LUSIN-NOVIKOV VIA σ -IDEALS

FORTE SHINKO

ABSTRACT. We present an elementary proof of the Lusin-Novikov theorem which in particular does not mention analytic sets.

At the end of the day, we are all trying to find a Cantor set.

Անուշ Ծերունյան

A partial section of a function $f: X \to Y$ is a subset $A \subseteq X$ such that $f \upharpoonright A$ is injective.

Lusin-Novikov theorem. Let $f: X \to Y$ be a continuous map of Polish spaces. Then exactly one of the following holds:

- (1) X can be covered by countably many Borel partial sections of f.
- (2) A fiber of f contains a Cantor set.

Let \mathcal{I} be the σ -ideal on X generated by the Borel partial sections of f.

Let \mathbb{P} be the collection of finite disjoint families of closed subsets of X. We say that $\mathcal{F} \in \mathbb{P}$ is **null** if there is a Borel cover $(B_F)_{F \in \mathcal{F}}$ of Y such that each $F \cap f^{-1}(B_F)$ is in \mathcal{I} . Note that a singleton family $\{F\}$ is null iff $F \in \mathcal{I}$.

Lemma 1. Let $\mathcal{F} \sqcup \{U\} \in \mathbb{P}$, and suppose that $(U)^2 = \bigcup_{n \in \mathbb{N}} V_n \times W_n$ with each $\mathcal{F} \sqcup \{V_n, W_n\}$ null. Then $\mathcal{F} \sqcup \{U\}$ is null.

Recall that $(A)^2 := \{(x, x') \in A^2 : x \neq x'\}.$

Proof. For every $n \in \mathbb{N}$, fix a Borel cover $(B_F)_{F \in \mathcal{F}} \cup \{B_{V_n}, B_{W_n}\}$ of Y witnessing that $\mathcal{F} \sqcup \{V_n, W_n\}$ is null; we can use the same B_F for every n, since if each n had its own B_F^n , we could replace them with $B_F := \bigcup_n B_F^n$. By passing to subsets, we can assume that each cover is a partition. Set $B_U = Y \setminus \bigsqcup_{F \in \mathcal{F}} B_F$. Note that $B_U = B_{V_n} \sqcup B_{W_n}$ for every n. It remains to show that $U \cap f^{-1}(B_U) \in \mathcal{I}$, so it suffices to show that

$$(*) U \cap f^{-1}(B_U) \setminus \left(\bigcup_n \left(V_n \cap f^{-1}(B_{V_n}) \right) \sqcup \left(W_n \cap f^{-1}(B_{W_n}) \right) \right)$$

is a partial section. Let $x_V, x_W \in U \cap f^{-1}(B_U)$ be distinct. Then there is some n for which $x_V \in V_n$ and $x_W \in W_n$. If $f(x_V) = f(x_W)$, then since this is in B_U , we have either $f(x_V) \in B_{V_n}$ or $f(x_W) \in B_{W_n}$, so either $x_V \in V_n \cap f^{-1}(B_{V_n})$ or $x_W \in W_n \cap f^{-1}(B_{V_n})$, and thus at most one of x_V and x_W can be in the set (*). So it is a partial section.

Lemma 2. Let $\mathcal{F} \in \mathbb{P}$, and suppose that there is a Borel cover $(A_n)_{n \in \mathbb{N}}$ of Y such that for every $n \in \mathbb{N}$, the family $(F \cap f^{-1}(A_n))_{F \in \mathcal{F}}$ is null. Then \mathcal{F} is null.

Date: February 5, 2024.

Proof. For each $n \in \mathbb{N}$, fix a Borel cover $(B_F^n)_{F \in \mathcal{F}}$ of Y witnessing that $(F \cap f^{-1}(A_n))_{F \in \mathcal{F}}$ is null. For each $F \in \mathcal{F}$, let $B_F = \bigcup_n (A_n \cap B_F^n)$. Then the Borel cover $(B_F)_{F \in \mathcal{F}}$ of Y witnesses that \mathcal{F} is null.

We proceed with the proof of Lusin-Novikov. Fix compatible Polish metrics on X and Y. We make the following observations.

- (1) Given $\varepsilon > 0$ and a closed $U \subseteq X$, we can write $(U)^2 = \bigcup_n V_n \times W_n$ for some closed sets V_n and W_n of diameter $\leq \varepsilon$.
- (2) Given $\varepsilon > 0$, we can write Y as a countable union of closed sets of diameter $\leq \varepsilon$.

Now suppose that the first condition of Lusin-Novikov fails, i.e. that $\{X\}$ is non-null. We will construct non-empty closed subsets $(F_s)_{s\in 2^{<\omega}}$ of X such that the following conditions hold:

- (i) If $s \succ t$, then $F_s \subseteq F_t$.
- (ii) If $s \perp t$, then F_s and F_t are disjoint.
- (iii) diam $(F_s) \le 2^{-|s|}$ for every nonempty $s \in 2^{<\omega}$.
- (iv) diam $\left(f\left(\bigcup_{|s|=n} F_s\right)\right) \le 1/n$ for every n > 0.

To ensure that the recursive construction works, we will require that for each $n \in \mathbb{N}$, the family $(F_s)_{|s|=n}$ is non-null.

To start, set $F_{\varnothing} = X$.

Suppose we have constructed the non-null family $(F_s)_{|s|=n}$. By applying Lemma 1 and the first observation, we obtain closed disjoint subsets $G_{0^n \, \hat{}_0}$ and $G_{0^n \, \hat{}_1}$ of F_{0^n} of diameter $\leq 2^{-(n+1)}$, such that the family $(F_s)_{|s|=n \text{ and } s \neq 0^n} \cup \{G_{0^n \, \hat{}_0}, G_{0^n \, \hat{}_1}\}$ is non-null. By applying Lemma 1 and the first observation $2^n - 1$ more times (once for each F_s), we obtain a non-null family $(G_s)_{|s|=n+1}$ satisfying the first three conditions. Then by applying Lemma 2 and the second observation, we obtain a non-null family $(F_s)_{|s|=n+1}$ satisfying all four conditions. Note that the sets are nonempty since the family is non-null.

This concludes the construction.

Now we are done: the decreasing intersection $\bigcap_n \bigcup_{|s|=n} F_s$ is a Cantor set, and it lies in a single fiber, since its image has diameter 0:

$$\operatorname{diam}\left(f\left(\bigcap_{n}\bigcup_{|s|=n}F_{s}\right)\right) = \operatorname{diam}\left(\bigcap_{n}f\left(\bigcup_{|s|=n}F_{s}\right)\right)$$

$$\leq \inf_{n}\operatorname{diam}\left(f\left(\bigcup_{|s|=n}F_{s}\right)\right)$$

$$\leq \inf_{n}1/n$$

$$= 0$$