of whose outer actions have a lift
(resp., a class-bijective lift).
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2 Preliminaries

2.A Countable Borel equivalence relations

We review here some basic notions and results that we will use in the sequel. A
general reference is the survey paper [Kec20]. Given a CBER E on X, we denote
for each A ⊆ X by [A]E = {x ∈ X : ∃y ∈ A (x E y)} the E-saturation of A.
In particular if x ∈ X, [{x}]E = [x]E is the equivalence class of E. Dually the
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E-hull of A is the set {x ∈ X : [x]E ⊆ A}. Finally we let E � A = E ∩ A2 be the
restriction of E to A. A set A ⊆ X is E-invariant if A = [A]E. For each set S,
we denote by ∆S the equality relation on S and we also let IS = S2.

For CBERs E,F on X, Y resp., we denote by E ⊕ F the direct sum of E,F .
Formally this is the equivalence relation on the direct sum X t Y of X, Y which
agrees with E on X and with F on Y . Similarly we define the direct sum

⊕
nEn

for a sequence (En) of CBERs. The product of E,F is the equivalence relation
on X × Y given by (x, y) E × F (x′, y′) ⇐⇒ (x E x′) & (y F y′).

If E,F are CBERs on X and E ⊆ F (as sets of ordered pairs), then E is a
subequivalence relation of F and F is an extension of E. If every F -class
contain only finitely many E-classes, we say that F has finite index over E and
if for some N every F -class contains at most N E-classes, we say that F has
bounded index over E. If every F -class contains exactly N E-classes we write
[F : E] = N . Finally, E ∨ F is the smallest equivalence relation containing E and
F .

A complete section of a CBER E on X is a set S ⊆ X that meets every
E-class. A transversal of E is a subset T ⊆ X that meets every E-class in
exactly one point. If a Borel transversal exists, we say that E is smooth. A
CBER E is finite if every E-class is finite and it is hyperfinite if E =

⋃
nEn,

where En ⊆ En+1 and En is finite, for each n. A canonical non-smooth hyperfinite
CBER is E0 on 2N defined by x E0 y ⇐⇒ ∃m∀n ≥ m (xn = yn). We say that
a CBER E is aperiodic if every E-class is infinite. For any CBER E there is
a unique decomposition X = A tB into E-invariant Borel sets such that E � A
is finite and E � B is aperiodic. These are, resp., the finite and infinite parts
of E. A CBER E on X is treeable if there is an acyclic Borel graph Γ ⊆ X2

whose connected components are exactly the E-classes. Every hyperfinite CBER
is treeable.

A CBER E on X is compressible if there there is a Borel injection T : X → X
such that T ([x]E) $ [x]E, for each x. A Borel set A ⊆ X is (E-)compressible if
E � A is compressible. In that case [A]E is compressible as well and there is a
Borel injection T : X → X such that T (x) E x, for every x, and T ([A]E) = A;
see [Kec20, Proposition 2.26]. Recall also from [Kec20, Proposition 2.23] that E
is compressible iff E ∼=B E × IN (where for two CBERs F1, F2 on X1, X2, resp.,
F1
∼=B F2 means that they are Borel isomorphic, i.e., there is a Borel bijection

T : X1 → X2 that takes F1 to F2) and also E is compressible iff it contains a
smooth, aperiodic subequivalence relation.

Given CBERs E,F on X, Y , resp., we say that E is Borel reducible to F ,
in symbols E ≤B F , if there is a Borel map T : X → Y such that x E x′ ⇐⇒
T (x) F T (x′). Such a T is called a reduction of E to F . Moreover E,F are
Borel bireducible, in symbols E ∼B F , if (E ≤B F ) & (F ≤B E). We have
that E ∼B F iff there is a Borel bijection T : X/E → Y/F ; see [Kec20, Theorem
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2.32].
Given a countable group G and a Borel action of G on X, denote by EX

G

the CBER induced by this action, i.e., the equivalence relation whose classes are
exactly the orbits of this action. The Feldman-Moore Theorem (see, e.g., [Kec20,
Theorem 2.3]) asserts that for every CBER E on X there is a countable group G
and a Borel action of G on X such that E = EX

G .
By a partial subequivalence relation of a CBER E on X, we mean an

equivalence relation F on a subset A ⊆ X such that F ⊆ E. A Borel finite partial
subequivalence relation is abbreviated as fsr.

Let now X be a standard Borel space and denote by [X]<∞ the standard Borel
space of finite subsets of X. If E is a CBER on X, we denote by [E]<∞ the subset
of [X]<∞ consisting of all finite sets that are contained in a single E-class. Then
[E]<∞ is Borel. For each set Φ ⊆ [E]<∞, an fsr F of E defined on the set A ⊆ X
is Φ-maximal, if every F -class is in Φ and every finite set S disjoint from A is
not in Φ. We now have the following result; see [KM04, Lemma 7.3]: If E is a
CBER and Φ ⊆ [E]∞ is Borel, then there is a Borel Φ-maximal fsr of E. The
intersection graph of E is the graph on [E]<∞, where S, T are connected by an
edge iff there are distinct and have nonempty intersection. The proof of [KM04,
Lemma 7.3] uses the fact that this graph has a countable Borel coloring, i.e., a
Borel map c : [E]<∞ → N, which is a coloring of this graph.

For each CBER E on X, denote by INVE the standard Borel space of invariant
Borel probability measures on X, i.e., the Borel probability measures on X for
which there is a Borel, measure-preserving action of a countable group G on X
with EX

G = E. We also let EINVE be the Borel subset of INVE consisting of all
ergodic measures in INVE. Nadkarni’s Theorem (see [Kec20, Theorem 4.6]) states
that E is compressible iff INVE is empty. The Ergodic Decomposition Theorem
of Farrell and Varadarajan (see [Kec20, Theorem 4.10]) asserts that if INVE 6= ∅,
then there is a Borel surjection π : X � EINVE such that

(i) π is E-invariant;

(ii) If Xe = π−1({e}), for e ∈ EINVE, then e(Xe) = 1 and e is the unique
E-invariant probability measure concentrating on Xe;

(iii) If µ ∈ INVE, then µ =
∫
π(x) dµ(x) =

∫
e dπ∗µ(e).

Moreover this map is unique in the following sense: If π, π′ satisfy (i)-(iii), then
the set {x : π(x) 6= π′(x)} is compressible.

The sets Xe are the ergodic components of E.
We say that E is uniquely ergodic (resp., finitely ergodic, countably

ergodic) if EINVE is a singleton (resp., finite, countable).
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The Classification Theorem for hyperfinite CBERs (see [Kec20, Theorem 7.4])
states that for aperiodic, non-smooth, hyperfinite E,F , we have that E ∼=B F iff
EINVE and EINVF have the same cardinality.

2.B Cardinal algebras

A cardinal algebra is a tuple (A, 0,+,
∑

), where (A, 0,+) is a commutative
monoid, and

∑
: AN → A is an infinitary operation satisfying the following axioms:

(i)
∑

i ai = a0 +
∑

i ai+1.

(ii)
∑

i(ai + bi) =
∑

i ai +
∑

i bi.

(iii) The refinement axiom: If a+ b =
∑

i ci, then there are (ai)i and (bi)i such
that a =

∑
i ai, b =

∑
i bi and ai + bi = ci,

(iv) The remainder axiom: If (ai)i and (bi)i satisfy ai = bi + ai+1, then there
is some c such that ai = c+

∑
j bi+j.

We will need two consequences of these axioms. For 0 ≤ n ≤ ∞, let na denote
the sum of n copies of a.

(1) For any a, b,
a = a+ b =⇒ a = a+∞b.

To see this, use the remainder axiom with ai = a and bi = b. This gives
some c such that a = c+∞b. Then

a+∞b = c+∞b+∞b = c+∞b = a.

(2) The cancellation law: For any a, b and 0 < n <∞,

na = nb =⇒ a = b;

see [Tar49, Theorem 2.34].

We will need the following cardinal algebras:

(1) The collection of all CBERs up to Borel isomorphism is a cardinal algebra
under direct sum; see [KM16, 3.C].

(2) Let E be a CBER on X. We say that A,B ⊆ X are E-equidecomposable,
denoted A ∼E B, if there is some Borel bijection T : A→ B whose graph is
contained in E. This is an equivalence relation, and we denote the class of
A by Ã. Let K(E) denote the set of E-equidecomposability classes.
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Assume now that E is compressible. Then for any countable sequence
Ã0, Ã1, . . ., we can assume that the An are pairwise disjoint, and we can
define the infinitary operation as follows:∑

n

Ãn :=
⋃̃
n

An

(We define + analogously, and we define 0 to be the class of the empty
set.) Then K(E) with these operations is a cardinal algebra; see [Che18,
Proposition 4.1].

There is an action AutB(E) y K(E) (i.e., a group action preserving
(0,+,

∑
)) defined by

T · Ã = T̃ (A),

and this descends to an action OutB(E) y K(E).

2.C Actions on probability spaces

Let (X,µ) be a standard probability space, i.e., a standard Borel space with a
non-atomic Borel probability measure. Let Autµ(X) denote the group of Borel
automorphisms T : X → X such that T∗µ = µ, where T and T ′ are identified if
they agree on a conull set.

Let E be a pmp CBER on X, i.e., a CBER which is generated by a measure-
preserving action of a countable group. Then Autµ(E) denotes the set of T ∈
Autµ(X) such that x E y ⇐⇒ T (x) E T (y), for all x, y in a conull subset of X.
Let Innµ(E) denote the normal subgroup of T ∈ Autµ(E) such that x E T (x) for
almost every x ∈ X. Then Outµ(E) denotes the quotient Autµ(E)/ Innµ(E).

All of the proofs below in the Borel setting go through mutatis mutandis in
the pmp setting.

3 Borel actions on quotient spaces

3.A Outer and non-outer actions

Not every Borel action GyB X/E is outer. For example, let 2N = AtB, where A
and B are complete Borel sections for E0 with µ(A) 6= µ(B), where µ is Lebesgue
measure. Let E = (E0 � A) ⊕ (E0 � B). Then the involution on X/E sending
[x]E0 ∩ A to [x]E0 ∩B is not outer, since otherwise we would have µ(A) = µ(B).

Note that the following are equivalent:

(1) every Borel action on X/E is outer;
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(2) iE is a bijection.

This condition is quite strong:

Proposition 3.1. Let G be a countable group and let E be a CBER. Suppose that
every action GyB X/E is outer.

(1) Whenever E ∼=B

⊕
g∈GEg, with the Eg pairwise Borel bireducible, then the

Eg are pairwise Borel isomorphic.

(2) If G is nontrivial and E ∼=B E ⊕ (E × IN), then E is compressible.

Proof. For (1), suppose Eg lives on Xg, and let F be a CBER on Y such that F ∼B
Eg for every g ∈ G, and for each g ∈ G, fix a Borel bijection fg : Y/F → Xg/Eg.
Define GyB X/E for [x]E ∈ Xg/Eg by h · [x]E = fhg(f

−1
g ([x]E)). By assumption,

this action is induced by some G→ OutB(E), which induces isomorphisms between
the Eg.

For (2), since E ∼=B E ⊕ (E × IN), by working in the cardinal algebra of (Borel
isomorphism classes of) CBERs, we have E ∼=B E ⊕

⊕
g∈G\{1}(E × IN). So by (1),

we have E ∼=B E × IN.

So if E is non-compressible and satisfies E ∼=B E ⊕ (E × IN), then every
nontrivial countable group admits a non-outer action on X/E. There are many
such examples:

Example 3.2.

(1) (Miller) We have E0
∼= E0 ⊕ (E0 × IN), since they are both uniquely ergodic

and hyperfinite. More generally E ∼=B E ⊕ (E × IN), for any aperiodic
hyperfinite CBER E.

(2) A countable group G is dynamically compressible if every aperiodic
orbit equivalence relation of G is Borel reducible to a compressible orbit
equivalence relation of G. Examples include amenable groups, and groups
containing a non-abelian free group. If G is dynamically compressible, then
Eap(G,R) ∼=B E

ap(G,R)⊕ (Eap(G,R)× IN). where Eap(G,R) denotes the
aperiodic part of the shift action of G on RG; see [FKSV21, 5(B)].

3.B Lifts of compressible CBERs

Every action GyB X/E induces a CBER E∨G ⊇ E defined as follows:

x E∨G y ⇐⇒ ∃g ∈ G(g · [x]E = [y]E).

Every action GyB (X,E) induces an action GyB X/E, and we write E∨G for
the CBER induced by the latter. Note that E∨G = E ∨ EX

G . If G is a subgroup
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of AutB(E) or OutB(E), we write E∨G for the CBER given by the (outer) action
induced by the inclusion map, and if T ∈ AutB(E), we write E∨T for E∨〈T 〉.

In upcoming work of Miller [Mil20], it is shown that there is a countable basis
of pairs E ⊆ F of CBERs such that there is no Borel action G yB X/E with
F = E∨G (see Section 8.C for a precise statement).

Given f ∈ SymB(X/E), a lift of f is a map T ∈ AutB(E) such that [T (x)]E =
f([x]E) for every x ∈ X. Given an action GyB X/E, a lift of g ∈ G is a lift of
its image in SymB(X/E).

The following notion is from [Tse13]:

Definition 3.3. Let E ⊆ F be CBERs. An (E,F )-link is a CBER L ⊆ F such
that for every F -class C, every E � C-class meets every L � C-class exactly once.

The connection to lifts is the following:

Proposition 3.4. Let GyB X/E. Then the following are equivalent:

(1) There is an (E,E∨G)-link.

(2) There is a class-bijective lift GyB (X,E).

Proof. (2) =⇒ (1) EX
G is a link.

(1) =⇒ (2) Let g · x be the unique element in [x]L ∩ (g · [x]E).

Proposition 3.1 perhaps suggests that if E is compressible, then every Borel
action on X/E is outer. It turns out that something much stronger is true:

Theorem 3.5. Let E be a compressible CBER. Then every Borel action on X/E
has a class-bijective lift.

By Proposition 3.4, it suffices to prove the following, independently established
using a different method by Ben Miller (see comments following Corollary 3.8
below for his approach):

Theorem 3.6. Let E ⊆ F be compressible CBERs. Then there is a smooth
(E,F )-link.

We will repeatedly use the following, where we identify a positive integer N
with {0, 1, . . . , N − 1}.

Lemma 3.7. Let E ⊆ F be compressible CBERs and let N ∈ {1, 2, . . . ,N}.
Then (E,F ) is Borel isomorphic to (E × IN , F × IN), in symbols (E,F ) ∼=B

(E × IN , F × IN), i.e., there is a Borel isomorphism that takes E to E × IN and
F to F × IN.

Proof. Since E is compressible, E ∼=B E × IN. So (E,F ) is Borel isomorphic
to (E × IN, R), for some R, which then must be of the form F ′ × IN. Thus
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(E,F ) ∼=B (E× IN, F ′× IN), and therefore (E× IN , F × IN ) ∼=B (E× IN× IN , F ′×
IN × IN) ∼=B (E × IN, F ′ × IN) ∼=B (E,F ), since IN ∼=B IN × IN .

Proof of Theorem 3.6. We can assume that every F -class contains exactly N
E-classes, where N ∈ {1, 2, . . . ,N}. Below, i < N means i ∈ N .

Fix a Borel action of a countable group Γ generating F .
Fix a choice sequence for (E,F ), that is, a sequence (fi)i<N of Borel maps

X → X such that for every x ∈ X, the function i 7→ [fi(x)]E is a bijection from N
to [x]F/E. For instance, define fi inductively by setting f0(x) = x and fi(x) = γ ·x,
where γ is least (in some enumeration of G) such that γ · x is not E-related to
any fj(x) for j < i.

We can assume that each fi is injective. By Lemma 3.7, it suffices to define
an injective choice sequence for (E × IN, F × IN). Fix a pairing function 〈−,−〉 :
N × Γ → N. Then we take the choice sequence for (E × IN, F × IN) defined by
(x, n) 7→ (fi(x), 〈n, γ〉), where fi is a choice sequence for (E,F ) and γ is least such
that γ · x = fi(x).

We can further assume that each im fi is a complete E-section. To see this,
endow N with some group operation ?, and take the choice sequence for (E ×
IN , F × IN) defined by (x, k) 7→ (fi?k(x), k), where (fi) is a choice sequence for
(E,F ) with each fi injective.

Moreover, we can assume that each im fi is E-compressible. To see this, take
the choice sequence for (E × IN, F × IN) defined by (x, n) 7→ (fi(x), n), where
(fi) is a choice sequence for (E,F ), with each fi injective and im fi a complete
E-section.

Finally, we can assume that each fi is bijective. To see this, since im fi is an
E-compressible complete section for E, there is some Borel injection Ti such that
T (x) E x for every x, and Ti(X) = im fi. Then (T−1i ◦ fi) is a choice sequence for
(E,F ) with each T−1i ◦ fi bijective.

Now we can define a smooth (E × IN , F × IN)-link L as follows:

(x, i) L (y, j) ⇐⇒ f−1i (x) = f−1j (y)

and we are done again by Lemma 3.7.
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Corollary 3.8. Let E be an aperiodic CBER satisfying E ∼=B E ⊕ (E × IN) (for
instance, any aperiodic hyperfinite CBER). Then the following are equivalent:

(1) Every Borel action on X/E has a class-bijective lift.

(2) Every Borel action on X/E has a lift.

(3) Every Borel action on X/E is outer.

(4) There is a nontrivial countable group G such that every action GyB X/E
is outer.

(5) E is compressible.

Proof. (1) =⇒ (2) Immediate.
(2) =⇒ (3) Immediate.
(3) =⇒ (4) Immediate.
(4) =⇒ (5) Follows from Proposition 3.1.
(5) =⇒ (1) Follows from Theorem 3.5.

Concerning Theorem 3.6, Ben Miller derives this from the following more
general result whose proof uses Proposition 4.1 and 4.2 from [Mil18].

Theorem 3.9 (Miller). Let E and F be compressible CBERs on X and Y respec-
tively, and let f : X/E → Y/F be Borel. Then the following are equivalent:

1. f is smooth-to-one, i.e., for every y ∈ Y , the restriction of E to {x ∈ X :
f([x]E) = [y]F} is smooth.

2. There is a Borel function T : X → Y such that for every x ∈ X, the
restriction T � [x]E is a bijection from [x]E to f([x]E).

However, one only needs the special case where f is countable-to-one. Applying
this to the case where E ⊆ F and f([x]E) = [x]F , we find a Borel map T : X → X
such that T � [x]E is a bijection from [x]E to [x]F . Then we can define the link L
by x L y ⇐⇒ T (x) = T (y).

To show generic lifting, we need a strengthening of generic compressibility,
whose proof is a simple modification of the proof of [KM04, Corollary 13.3]. A
more general version appears in [Mil17, Theorem 11.1]. We include a proof for
the reader’s convenience.

Theorem 3.10. Let E ⊆ F be aperiodic CBERs on a Polish space X. Then there
is a comeager F -invariant, E-compressible Borel subset of X.

Proof. Fix a Borel coloring c : [E]<∞ → N of the intersection graph. Write
X =

⊔
n∈NAn, where each An is a Borel set meeting every E-class infinitely often;

for instance, write X =
⊔

(n,m)∈N2 Bn,m, where each Bn,m is a complete E-section
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(see [CM17, 1.2.6]), and take An =
⋃
mBn,m. Let N<N denote the set of finite

strings in N. For s ∈ N<N, let len(s) denote the length of s. For s, t ∈ N<N, we
write s � t to mean that s is a prefix of t. We define fsr’s {Es}s∈N<N of E such
that

(i) if s � t, then Es ⊆ Et,

(ii) A0 is a transversal for Es,

(iii) every Es-class is contained in
⊔
k≤len(s)Ak.

We proceed by induction on the length of s. Let E∅ be the equality relation on A0.
Now for each a ∈ A0, let [a]Esˆi be the unique set, if it exists, of the form [a]Es tS,
where S ∈ [E]<∞ is contained in Alen(s)+1 and c([a]Es t S) = i, and otherwise set
[a]Esˆi = [a]Es . This defines an fsr Es with the desired properties.

For every α ∈ NN, let Eα =
⋃
nEα�n. We claim that for every a ∈ A0, we have

∀∗α ([a]Eα is infinite),

where ∀∗αΦ(α) means that the set {α ∈ NN : Φ(α)} is comeager (see [Kec95, 8.J]).
It suffices to show that for every n, we have

∀∗α (|[a]Eα| > n).

Since the set {α ∈ NN : |[a]Eα | > n} is open, it suffices to show that it is dense.
Fix some s ∈ N<N. Let S ∈ [E]<∞ be a subset of Alen(s)+1 with |S| > n. Then if
c([a]Es t S) = i, then for every α � sˆi, we have |[a]Eα | ≥ |[a]Esˆi | > n, so we are
done.

Thus for every x ∈ X, we have

∀a ∈ A0 ∩ [x]F ∀∗α ([a]Eα is infinite),

or equivalently
∀∗α ∀a ∈ A0 ∩ [x]F ([a]Eα is infinite),

so by the Kuratowksi-Ulam theorem [Kec95, 8.K], we have

∀∗α ∀∗x ∀a ∈ A0 ∩ [x]F ([a]Eα is infinite),

so in particular, there is some α ∈ NN such that the F -invariant set

C := {x ∈ X : ∀a ∈ A0 ∩ [x]F ([a]Eα is infinite)}

is comeager. Note that C is E-compressible, since dom(Eα) ∩ C is an (E � C)-
compressible, complete (E � C)-section, so we are done.
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Corollary 3.11. Let E be an aperiodic CBER on a Polish space X. Then for any
Borel action GyB X/E, there is a comeager E∨G-invariant Borel subset Y ⊆ X
such that GyB Y/E has a class-bijective lift.

Proof. Apply Theorem 3.10 with F = E∨G. Then the result follows from Theo-
rem 3.5.

In conclusion, let us say that an aperiodic CBER E is outer if everyGyB X/E
is outer, or equivalently iE is a bijection. We have seen that every compressible
CBER is outer, while there are non-outer CBER. However we have the following
problems:

Problem 3.12.

(1) Are there outer, non-compressible CBER?

(2) Characterize the outer CBERs.

Concerning the first part of this problem, we note the following possible
approach to finding such an example:

Assume that there is a a free, pmp action of a countable group G on a standard
probability space (X,µ) with the following properties:

(i) G is co-Hopfian (i.e., injective morphisms of G into itself are surjective) and
G has no non-trivial finite normal subgroups (e.g., SL3(Z)),

(ii) the action is totally ergodic (i.e., every infinite subgroup acts ergodically) and
satisfies cocycle superrigidity (i.e., every cocycle of the action to a countable
group is cohomologous to a homomorphism),

(iii) Outµ(EX
G ) is trivial.

There are many examples that satisfy (ii) and others that satisfy (iii) but it does
not seem to be known whether there are examples that satisfy both. Assuming
that such an action exists, one can see that the first part of the above problem
has a positive answer.

By going to a G-invariant Borel set, we can assume that µ is the unique invariant
measure for this action. Then if Z ⊆ X is Borel and G-invariant of measure 1,
we have that Y = X \ Z is compressible. Put E = EX

G . Let now f ∈ SymB(X/E)
and let T : X → X be Borel such that f([x]E) = [T (x)]E. Then T is a reduction of
E to E and so it gives rise to a cocycle α of this action into G, which is therefore
cohomologous to a homomorphism ϕ : G→ G. Thus we can find another Borel
map S with S(x) E T (x) and S(g · x) = ϕ(g) · S(x), a.e. Let N = ker(ϕ). If it
is not trivial, it must be infinite. Then for g ∈ N , S(g · x) = S(x), a.e., so by
the ergodicity of the N -action, S is constant, a.e., which is a contradiction. So
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N is trivial and thus ϕ is injective, therefore an automorphism. It follows that S
is in Autµ(E) and thus in Innµ(E). Therefore there is an E-invariant Borel set
Z ⊆ X of measure 1 with f � (Z/E) the identity. Then f � (Z/E) can be lifted
to the identity of Z. Moreover Y = X \ Z is compressible, so, by Theorem 3.5
f � (Y/E) can be lifted to some Borel automorphism of E � Y . Thus f is an outer
permutation.

Concerning the second part of the problem, note that by Corollary 3.8, an
aperiodic hyperfinite CBER is outer iff it is compressible.

The following problem about the algebraic structure of these groups is also
open:

Problem 3.13. When is OutB(E) a normal subgroup of SymB(X/E)?

4 Outer actions

A lift of an outer action is a solution to the following lifting problem:

AutB(E)

G OutB(E)

pE

Many outer actions arise from the following construction:

Example 4.1. Given a Borel action Gy X of a countable group G and a normal
subgroup N / G, there is a morphism G→ OutB(EX

N ) defined by

g · [x]EXN = [g · x]EXN ,

and this descends to a morphism G/N → OutB(EX
N ).

4.A Normal subequivalence relations

The concept of normality is central to the study of outer actions:
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Definition 4.2. Let E ⊆ F be CBERs. We say that E is normal in F , denoted
E / F , if any of the following equivalent conditions hold:

(1) There is an action GyB (X,E) of a countable group G such that F = E∨G.

(2) There is a morphism G → OutB(E) from a countable group G such that
F = E∨G.

(3) There is a countable subgroup G ≤ AutB(E) such that F = E∨G.

(4) There is a countable subgroup G ≤ OutB(E) such that F = E∨G.

To see the equivalence, note that (3) =⇒ (1) =⇒ (2) is immediate, (2) =⇒
(4) holds by taking the image of G in OutB(E), and (4) =⇒ (3) holds by fixing
a lift Tg ∈ AutB(E) of each g ∈ G and taking the subgroup of AutB(E) generated
by the Tg.

For CBERs E ⊆ F , it is possible that E is not normal in F , but that there is
still a Borel action GyB X/E such that F = E∨G, as witnessed by the example
at the beginning of Section 3.A. For more discussion concerning the weaker notion,
see Section 8.C.

Proposition 4.3. Let E / F be CBERs on X.

(1) If F ′ is a CBER with E ⊆ F ′ ⊆ F , then E / F ′.

(2) For any E-invariant subset Y ⊆ X, we have E � Y / F � Y .

Proof. Note that (2) follows immediately from (1) by taking F ′ = (F � Y )⊕ (F �
(X \ Y )), so it suffices to prove (1).

We first assume that F = E∨T for some T ∈ AutB(E). We will show that
F ′ = E∨T

′
for some T ′ ∈ AutB(E).

For each x ∈ X, let ≤x be the preorder on [x]F ′/E defined by [y]E ≤x [z]E iff
there exists some n ≥ 0 such that T n(y) E z. If ≤x is isomorphic to Z or not
antisymmetric, then set T ′(x) = T n(x), where n > 0 is least such that T n(x) F ′ x.
Otherwise, there is a unique isomorphism from ≤x to either the negative integers
({· · · ,−3,−2,−1},≤) or to an initial segment of (N,≤). So by fixing a transitive
Z-action on each of these linear orders, we obtain a transitive Z-action on [x]F ′/E,
and we set T ′(x) = T n(x), where n is unique such that T n(x) ∈ 1 · [x]E.

Now suppose that F = E∨G for some G ≤ AutB(E). By above, for each T ∈ G,
we can fix some T ′ ∈ AutB(E) such that E∨T

′
= F ′ ∩ E∨T . Then F ′ = E∨H ,

where H = 〈T ′〉T∈G.

We next make some remarks about smooth links. Let E / F be CBERs.
Suppose that E is aperiodic and [F : E] =∞, since the finite parts have smooth
links via the forthcoming Theorem 5.1 and Proposition 4.6. If E is compressible,
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then there is a smooth link by Theorem 3.6. On the other hand, if there is a smooth
link L, then F must be compressible, since it contains the aperiodic smooth L.

Thus the existence of a link does not imply the existence of a smooth link.
For instance, fix a free pmp Borel action Z2 y X, and consider E = EX

Z×{0} and

F = EX
Z2 . Then there is a link given by the action of {0} × Z, but there is no

smooth link, since F is not compressible. If X is the circle and the Z2-action is
by two linearly independent irrational rotations, then E and F are both uniquely
ergodic, and by taking copies of these, one can obtain an example with any number
of ergodic measures.

If E / F with E finitely ergodic, then F is not compressible, since if EINVE =
(ei)i<n, then 1

n
(e0 + · · ·+ en−1) ∈ EINVF . Thus there is no smooth link. If EINVE

is infinite, it is still possible for a smooth link to exist. For instance, consider
E = E0 ×∆N and F = E0 × IN. In general, the following is open:

Problem 4.4. Let E / F be CBERs with F is compressible. Is there a smooth
(E,F )-link?

Another open question, related to Theorem 3.6, is as follows:

Problem 4.5. Let E / F / F ′ be compressible CBERs. Can every (E,F )-link be
extended to an (E,F ′)-link?

If this were true, then assuming the Continuum Hypothesis, for any compressible
CBER E, the epimorphism pE : AutB(E) � OutB(E) would split, i.e., there would
exist a morphism s : OutB(E)→ AutB(E) with pE ◦ s equal to the identity. To
see this, write OutB(E) as an increasing union

⋃
α<ω1

Gα of countable subgroups.
It suffices to obtain class-bijective lifts Gα → AutB(E) such that if α < β, then
the Gβ lift extends the Gα lift. For λ limit, take the union of the corresponding
links for the Gα with α < λ, and for β = α + 1 a successor, use a positive answer
to Problem 4.5.

4.B Basic results
Proposition 4.6. Let E be a smooth CBER.

(1) If F is a CBER with E / F , then there is an (E,F )-link.

(2) Every outer action on X/E has a class-bijective lift.

Proof. By Proposition 3.4, it suffices to show (1).
By normality, any two E-classes contained in the same F -class have the same

cardinality, so by partitioning the space into F -invariant Borel sets, we can assume
that there is some n ∈ {1, 2, · · · ,N} such that every E-class has cardinality n.
Then there is a partition X =

⊔
k<n Sk such that each Sk is a transversal for E.
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Thus the CBER L defined by

x L y ⇐⇒ (x F y) & (∃k < n [x, y ∈ Sk])

is an (E,F )-link.

It is clear that if G is a free group, then every outer action of G has a lift.
There are also some basic closure properties for the class of groups for which every
outer action admits a (class-bijective) lift.

Proposition 4.7. Let H ≤ G. If every outer action of G has a (class-bijective)
lift, then the same holds for H.

Proof. Let E be a CBER, and fix a morphism H → OutB(E). Let F =
⊕

G/H E.

Then there is a morphism G→ OutB(F ), induced by the action of G on G/H, so
we get a lift G→ AutB(F ). Restricting to H and E gives the desired lift.

Proposition 4.8. Let G� H be an epimorphism. If every outer action of G has
a class-bijective lift, then the same holds for H.

Proof. Fix a morphism H → OutB(E). This gives a morphism G → OutB(E).
Since by surjectivity E∨G = E∨H , we are done by Proposition 3.4.

At this point, it is good to show that not every outer action has a lift.

Definition 4.9. A countable group G is treeable if it admits a free pmp Borel
action whose induced equivalence relation is treeable.

Example 4.10. There are many examples of groups which are not treeable (see
[KM04, 30], [Kec20, 9.G]):

• Infinite property (T) groups.

• G×H, where G is infinite and H is non-amenable.

• More generally, lattices in products of locally compact Polish groups G×H,
where G is non-compact and H is non-amenable.

The proof of the next result is motivated by [CJ85, Theorem 5] and the remark
following the proof of [FSZ89, Theorem 3.4].

Proposition 4.11. Suppose that every outer action of G lifts. Then G is treeable.

Proof. We can assume that G = F∞/N for some N / F∞, where F∞ is the free
group on infinitely many generators. Fix a free pmp Borel action F∞ yB (X,µ)
(for instance, the Bernoulli shift on 2F∞), and consider the induced free outer action
G→ OutB(EX

N ) (see Example 4.1). By assumption, there is a lift G→ AutB(EX
N ),

which is also a free action. Then EX
G is treeable and preserves µ, since EX

F∞ satisfies
these properties and contains EX

G .
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Note that we have no control over the treeable CBER in the proof of Proposi-
tion 4.11. In particular, the following is open:

Problem 4.12. Does every outer action on X/E0 lift?

5 Outer actions of finite groups

The following is a strengthening of [Tse13, Proposition 7.1]:

Theorem 5.1. Let E / F be a finite index extension of CBERs. Then there is
an (E,F )-link.

Proof. Let Φ be the set of elements of [F ]<∞ which are a transversal for E � C
for some F -class C. By [KM04, Lemma 7.3], there is a Φ-maximal fsr R. Let
Y = (dom(R))E be the E-hull of dom(R).

Let G ≤ AutB(E) be a countable subgroup such that F = E∨G. For every
x ∈ X \ Y , let gx ∈ G be least (in some enumeration of G) such that gx · x ∈ Y ;
this exists by Φ-maximality of R. Then the equivalence relation generated by
R � Y and {(x, gx · x) : x ∈ X \ Y } is an (E,F )-link.

Corollary 5.2. Every outer action of a finite group has a class-bijective lift.

Proof. Follows from Proposition 3.4 and Theorem 5.1.

The following is a special case of Corollary 6.14, whose proof is much harder.

Corollary 5.3. Every outer action of Z has a class-bijective lift.

Proof. On the finite Z-orbits, apply Corollary 5.2. On the infinite Z-orbits of
X/E, just lift uniquely.

We next introduce lifts of morphisms:

Definition 5.4. Let H → G be a morphism of countable groups. Then H → G
has the class-bijective lifting property if for any CBER E and any diagram
of the form

H AutB(E)

G OutB(E)

pE

with H → AutB(E) class-bijective, there is a class-bijective lift G→ AutB(E).
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Proposition 5.5. Let H be a countable group, let (Gn)n be a countable family of
countable groups, let H → Gn be morphisms, and let G be the amalgamated free
product of the Gn over H. If every outer action of H has a class-bijective lift, and
each H → Gn has the class-bijective lifting property, then every outer action of G
lifts.

Proof. Let E be a CBER, and fix G → OutB(E). By assumption, there is a
class-bijective lift of H → OutB(E). Then for each n, there is a class-bijective lift
Gn → AutB(E) such that the following diagram commutes:

H AutB(E)

Gn OutB(E)

pE

Thus by the universal property of amalgamated products, there is a lift G →
AutB(E).

Theorem 5.6. Let G be a countable group and let N / G be a finite normal
subgroup such that every outer action of H = G/N has a class-bijective lift.

(1) The inclusion N ↪→ G has the class-bijective lifting property.

(2) Every outer action of G has a class-bijective lift.

Proof. (1) implies (2) by Corollary 5.2, so it suffices to show (1).
Let E be a CBER on X, and suppose we have

N AutB(E)

G OutB(E)

pE

with N → AutB(E) class-bijective, and let F = E∨N . Note that L = EX
N is an

(E,F )-link. There is an induced outer action H → OutB(F ). We can assume that
[F : E] = n <∞. Let S be a transversal for L, and fix a Borel action Z/nZ y X
generating L.

Define an injection AutB(F � S) ↪→ AutB(F ) as follows: given T ∈ AutB(F �
S), let T ′ ∈ AutB(F ) be the unique morphism satisfying T ′(k·x) = k·T (x) for every
x ∈ S and k ∈ Z/nZ. This descends to an injection OutB(F � S) ↪→ OutB(F )
satisfying the following commutative diagram:

OutB(F � S) OutB(F )

SymB(F � S) SymB(F )

iF �S iF

∼=
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We claim that this injection is a bijection. To see this, let T ∈ AutB(F ). Since

X =
⊔
k∈Z/nZ k · S, we have nS̃ = X̃ in the cardinal algebra K(F × IN). Thus

nT̃ (S) = T̃ (X) = X̃, so by the cancellation law, we have S̃ = T̃ (S), i.e., there is
some T ′ ∈ InnB(F ) with T ′(T (S)) = S. Then (T ′T ) � S ∈ AutB(F � S) is the
desired map.

Thus we obtain an outer action H → OutB(F � S) and by assumption, there
is an (F � S,E∨G � S)-link L′. Then the equivalence relation generated by L and
L′ is an (E,F ′)-link.

We will prove next a generalization of Corollary 5.2 to morphisms. For that,
we need the following result.

Proposition 5.7. Let E ⊆ F be a bounded index extension of CBERs. Then the
following are equivalent:

(1) E / F .

(2) There is a finite subgroup G ≤ OutB(E) such that F = E∨G.

Proof. (2) =⇒ (1) Immediate.
(1) =⇒ (2) Let H = (hn)n ≤ AutB(E) be a countable subgroup such that

F = E∨H . We define inductively a sequence (gn)n ⊆ InnB(F )∩AutB(E) as follows:
for every F -class C, if there is i such that pE�C(hi � C) 6= pE�C(gj � C) for all
j < n, then for the least i with this property, set gn � C = hi � C; otherwise set
gn � C = id � C.

Note that the sequence (gn)n is eventually equal to idX , since E is of bounded
index in F . Thus the group G̃ = 〈gn〉n<∞ ≤ InnB(F ) ∩ AutB(E) is finitely

generated. Note also that F = E∨G̃. Now the image of InnB(F ) ∩ AutB(E) in
OutB(E) is locally finite, since it is a subgroup of (Sn)X/F for some finite symmetric
group Sn. So the image G of G̃ in OutB(E) is finite, and we are done.

We have a generalization of Theorem 5.1:

Theorem 5.8. Let E ⊆ F ⊆ F ′ be CBERs such that E has finite index in F ′ and
E / F ′. Then every (E,F )-link is contained in an (E,F ′)-link.

Proof. By partitioning the underlying standard Borel space X, we can assume
that there is some n <∞ such that every F ′-class contains at most n F -classes.
We proceed by induction on n. The case n = 1 is trivial.

Let L be an (E,F )-link and let S be a transversal for L. Let Φ be the set
of A ∈ [F ′ � S]<∞ which are a transversal for F � C for some F ′-class C. By
[KM04, Lemma 7.3], there is a Φ-maximal fsr R. Let Y ⊆ X be the set of x ∈ X
such that [x]F ⊆ [dom(R)]L and let Z = X \ Y . We can assume that no F ′-class
is contained in Y , since the equivalence relation generated by R and L is an
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(E,F ′)-link on such a class. By Φ-maximality of R, no F ′-class is contained in Z
either. By (2) of Proposition 4.3, we have E � Y / F ′ � Y , so by the induction
hypothesis, there is an (E � Y, F ′ � Y )-link LY containing L � Y . Similarly, there
is an (E � Z, F ′ � Z)-link LZ containing L � Z.

Let SY and SZ be transversals for LY and LZ respectively. It suffices to
show that there is some T ∈ InnB(F ′) such that T (SY ) = SZ , since then the
smallest equivalence relation containing LY and LZ and {(x, T (x)) : x ∈ SY } is an

(E,F ′)-link. In other words, we need to show that S̃Y = S̃Z in the cardinal algebra
K(F ′× IN). By Proposition 5.7, there is a finite subgroup G ≤ OutB(E) such that
F ′ = E∨G. By partitioning X, we can assume that [F ′ � Y : E � Y ] = nY and

[F ′ � Z : E � Z] = nZ for some nY , nZ <∞. Then Ỹ = nY S̃Y and Z̃ = nZS̃Z . Let

k = |G|
nY +nZ

. Then for every x ∈ X, we have

|{g ∈ G : [x]E ⊆ g · Y }| =
∑

[y]E⊆Y

|{g ∈ G : [x]E = g · [y]E}| = knY ,

and thus |G|Ỹ = knY X̃. Similarly, |G|Z̃ = knZX̃. Thus

|G|nY nZS̃Y = |G|nZ Ỹ = knY nZX̃ = |G|nY Z̃ = |G|nY nZS̃Z ,

which yields S̃Y = S̃Z by the cancellation law.

Corollary 5.9. Every morphism of finite groups has the class-bijective lifting
property.

Proof. Suppose we have

H AutB(E)

G OutB(E)

pE

with H and G finite, and H → AutB(E) class-bijective. Then EH is an (E,E∨H)-
link, so by Theorem 5.8, there is an (E,E∨G)-link LG containing EH . This lets us
define an action of G by setting g · x to be the unique element in both [x]LG and
g · [x]E.

Corollary 5.10. Every outer action of an amalgamated free product of finite
groups has a lift.

Proof. Let H be a finite group, let (Gn)n<∞ be finite groups, let H → Gn be
morphisms, and let G be the amalgamated free product of the Gn over H. By
Corollary 5.2, every outer action of H has a class-bijective lift. By Corollary 5.9,
the morphisms H → Gn have the class-bijective lifting property. Thus by Proposi-
tion 5.5, every outer action of G lifts.
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Given CBERs E ⊆ F , we say that F/E is hyperfinite if there is an increasing
sequence (Fn)n of finite index extensions of E such that F =

⋃
n Fn.

Corollary 5.11. Let E / F be CBERs with F/E hyperfinite. Then there is an
(E,F )-link.

Proof. Apply Theorem 5.8 countably many times.

Corollary 5.12. Every outer action of a locally finite group has a class-bijective
lift.

Proof. Immediate from Corollary 5.11.

6 Outer actions of amenable groups

Our goal in this section is to show that every outer action of an amenable group
lifts. We will prove in 6.A some special cases of this result, using (as a black
box) [FSZ89, Theorem 3.4] (stated in Theorem 6.1 below). The general case,
which is based on some ideas from the proof of Theorem 6.1 in combination with
Theorem 3.5 will be proved in 6.D.

6.A Special cases

We will use the following result from the pmp setting:

Theorem 6.1 ( [FSZ89, Theorem 3.4]). Let G be an amenable group and let E
be a pmp ergodic CBER. Then any morphism G→ Outµ(E) has a lift.

Remark 6.2. In [FSZ89] this result is stated for free outer actions, i.e., outer
actions ϕ : G → Outµ(E) that have the following additional property: if g ∈ G
is not the identity and Tg ∈ Autµ(E) maps by the canonical projection to ϕ(g),
then Tg(x) /∈ [x]E, a.e. Using the ergodicity of E, this is equivalent to the kernel
of ϕ being trivial. Thus for an arbitrary outer action ϕ : G → Outµ(E), if H is
the kernel of ϕ, this gives a free outer action of G/H, which by the special case
lifts to an action of G/H which composed with the projection of G to G/H gives
a lifting of ϕ.

Remark 6.3. Note that (the measurable version of) Corollary 5.10 gives examples
of non-amenable groups that satisfy Theorem 6.1.

Now Theorem 6.1 together with Theorem 3.5 implies the following Borel result:

Theorem 6.4. Let G be an amenable group and let E be a uniquely ergodic CBER.
Then every morphism G→ OutB(E) lifts.
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Proof. Let µ be the ergodic invariant measure for E. Note that any element
of AutB(E) preserves µ by unique ergodicity. Thus by Theorem 6.1, there is a
lift G → Autµ(E), so there is a conull E-invariant Borel set Y ⊆ X such that
G→ OutB(E � Y ) lifts to AutB(E � Y ). But since the complement is compressible,
we are done here by Theorem 3.5.

In fact the following stronger result holds.

Theorem 6.5. Let G be an amenable group and let E be a countably ergodic
CBER. Then every morphism G→ OutB(E) lifts.

Proof. Note that G acts on the ergodic components modulo compressible sets,
which we can ignore by Theorem 3.5. We can assume that this action is transitive.
Fix an ergodic component Y , and let H = {g ∈ G : g · Y = Y }. By the uniquely
ergodic case, there is a lift H → AutB(E � Y ). Let S ⊆ G be a transversal for the
left cosets of H in G, with 1 ∈ S. For every s ∈ S, choose a lift Ts ∈ AutB(E),
with T1 = idX . Now fix g ∈ G and s ∈ S. We define the action of g on sY . We
have gsY = tY for some t ∈ S, so we have t−1gs ∈ H. Thus we can define

g · (Tsy) := Tt((t
−1gs) · y).

6.B E-null sets

Let E be an aperiodic CBER on X, so that every µ ∈ EINVE is non-atomic. A
Borel subset A ⊆ X is E-null if either of the following equivalent conditions holds:

(1) µ(A) = 0 for every µ ∈ EINVE.

(2) E � [A]E is compressible.

An E-conull set is the complement of an E-null set.
Let NULLE ⊆ B(X) be the σ-ideal of E-null Borel sets, and let ALGE be

the quotient σ-algebra B(X)/NULLE. A Borel map T : X → X is NULLE-
preserving if the preimage under T of every E-null set is E-null. Let EndNULLE(E)
be the monoid of NULLE-preserving Borel maps X → X such that x E y =⇒
ϕ(x) E ϕ(y) for all x, y in an E-conull set, where two such maps are identified
if they agree on an E-conull set. Let AutNULLE(E) be the group of invertible
elements of EndNULLE(E). There is a natural action of AutNULLE(E) on ALGE.
Denote by InnNULLE(E) the normal subgroup of AutNULLE(E) of ϕ such that
ϕ(x) E x for an E-conull set of x, and denote by OutNULLE(E) the quotient group
AutNULLE(E)/ InnNULLE(E).
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Lifts of elements of OutNULLE(E) are defined analogously as in the case of
OutB(E), as well as lifts of morphisms G→ OutNULLE(E). Let G→ AutNULLE(E)
be a morphism. Let G→ OutNULLE(E). There is an action on X/E given by

g · [x]E = [T (x)]E

where T is a lift of g, which is well-defined for an E-conull set of x. Then
StabG([x]E) is well-defined for an E-conull set of x. We say that this is a free
action if StabG([x]E) = 1 for an E-conull set of x. A morphism G→ AutNULLE(E)
is class-bijective if for every g ∈ G, there is an E-conull set of x such that
StabG(x) = StabG([x]E) (note that StabG(x) is also well-defined for an E-conull
set of x). Links are defined as before, except that everything only needs to hold
on an E-conull set.

Given g ∈ OutNULLE(E), a partial lift ψ of g is the restriction of a lift φ of g
to some A ∈ ALGE. In this case, we write ψ : A→ B, where B = φ(A).

There is a commutative diagram

1 InnB(E) AutB(E) OutB(E) 1

1 InnNULLE(E) AutNULLE(E) OutNULLE(E) 1

In particular, any morphismG→ OutB(E) induces a morphismG→ OutNULLE(E).

Proposition 6.6. Let E be an aperiodic CBER on X, let G be a countable group
and fix a morphism G→ OutB(E). Then the following are equivalent:

(1) G→ OutB(E) lifts.

(2) G→ OutNULLE(E) lifts.

Proof. (1) =⇒ (2) Immediate.
(2) =⇒ (1) Denote the lift by ϕ : G → AutNULLE(E), and denote by

ϕg ∈ AutNULLE(E) the image of g under ϕ. For each g ∈ G, pick a representative
Tg : X → X of ϕg. There is an E-conull subset Y ⊆ X such that

(i) x E y ⇐⇒ Tg(x) E Tg(y) for every g ∈ G and x, y ∈ Y ,

(ii) T1(x) = x for every x ∈ Y ,

(iii) Tg(Th(x)) = Tgh(x) for every g, h ∈ G and x ∈ Y ,

(iv) [Tg(x)]E = g · [x]E for every g ∈ G and x ∈ Y .
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By taking the E∨G-hull, we can assume that Y is E∨G-invariant. Then the Tg
define a lift of G→ OutB(E � Y ). On X \ Y , we have that E is compressible, so
we are done by Theorem 3.5.

Every µ ∈ EINVE is a well-defined measure on ALGE, and there is an action
AutNULLE(E) y EINVE given by

(ϕ · µ)(A) = µ(ϕ−1(A)),

which descends to an action of OutNULLE(E).

Proposition 6.7. Let E be an aperiodic CBER, let g ∈ OutNULLE(E), and let
A,B ∈ ALGE. Then the following are equivalent:

(1) µ(A) = (g · µ)(B) for every µ ∈ EINVE.

(2) There is a partial lift ϕ : A→ B of g.

(3) There is a lift ϕ of g with ϕ(A) = B.

Proof. (2) ⇐⇒ (3) By definition.
(3) =⇒ (1) Immediate.
(1) =⇒ (3) Let ψ be a lift of g. Then µ(A) = (g · µ)(B) = µ(ψ−1(B)), so by

replacing B with ψ−1(B), we can assume that g = 1. Then the result follows from
[KM04, Lemma 7.10] and the remark following it.

A family (ϕn)n of partial maps is disjoint if the family (domϕn)n is disjoint
and the family (codϕn)n is disjoint.

Proposition 6.8. Let E be an aperiodic CBER, fix a morphism G →
OutNULLE(E), and let g ∈ G. If (ϕn)n are disjoint partial lifts of g, then

⊔
n ϕn is

a partial lift of g.

Proof. Suppose ϕn : An → Bn. Let A = X \
⊔
nAn and let B = X \

⊔
nBn. By

Proposition 6.7, for any µ ∈ EINVE, we have µ(An) = (g · µ)(Bn), and thus
µ(A) = (g · µ)(B). So again by Proposition 6.7, there is a partial lift ϕ : A→ B
of g. Then ϕ t

⊔
n ϕn is a lift of g, and thus the restriction ϕn is a partial lift of

g.

For A ∈ ALGE, we write µE(A) = r if for every µ ∈ EINVE, we have µ(A) = r.
Recall that for any standard probability space (X,µ), if A ⊆ X and r ≤ µ(A),
then there is some B ⊆ A with µ(A) = r, and this B can be found uniformly in µ.
By applying this to each E-ergodic component, we obtain the following:

Proposition 6.9. Let E be an aperiodic CBER, let A ∈ ALGE, and let r ∈ [0, 1].
If r ≤ µE(A), then there is some B ⊆ A such that µE(B) = r.
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6.C Quasi-tilings

Let G be a group. Let Fin(G) denote the set of finite subsets of G, and let Fin1(G)
denote the set of A ∈ Fin(G) containing 1. Given A,B ∈ Fin(G), we say that B
λ-covers A if |A ∩B| ≥ λ|A|.

Let A be a family in Fin(G), i.e., a subset of Fin(G). We say that A is
ε-disjoint if there is a disjoint family {DA}A∈A such that each DA is a subset of
A which (1− ε)-covers A. Note that if A is ε-disjoint, then

(1− ε)
∑
A∈A

|A| ≤

∣∣∣∣∣ ⋃
A∈A

A

∣∣∣∣∣.
Given A ∈ Fin(G), we say that A λ-covers A if

⋃
B∈AB λ-covers A.

Let A be a family in Fin1(G) and let A ∈ Fin(G). An A-quasi-tiling of A is
a tuple C = (CB)B∈A of subsets of A such that Bc ⊆ A for every c ∈ CB, and the
family {BCB}B∈A is disjoint. If 1 ∈ A, we additionally demand that 1 ∈ CB for
some B ∈ A. If A = {B} is a singleton, we will write “C is a B-quasi-tiling” as
shorthand to mean that (C) is a {B}-quasi-tiling. We say that C is ε-disjoint
if for each B ∈ A, the family {Bc}c∈CB is ε-disjoint. We say that C λ-covers A
if {BCB}B∈A λ-covers A. We say that C is an (A, ε)-quasi-tiling of A if it is
ε-disjoint and (1− ε)-covers A.

Given A ∈ Fin(G) and B ∈ Fin1(G), let T (A,B) denote the set {a ∈ A : Ba ⊆
A}. We say that A is (B, ε)-invariant if T (A,B) (1− ε)-covers A. Note that if
A is (B, ε)-invariant, then |BA| ≤ (1 + ε|B|)|A|.

Lemma 6.10. Let G be group, let δ, ε > 0, let B ∈ Fin1(G), and let A ∈ Fin(G) be
(B, δ)-invariant. Then any maximal ε-disjoint family {Bc}c∈C of right translates
of B contained in A ε(1− δ)-covers A.

Proof. If g ∈ T (A,B), then by maximality, we have |Bg ∩BC| ≥ ε|B|. Thus

ε(1− δ)|A| ≤ ε|T (A,B)| ≤
∑

g∈T (A,B)

|Bg ∩BC|
|B|

≤
∑
g∈G

|Bg ∩BC|
|B|

= |BC|,

where the last equality holds since every element of BC is contained in exactly
|B|-many right translates of B.

Let A be a finite family in Fin1(G) and let p = (pB)B∈A be a probability
distribution on A. Given an A-quasi-tiling C = (CB)B∈A of A ∈ Fin(G), we say
that C satisfies p if |B||CB| ≤ pB|A| for every B ∈ A. Given ε > 0, we say that
the pair (A, ε) satisfies p if there is some δ > 0 such that for every A ∈ Fin1(G)
larger than 1

δ
which is (B, δ)-invariant and contains B for every B ∈ A, there is

an (A, ε)-quasi-tiling of A satisfying p.
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Lemma 6.11. Let G be a group. For every ε > 0, there is a finite probability
distribution p = (pi)i<k and constants ηi > 0 for i < k−1 such that if A = (Bi)i<k
is a descending chain in Fin1(G) where each Bi for i < k − 1 is (B−1i+1,

ηi
|Bi+1|)-

invariant, then (A, ε) satisfies p.

Proof. By scaling, it suffices to find a subprobability distribution. Choose k such
that 2ε ≥ (1− ε)k, define pi = ε(1− ε)i, and for i < k − 1, choose ηi such that

ηi ≤
1− 2ε

2 · 3k−i
.

LetA = (Bi)i<k be a descending chain in Fin1(G) where each Bi is (B−1i+1,
ηi
|Bi+1|)-

invariant, and let δ > 0 be sufficiently small, depending on (A, ε), to be specified
in the course of the proof. Suppose we have some A ∈ Fin1(G) which is larger
than 1

δ
and (B, δ)-invariant for every B ∈ A.

We define a descending sequence (Ai)i<k of subsets of A and 2ε-disjoint Bi-
quasi-tilings Ci of Ai such that

(i) A0 = A.

(ii) Ai+1 = Ai \BiCi,

(iii) Ai is (Bi,
1

3k−i
)-invariant,

(iv)

ε(1− ε)i+2−2−i ≤ |BiCi|
|A|

≤ ε(1− ε)i−2+2−i ,

(v)

(1− ε)i+2−2−i+1 ≤ |Ai|
|A|
≤ (1− ε)i−2+2−i+1

.

We proceed by induction, starting with A0 = A, defining Ci from Ai, and defining
Ai+1 from Ci via (ii). Note that A0 satisfies (iii) if we require δ ≤ 1

3k
.

Suppose that Ai has been defined. We will define Ci. Let C̃i be a maximal
2ε-disjoint Bi-quasi-tiling of Ai. Since 2ε

(
1− 1

3k−i

)
> ε, by Lemma 6.10, C̃i is an

ε-cover of Ai. Then by removing elements from C̃i, we obtain a Bi-quasi-tiling
Ci ⊆ C̃i of Ai such that

ε(1− ε)2−i ≤ |BiCi|
|Ai|

≤ ε(1− ε)−2−i

and

(1− ε)1+2−i ≤ |Ai+1|
|Ai|

≤ (1− ε)1−2−i ,
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as long as Ai is sufficiently large such that |Bi||Ai| is smaller than the length of the
interval around ε given by[

ε(1− ε)2−i , ε(1− ε)−2−i
]
∩
[
1− (1− ε)1−2−i , 1− (1− ε)1+2−i

]
,

which occurs for sufficiently large A by (v). Then since |BiCi||A| = |BiCi|
|Ai|

|Ai|
|A| , we get

that (iv) holds. Similarly, (v) holds for Ai+1.
It remains to check (iii). Note that

T (Ai+1, Bi+1) = T (Ai, Bi+1) \B−1i+1BiCi.

Since
|Ai+1|
|Ai|

≥ (1− ε)1+2−i ≥ (1− ε)2 ≥ 1

2
,

where we assume that ε is small enough to satisfy the last inequality, the cardinality
of T (Ai, Bi+1) is at least(

1− 1

3k−i

)
|Ai| ≥ |Ai| −

2

3k−i
|Ai+1|.

Now BiCi is
(
B−1i+1,

ηi
|Bi+1|(1−2ε)

)
-invariant, since

|{g ∈ BiCi : B−1i+1g 6⊆ BiCi}| ≤
∑
c∈Ci

|{g ∈ Bic : B−1i+1g 6⊆ BiCi}|

≤
∑
c∈Ci

|{g ∈ Bic : B−1i+1g 6⊆ Bic}|

≤
∑
c∈Ci

ηi
|Bi+1|

|Bi|

=
ηi
|Bi+1|

|Bi||Ci|

≤ ηi
|Bi+1|

|BiCi|
1− 2ε

.

Since
|Ai+1|
|BiCi|

≥ |Ai+1|
|Ai|

≥ 1

2
≥ ηi

1− 2ε
3k−i,

we have

|B−1i+1BiCi| ≤
(

1 +
ηi

1− 2ε

)
|BiCi| ≤ |BiCi|+

1

3k−i
|Ai+1|.
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Putting these together, we get

|T (Ai+1, Bi+1)| ≥
(

1− 3

3k−i

)
|Ai+1|,

so (iii) holds. This concludes the construction.
Now

|BiCi|
|A|

≥ ε(1− ε)i+2−2−i > ε(1− ε)i+2 > ε(1− 2ε)2(1− ε)i,

so for each i < k, there is a Bi-quasi-tiling C ′i ⊆ Ci of Ai such that

ε(1− 2ε)2(1− ε)i ≤ |BiC
′
i|

|A|
≤ ε(1− 2ε)(1− ε)i,

as long as A is large enough such that |Bi||A| is smaller than the length of the interval[
ε(1− 2ε)2(1− ε)i, ε(1− 2ε)(1− ε)i

]
.

Then (C ′i)i<k is a 2ε-disjoint A-quasi-tiling of A which (1− 2ε)3-covers A. We also
have

|Bi||C ′i|
|A|

≤ 1

1− 2ε

|BiC
′
i|

|A|
≤ ε(1− ε)i = pi.

So we are done by replacing ε in the above argument by any ε̄ such that ε is
greater than 2ε̄ and 1− (1− 2ε̄)3.

A countable group G is amenable if for every B ∈ Fin(G) and every ε > 0,
there is some A ∈ Fin(G) which is (B, ε)-invariant. Note that we can assume that
A contains B.

Proposition 6.12. Let G be an amenable group and let (εn)n<∞ be a sequence
of positive reals. Then there exist for each n <∞, a finite family An in Fin1(G)
and a probability distribution pn on An such that

(i) A0 = {{1}},

(ii) if B ∈ An and A ∈ An+1, then A is (B, εn)-invariant and contains B,

(iii) every A ∈ An+1 has an (An, εn)-quasi-tiling satisfying pn,

(iv) G =
⋃
n

⋃
B∈An B.

Proof. Fix an enumeration (gn)n of G. We inductively define An and pn satisfying
the given conditions such that additionally, (An, εn) satisfies pn. For n = 0, take
A0 = {{1}}, and let p0 be the unique probability distribution on A0. Then (A0, ε0)
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satisfies p0. Now suppose that An and pn have been defined. Apply Lemma 6.11
to εn+1 to obtain a probability distribution pn = (pi)i<kn and constants (ηni )i<kn−1.
We turn to defining An+1 = (Bn+1

i )i<kn+1 . First we define Bn+1
kn+1−1, by choosing any

Bn+1
kn+1−1 ∈ Fin1(G) which contains B and is (B, εn)-invariant for every B ∈ An,

and contains gn. and which has an (An, εn)-quasi-tiling satisfying pn (which
is possible since (An, εn) satisifies pn). Now for any i < kn+1 − 1, we define
Bn+1
i from Bn+1

i+1 , by choosing any Bn+1
i ∈ Fin1(G) containing Bn+1

i+1 which is(
(Bn+1

i+1 )−1,
ηni
|Bn+1
i+1 |

)
-invariant, (B, εn)-invariant for every B ∈ An, and which has

an (An, εn)-quasi-tiling satisfying pn. Then An+1 satisfies the given conditions
and additionally, (An+1, εn+1) satisfies pn+1.

6.D General case

Theorem 6.13. Every outer action of an amenable group lifts.

Proof. Let G be an amenable group, and let E be a CBER on X. By Proposi-
tion 4.6, we can assume that E is aperiodic. By Proposition 6.6, it suffices to show
that every morphism G→ OutNULLE(E) lifts to AutNULLE(E). For the rest of the
proof, when we refer to a subset of X, we will mean its equivalence class in ALGE.

Fix a sequence (εn)n<∞ of positive reals less than 1 such that∑
n

(1− (1− εn)(1− 3εn)) <∞.

Apply Proposition 6.12 to (εn)n to obtain for each n <∞, a finite family An in
Fin1(G) and a probability distribution pn = (pnA)A∈An on An. For ease of notation,
we will write pA instead of pnA.

For each n <∞, we construct a disjoint family (XA)A∈An ⊆ ALGE, and partial
lifts ϕng ∈ AutNULLE(E) of some g ∈ G such that

(i) ϕn1 = idX ,

(ii) for A ∈ An, we have |A|µE(XA) = pA,

(iii) the family {ϕng (XA) : A ∈ An, g ∈ A} is disjoint,

(iv) for A ∈ An, if g, h, gh ∈ A, then ϕngh and ϕngϕ
n
h agree on XA.

We proceed by induction on n. For n = 0, take X{1} = X and ϕ0
1 = idX . Now

suppose that the construction holds for n. We will repeatedly use Proposition 6.7,
Proposition 6.8, and Proposition 6.9 to obtain the partial lifts ϕn+1

g . For each
A ∈ An+1, fix an (An, εn)-quasi-tiling (CA

B)B∈An of A. By εn-disjointness, for each
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B ∈ An there is a disjoint family {DA
B,cc}c∈CAB where each DA

B,c is a subset of B

which (1 − εn)-covers B. For each A ∈ An+1, choose XA ⊆ XB where 1 ∈ CA
B ,

such that |A|µE(XA) = pA; we can do this since

pA
|A|
≤ |C

A
B |
|A|
≤ pB
|B|

= µE(B).

For each A ∈ An+1, each B ∈ An, and each c ∈ CA
B , define ϕn+1

c on XA so that
for every B ∈ An, the family {ϕn+1

c (XA) : A ∈ An+1, c ∈ CA
B} is disjoint and

contained in XB (see Figure 1); we can do this since for each A ∈ An+1, we have∑
c∈CAB

µE(XA) = |CA
B |
pA
|A|
≤ pA

pB
|B|

= pAµE(XB).

Now for each A ∈ An+1, each B ∈ An, each c ∈ CA
B , and each h ∈ DA

B,c, define

ϕn+1
hc on XA by setting it equal to ϕnhϕ

n+1
c . Then for each A ∈ An+1 and each

g ∈ A, define ϕn+1
g on XA if it hasn’t been already defined, such that the family

{ϕn+1
g (XA) : A ∈ An+1, g ∈ A} partitions X; this is possible since∑

A∈An+1

∑
g∈A

µE(XA) =
∑

A∈An+1

|A|µE(XA) =
∑

A∈An+1

pA = 1.

Finally, for each A ∈ An+1 and g, h, gh ∈ A, define ϕn+1
g on ϕn+1

h (XA) by setting

it to be equal to ϕn+1
gh (ϕn+1

h )−1. This concludes the construction.
We claim that for every g ∈ G, the pointwise limit ϕg := limn ϕ

n
g exists and is

a total function. Let n be large enough such that there is some C ∈ An−1 with
g ∈ C. Now for any A ∈ An+1, B ∈ An, c ∈ CA

B , and h ∈ DA
B,c with gh ∈ DA

B,c,
we have on XA,

ϕngϕ
n+1
hc = ϕngϕ

n
hϕ

n+1
c = ϕnghϕ

n+1
c = ϕn+1

ghc = ϕn+1
g ϕn+1

hc ,

so ϕng and ϕn+1
g agree on ϕn+1

hc (XA). We have

|B \ g−1DA
B,c| ≤ |B \ g−1B|+ |g−1B \ g−1DA

B,c| < 2εn|B|.

So ϕng and ϕn+1
g agree on a set of µE-measure at least∑

A∈An+1

∑
B∈An

∑
c∈CAB

∑
h∈DAB,c
gh∈DAB,c

µE(ϕn+1
hc (XA)) ≥

∑
A∈An+1

∑
B∈An

|CA
B |(1− 3εn)|B| pA

|A|

≥
∑

A∈An+1

(1− εn)(1− 3εn)pA

≥ (1− εn)(1− 3εn).
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Figure 1: The shaded regions are XB for B ∈ An, and the regions above each
XB are its translates ϕnb (XB) for b ∈ B. The black disk is some XA, the other
disks are its translates ϕn+1

c (XA), and analogously for the squares for some other
A′ ∈ An+1.

So we are done by the Borel-Cantelli lemma.
Now we claim that g 7→ ϕg is an action. Let g, h ∈ G. Choose n large enough

such that there is some C ∈ An−1 with g, h, gh ∈ C. Now for any B ∈ An and
k ∈ B with hk, ghk ∈ B, we have on XB,

ϕnghϕ
n
k = ϕnghk = ϕngϕ

n
hk = ϕngϕ

n
hϕ

n
k ,

so ϕngh and ϕngϕ
n
h agree on ϕnk(XB). We have |B\h−1B| ≤ εn|B| and |B\(gh)−1B| ≤

εn|B|. So ϕngh and ϕngϕ
n
h agree on a set of µE-measure at least∑

B∈An

∑
k∈B

hk,ghk∈B

µE(ϕnk(XB)) ≥
∑
B∈An

(1− 2εn)|B|µE(ϕnr (XB))

≥
∑
B∈An

(1− 2εn)pB

≥ (1− 2εn)

So we are done by the Borel-Cantelli lemma.

We can obtain class-bijective lifts for some amenable groups, including abelian
groups and amenable groups with countably many subgroups.

Corollary 6.14. Let G be an amenable group whose conjugacy equivalence relation
on its space of subgroups is smooth. Then every outer action of G has a class-
bijective lift.
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Proof. For this proof, we will work modulo E-null sets. Fix a morphism G →
OutNULLE(E). Let (Xe)e∈EINVE be the ergodic decomposition of E. Let C be
a transversal for the conjugacy equivalence relation on the space of subgroups,
and for each subgroup H ≤ G, fix some gH ∈ G such that gHHg

−1
H ∈ C. The

action OutNULLE(E) y EINVE induces an action Gy EINVE. If e ∈ EINVE has
stabilizer H ∈ C under this action, then if NH is the kernel of H → OutNULLE(E �
Xe), we have StabH(x) = NH by ergodicity, and thus H/NH → OutNULLE(E �
Xe) is a free action. Thus by applying Theorem 6.13 to Xe, there is a class-
bijective lift H/NH → AutNULLE(E � Xe), and this gives a class-bijective lift
H → AutNULLE(E � Xe), and thus a link. So for each H ∈ C, if we let XH

be the union of the ergodic components with stabilizer H, then there is an
(E � XH , E

∨H � XH)-link LH . Now for an arbitrary subgroup H ≤ G, fix a lift
ψH of gH . Then the smallest equivalence relation containing LH and {(x, ψH(x)) :
x ∈ Xe with Stab(e) = H} for every H is an (E,E∨G)-link.

Remark 6.15. There are locally finite groups for which the conjugacy equivalence
relation on the space of subgroups is not smooth. Take, for example, a finite
group H with a non-normal subgroup H ′ and let C be the conjugacy class of H ′.
Let G =

⊕
nH be the infinite direct sum of copies of H. Consider the set X of

subgroups of G of the form
⊕

nHn, where Hn ∈ C. Then E0 is Borel reducible to
the conjugacy equivalence relation on X, which is therefore non-smooth.

For general amenable groups, the problem is still open:

Problem 6.16. Let G be an amenable group. Does every G→ OutB(E) have a
class-bijective lift?

We remark that in Problem 6.16 it suffices to consider hyperfinite E. To see
this, note that by Theorem 6.13, there is a lift G→ AutB(E). Then it suffices to
find an (E ∩ EX

G , E
X
G )-link. So by replacing E with E ∩ EX

G , we can assume that
E is amenable, in the sense of [Kec20, 8.A], and this is hyperfinite on an E-conull
set, see [Kec20, 8.D].

7 Summary of lifting results for outer actions

Let G be the class of groups for which every outer action has a lift. Then

• G contains all amenable groups (Theorem 6.13).

• G contains all amalgamated products of finite groups (Corollary 5.10).

• G is closed under subgroups (Proposition 4.7).

• G is closed under free products.
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• Every group in G is treeable (Proposition 4.11).

Let Gcb be the class of groups for which every outer action has a class-bijective
lift. Then

• Gcb contains all locally finite groups (Corollary 5.12).

• Gcb contains all amenable groups whose conjugacy equivalence relation on
the space of subgroups is smooth (Corollary 6.14).

• Gcb is closed under subgroups (Proposition 4.7).

• Gcb is closed under quotients (Proposition 4.8).

• Gcb is closed under extensions by a finite normal subgroup (Theorem 5.6).

Problem 7.1. Characterize the classes G and Gcb.

8 Additional topics

8.A Algebraic properties of automorphism groups

There are several results concerning the algebraic properties of InnB(E) (see [Mil04],
[Mer93], [MR07]), and similarly for Innµ(E) in the pmp case (see [Kec10, §§3-4]
and the references therein). In particular, it is known that for aperiodic E, the
group InnB(E) is generated by involutions and similarly for Innµ(E). However, not
much seems to be known about the groups AutB(E),Autµ(E),OutB(E), including
the question about generation by involutions. There are pmp, ergodic E for
which Autµ(E) is generated by involutions, for example E0 (see [Kec10, p.46]) and
pmp ergodic E that have trivial Outµ(E) (for the existence of such, see [Gef96]).
Since E0 is uniquely ergodic, the question of whether AutB(E0) is generated by
involutions would have a positive answer if AutB(E) is generated by involutions for
any hyperfinite compressible E. So it seems natural to consider first the question
of generation by involutions of AutB(E), where E is a compressible CBER.

In the case of SymB(X/E), Miller has shown that if T ∈ SymB(X/E) with
E∨T hyperfinite, then T is a product of three involutions.

8.B Conjugacy of outer actions

A result of Bezuglyi-Golodets [BG87], in combination with Theorem 6.1, shows
that any two morphisms ϕ1, ϕ2 : G→ Outµ(E0) are conjugate (i.e., there is θ ∈
Outµ(E0) such that ϕ1(g) = θϕ2(g)θ−1) iff ker(ϕ1) = ker(ϕ2). Using Theorem 6.4,
one can see that the analogous result would hold for morphisms of amenable
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groups into OutB(E0) if it holds for morphisms of amenable groups into OutB(E)
for E compressible hyperfinite, which again leads to the question of whether an
analog of the Bezuglyi-Golodets theorem holds for morphisms of amenable groups
into OutB(E), when E is any compressible CBER.

8.C Embeddings of quotients

For a countable group G, let F0(G) be the CBER on GN defined by

(g0, g1, g2, . . .) F0(G) (h0, h1, h2, . . .) ⇐⇒ ∃m∀k > m [g0 · · · gk = h0 · · ·hk].

There is an action G→ AutB(F0(G)) defined by

g · (g0, g1, g2, . . .) = (g · g0, g1, g2, . . .),

inducing an action G yB GN/F0(G). Given CBERs E ⊆ F on X, we say that
F/E is ergodic if there is no Borel partition X = A0 t A1 with each Ai an
E-invariant complete F -section.

Let E be a CBER on a Polish space X, and let GyB X/E be a free action.
Then E∨G/E is ergodic iff there is a G-equivariant Borel injection GN/F0(G) ↪→
X/E induced by a continuous embedding GN ↪→ X (see [Mil04, Theorem 7.2]). If
E∨G is hyperfinite, then there is a G-equivariant Borel injection X/E ↪→ GN/F0(G)
(see [Mil04, Theorem 8.1]).

Given a pair E ⊆ F of CBERs, we say that F/E is generated by a Borel
action if there is some Borel action GyB X/E such that F = E∨G. By [Pin07,
Theorem 3], this is equivalent to the existence of a sequence of Borel functions
fn : X/E → X/E such that x F y ⇐⇒ ∃n [fn([x]E) = [y]E]. By [Mil20, Theorem
3], there is a countable set of obstructions for being generated by a Borel action.
Namely, there is a sequence of pairs En ⊆ Fn of CBERs on 2N where Fn/En is
not generated by a Borel action, such that if E ⊆ F are CBERs on X where
F/E is not generated by a Borel action, then there is some n for which there is a
continuous embedding 2N ↪→ X which simultaneously reduces En to E and Fn to
F .
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