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ABSTRACT. LetR be a ring satisfying a polynomial identity and let δ be a derivation of
R. We show that ifN is the nil radical ofR then δ(N) ⊆ N and the Jacobson radical of
R[x; δ] is equal toN [x; δ]. As a consequence, we have that ifR is locally nilpotent then
R[x; δ] is locally nilpotent. This affirmatively answers a question of Smoktunowicz and
Ziembowski.

1. INTRODUCTION

Let R be a ring (not necessarily unital) and let δ be a derivation of R. We recall
that the differential polynomial ring R[x; δ] is, as a set, given by all polynomials of the
form anx

n + · · · + a1x + a0 with n ≥ 0, a0, . . . , an ∈ R. Multiplication is given by
xa = ax+ δ(a) for a ∈ R and extending using associativity and linearity.

There has been a lot of interest in studying the Jacobson radical of the ring R[x; δ]
[1, 2, 3, 4, 8, 9]. In the case when δ is the zero derivation—that is when R[x; δ] =
R[x]—Amitsur [1] showed that the Jacobson radical, J(R[x]), of R[x] is precisely N [x]
where N is a nil ideal of R given by N = J(R[x]) ∩ R. At the opposite end of the
spectrum, Ferrero, Kishimoto, and Motose [3] showed that when R is commutative then
J(R[x; δ])∩R is a nil ideal and J(R[x; δ]) = (J(R[x; δ])∩R)[x; δ]. It is still unknown
whether J(R[x; δ]) is equal to (0) when R has no nonzero nil ideals.

A surprising recent development comes from the work of Smoktunowicz and Ziem-
bowski [8]. We recall that a ringR is locally nilpotent if every finitely generated subring
ofR is a nilpotent ring. Smoktunowicz and Ziembowski negatively answered a question
of Sheshtakov [8, Question 1.1], by constructing an example of a locally nilpotent ring
R such that R[x; δ] is not equal to its own Jacobson radical. In addition to this, they
asked [8, p. 2] whether Sheshtakov’s question has an affirmative answer if one assumes,
in addition, that R satisfies a polynomial identity (PI ring, for short). In this paper we
show that this is indeed the case.

Our main result is the following theorem.

Theorem 1.1. Let R be a locally nilpotent ring satisfying a polynomial identity and let
δ be a derivation of R. Then R[x; δ] is locally nilpotent.

In particular, this result shows that R[x; δ] is equal to its own Jacobson radical under
the hypotheses from the statement of Theorem 1.1. This gives an affirmative answer
to a question of Smoktunowicz and Ziembowski [8, p. 2]. We note that the analogue
of Theorem 1.1 need not hold if we form a skew polynomial extension of R using
an automorphism σ instead of a derivation δ. For example, consider the ring R =
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M/M2 where M is the maximal ideal (tn : n ∈ Z) of C[tn : n ∈ Z] and let σ be the
automorphism of R given by σ(ti +M2) = ti+1 +M2. Then R is commutative and
R2 = 0 but t0x ∈ R[x;σ] is not nilpotent.

As a corollary of Theorem 1.1, we obtain—in the characteristic zero case—a result
that can be thought of as an extension of a result of Ferrero, Kishimoto, and Motose
[3] to polynomial identity rings. (Our result does not hold in the positive characteristic
case, however; we give examples which show this.) We recall that in a ring satisfying
a polynomial identity, we have a two-sided nil ideal called the nil radical. This ideal is
the sum of all right nil ideals [7, Proposition 1.6.9 and Corollary 1.6.18] and is locally
nilpotent [5]. In general, it is unknown whether the sum of left nil ideals is again nil—
this is the famous Köthe conjecture.

Theorem 1.2. LetR be a unital polynomial identity algebra over a field of characteristic
zero and let δ be a derivation of R. Then if N is the nil radical of R then δ(N) ⊆ N
and J(R[x; δ]) = N [x; δ]. In particular, J(R[x; δ]) = (J(R[x; δ]) ∩R)[x; δ].

We give examples that show that the containment δ(N) ⊆ N need not hold if the
characteristic zero hypothesis is dropped; in particular, the equality J(R[x; δ]) = N [x; δ]
need not hold without this hypothesis.

The outline of this paper is as follows. In Section 2, we give some results from com-
binatorics on words. In Section 3, we use these combinatorial results to prove Theorems
1.1 and 1.2. We note that throughout this paper, we have opted to work with rings that
are not necessarily unital—the reason for this is that the question of Smoktunowicz and
Ziembowski was asked for such rings. On the other hand, we occasionally refer to re-
sults that sometimes implicitly assume that the involved rings are unital. In practice,
this does not create any issues: to a non-unital ring R, one can create an overring S of
R with identity in which R sits as a two-sided ideal and has the property that S/R is
a homomorphic image of Z (possibly Z, itself). By working with the ring S, one can
generally apply any results stated for unital rings to S and then show they are inherited
by R. Since this is generally straightforward, we make no mention of this other than
here.

2. COMBINATORICS ON WORDS

In this section, we give some results on combinatorics on words that will be useful to
us. We begin by recalling some of the basic notions we will use.

For any set A, let A+ denote the free semigroup on A. We will refer to the elements
of A+ as words. For any u ∈ A+, we let ui ∈ A denote the i-th letter of u. A subword
of u is a contiguous string of letters of u, possibly empty. We say that a subword v of
u is a prefix if u = vw for some word w, possibly empty; we say that v is a suffix if
u = wv for some, possibly empty, subword w of u. We will be interested in the case
when A = N := {0, 1, . . .}.

Let Sn be the symmetric group on n letters. Define weight : N+ → N as follows. If
u ∈ N+ is a word of length n then we define

weight(u) := min

{
n∑
i=1

(n+ 1− i)uσ(i) | σ ∈ Sn

}
.
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For a natural number k and a word u ∈ N+ of length n, we say that u is k-valid if
weight(u) ≤ k

(
n+1
2

)
. Roughly speaking, this says that the average letter of u is not too

large compared to k. Let b = (b0, b1, b2, . . .) be a sequence of natural numbers. We say
that u ∈ N+ is b-bounded if for each m ∈ N, every subword of length bm contains at
least one letter greater than m.

Let (B,<) be a poset. We place a partial order ≺ on B+ as follows. Let u, v ∈ B+.
Then u and v are incomparable if one is a prefix of the other. Otherwise, we compare
them lexicographically using the order from B. We will be most interested in this when
B is the natural numbers and we will make use of this induced order on N+.

We say that a finite sequence of words {vi}di=1 ⊆ B+ is d-decreasing if

v1 � v2 � · · · � vd.

We say that a word u ∈ B+ has a d-decreasing subword if we can express u =
vw1w2 · · ·wdx where {wi}di=1 is a d-decreasing subsequence. We observe that every
word trivially contains a 0-decreasing subsequence.

Proposition 2.1. Let b = (b0, b1, . . .) be a sequence of natural numbers, let d and
k be positive integers, and let ε ∈ (0, 1]. Then there exist natural number constants
M = M(d,b, k, ε) and N = N(d,b, k, ε) such that if u ∈ N+ is a k-valid, b-bounded
word of length n ≥ N , then the subword of u consisting of the last bεnc letters contains
a d-decreasing subsequence {wi}di=1 where the first letter of wi is less than M for i =
1, . . . , d.

Proof. We proceed by induction on d. The case when d = 0 is vacuous and we may
take M =M(0, b, k, ε) = N(0, b, k, ε) = 1.

Suppose now that the proposition is true for all nonnegative integers ≤ d. We take

M1 =M (d,b, k, ε/2) and N1 = N (d,b, k, ε/2) . (2.1)

We pick a positive integer M2 satisfying:
(i) M2 > M1;

(ii) M2 > 8b2M1
kε−2.

We have

M2

(
(εn/2− 1)/bM1

2

)
∼M2ε

2b−2M1
n2/8 ≥ kn2.

It follows that there is a natural number N2 > N1 such that whenever n > N2 we have

M2

(
(εn/2− 1)/bM1

2

)
> k

(
n+ 1

2

)
. (2.2)

Let u ∈ N+ be a k-valid, b-bounded word of length n ≥ N2. We write u = vwx,
where wx is of length bεnc and x is of length bεn/2c. We decompose w into subwords
of length bM1 as follows. We write w = y1 · · · yjyj+1 where each of y1, . . . , yj has length
bM1 and yj+1 has length less than bM1 (possibly zero). By construction,

j =

⌊
bεnc − bεn/2c

bM1

⌋
. (2.3)

Since yi has length bM1 for i ∈ {1, . . . , j}, it must contain a letter ai with ai ≥M1.
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We claim that there exists some i ∈ {1, . . . , j} such that ai < M2. To see this,
suppose that this is not the case. Then u contains at least j letters that are each at least
M2. Since u contains j letters that are at least M2, we have

weight(u) ≥ jM2 + (j − 1)M2 + · · ·+M2 =M2

(
j + 1

2

)
≥M2

(
(εn/2− 1)/bM1

2

)
.

But Equation (2.2) gives that this contradicts the fact that u is a k-valid word.
We conclude that w must contain a letter a with M1 ≤ a < M2. We write w = bc

where c is a word whose first letter is a.
By the inductive hypothesis, we can write x = pv1 · · · vdq where v1 � · · · � vd

and the first letter of vi is strictly less than M1 for i ∈ {1, . . . , d}. We then have that
wx = bcpv1 · · · vdq, and by construction

cp � v1 � · · · � vd

is a (d + 1)-decreasing subsequence where the first letter of each word in the sequence
is less than M2. The result now follows taking

N(d+ 1,b, k, ε) = N2 and M(d+ 1,b, k, ε) =M2.

�

Corollary 2.2. Let b = (b0, b1, . . .) be a sequence of natural numbers and let d and k
be positive integers. Then there exists a natural number N = N(d, b, k) such that if
u ∈ N+ is a k-valid, b-bounded word of length n ≥ N , then u contains a d-decreasing
subword.

Proof. We take N(d, b, k) = N(d, b, k, 1) from Corollary 2.1. �

3. PROOFS OF THEOREMS 1.1 AND 1.2

In this section we prove our main results. We begin with a simple lemma that will
allow us to apply our combinatorial results from the preceding section.

Lemma 3.1. Let R be a ring, let T = {a1, . . . , am} be a finite subset of R, and let δ
be a derivation of R. If n and k are natural numbers and p1, . . . , pn+1 are nonnegative
integers that are at most k then the product

ai0x
p1ai1x

p2 · · · ainxpn+1

in R[x; δ] can be written as a Z-linear combination of of elements of the form

ai0δ
j1(ai1)δ

j2(ai2) · · · δjn(ain)xM ,

where M is a nonnegative integer and j1j2 · · · jn ∈ N+ is k-valid.

Proof. Using the formula

xda =
d∑
j=0

(
d

j

)
δj(a)xd−j, (3.4)

for d ≥ 0 and a ∈ R, it is straightforward to see that

ai1x
p1ai2x

p2 · · · ainxpn
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can be expressed as a Z-linear combination of elements of the form

ai0δ
j1(ai1) · · · δjn(ain)xp1+p2+···+pn+pn+1−j1−···−jn

where we have ji ≤ p1 + · · · + pi − j1 − · · · − ji−1 for i = 1, . . . , n. In particular, we
have

j1 + · · ·+ ji ≤ p1 + · · ·+ pi ≤ ki

for i = 1, . . . , n. Summing over all i then gives
n∑
i=1

(n+ 1− i)ji ≤
n∑
i=1

ki = k

(
n+ 1

2

)
.

Thus the word j1j2 · · · jn ∈ N+ is necessarily k-valid. The result follows. �

Proof of Theorem 1.1. Let S = {p1(x), . . . , pm(x)} be a finite subset of R[x; δ]. We
wish to show that there is a natural number N = N(S) such that SN+1 = 0; i.e.,
every product of N + 1 elements of S is equal to zero. Then there is a finite subset
T = {a1, . . . , at} of R and a natural number k such that S ⊆ T + Tx + · · · + Txk.
Let S0 = T ∪ Tx ∪ · · · ∪ Txk. Then every element of Sn can be expressed as a sum of
elements of the form Sn0 and hence it is sufficient to show that there is a natural number
N such that SN+1

0 = 0.
To show that SN+1

0 = 0, it is enough to show that

Txp1Txp2 · · ·TxpN+1 = 0

for every sequence (p1, . . . , pN+1) ∈ {0, . . . , k}N+1. For each n ≥ 0, we let Tn =
T ∪ δ(T ) ∪ · · · ∪ δn(T ) ⊆ R. Then since R is locally nilpotent, there exists a natural
number bn such that T bnn = 0. We let b = (b0, b1, b2, . . .).

By Lemma 3.1, if (p1, . . . , pN+1) ∈ {0, . . . , k}N+1 then we have that

Txp1Txp2 · · ·TxpN+1

can be written as a Z-linear combination of elements of the form

ai0δ
j1(ai1) · · · δjN (aiN )xM

where M is a nonnegative integer and j1j2 · · · jN is a word that is k-valid. Moreover,
whenever j1j2 · · · jN is not b-bounded we trivially have

ai0δ
j1(ai1) · · · δjN (aiN ) = 0,

since it necessarily contains a factor from T bnn for some n ≥ 0. In particular, it is
sufficient to show that there is some natural number N such that all elements of R of the
form

ai0δ
j1(ai1) · · · δjN (aiN ),

with j1j2j3 · · · jN ∈ N+ a k-valid and b-bounded word, are zero.
Let d be the PI degree of R and let N = N(d,b, k) be as in the statement of Corol-

lary 2.2. We claim that whenever j1j2j3 · · · jN a k-valid and b-bounded word we have
ai0δ

j1(ai1) · · · δjN (aiN ) = 0. To see this, suppose towards a contradiction that this is
not the case and let j1 · · · jN be the lexicographically smallest (i.e., the smallest word
with respect to ≺) k-valid and b-bounded word of length N such that there exists
(i0, . . . , iN) ∈ {1, . . . ,m}N+1 such that ai0δ

j1(ai1) · · · δjN (aiN ) is nonzero.
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Given a subword y = jsjs+1 · · · js+r of j1 · · · jN , we define

f(y) = δjs(ais) · · · δjs+r(ais+r) ∈ R.
By Corollary 2.2, we can write j1 · · · jN = uw1w2 · · ·wdv with

w1 � w2 � · · · � wd.

Furthermore, we have that R satisfies a homogeneous multilinear polynomial identity
of degree d [?, Proposition 13.1.9]:

X1 · · ·Xd =
∑
σ∈Sd
σ 6=id

cσXσ(1) · · ·Xσ(d)

with cσ ∈ Z for each σ ∈ Sd \ {id}. Taking Xi = f(wi) for i = 1, . . . , d we see that

f(w1)f(w2) · · · f(wd) =
∑
σ∈Sd
σ 6=id

cσf(wσ(1)) · · · f(wσ(d)).

Hence

ai0δ
j1(ai1) · · · δjN (aiN ) =

∑
σ∈Sd
σ 6=id

cσai0f(u)f(wσ(1)) · · · f(wσ(d))f(v). (3.5)

By construction, for σ ∈ Sd with σ 6= id we have ai0f(u)f(wσ(1)) · · · f(wσ(d))f(v) is an
element of the form ai0δ

jτ(1)(aiτ(1)) · · · δjτ(N)(aiτ(N)
) with τ ∈ SN such that jτ(1) · · · jτ(N)

is lexicographically less than j1 · · · jN . We note that, by definition, permutations of k-
valid words are again k-valid. Thus if we also have that if jτ(1) · · · jτ(N) is b-bounded
then we must have ai0δ

jτ(1)(aiτ(1)) · · · δjτ(N)(aiτ(N)
) = 0 by minimality of j1 · · · jN . On

the other hand, if jτ(1) · · · jτ(N) is not b-bounded then ai0δ
jτ(1)(aiτ(1)) · · · δjτ(N)(aiτ(N)

)

contains a factor that lies in T bnn for some n ≥ 0 and hence it is zero. Thus we have
shown that in either case we have ai0δ

jτ(1)(aiτ(1)) · · · δjτ(N)(aiτ(N)
) is zero for all appli-

cable τ , and so from Equation (3.5) we see

ai0δ
j1(ai1) · · · δjN (aiN ) = 0,

a contradiction. It follows that SN+1 = 0. �

We now deduce Theorem 1.2 from Theorem 1.1.

Proof of Theorem 1.2. Since R is PI, the sum of all nil right ideals is a nil two-sided
locally nilpotent ideal N , which is called the nil radical of R (see Rowen [7, Proposition
1.6.9 and Corollary 1.6.18] and Kaplansky [5]). We claim that δ(N) ⊆ N . To see this,
suppose to the contrary that δ(N) 6⊆ N . Then there is some a ∈ N such that δ(a) 6∈ N .
Then either δ(a) is not nilpotent or there is some r ∈ R such that δ(a)r is not nilpotent.
In the latter case, we have δ(ar) = δ(a)r + aδ(r) ≡ δ(a)r (mod N) and so if δ(a)r is
not nilpotent then neither is δ(ar). Hence in either case we see we can find an element
b ∈ N such that δ(b) is not nilpotent. By assumption, there is some n ≥ 2 such that
bn = 0. It is straightforward to show that there exist nonnegative integers cj1,...,jn such
that

0 = δn(bn) =
∑

j1+···+jn=n

cj1,...,jnδ
j1(b) · · · δjn(b). (3.6)
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Moreover, we have that c1,1,...,1 ≥ 1 and hence is nonzero inR sinceR is a unital algebra
over a field of characteristic zero. Observe that if j1 + · · · + jn = n and (j1, . . . , jn) 6=
(1, 1, . . . , 1) then ji = 0 for some i and so δj1(b) · · · δjn(b) ∈ RbR ⊆ N . Hence
Equation (3.6) gives δ(b)n ∈ N . Since N is a nil ideal, it follows that δ(b) is nilpotent,
a contradiction. Thus δ(N) ⊆ N . Notice that N is locally nilpotent and so the subring
N [x; δ] of R[x; δ] is a locally nilpotent ideal of R[x; δ] by Theorem 1.1. It follows that
N [x; δ] ⊆ J(R[x; δ]).

To show that J(R[x; δ]) is equal to N [x; δ], it suffices to show that (R/N)[x; δ] has
zero Jacobson radical. A result of Tsai, Wu, and Chuang [9] gives that if S is a PI
ring with zero nil radical then the Jacobson radical of S[x; δ] is zero. The result now
follows. �

We note that the characteristic zero hypothesis is essential in Theorem 1.2. For ex-
ample, if p > 0 is a prime number and we let R = Fp[T ]/(T p) and let t denote the
image of T in R, then R has a unique derivation satisfying δ(t) = 1. It is clear that
R is commutative (and hence PI) and that the nil radical of R is not closed under ap-
plication of δ (since t is in the nil radical and δ(t) = 1). In fact, the only proper ideal
of R closed under application of δ is easily seen to be (0). In this case, the result of
Ferrero, Kishimoto, and Motose [3] gives that S := J(R[x; δ]) ∩ R is a nil ideal of R
that is closed under δ and thus we see that S is necessarily zero. They also show that
J(R[x; δ]) = S[x; δ] and so the Jacobson radical is zero in this case.
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