
HEDETNIEMI’S CONJECTURE

FORTE SHINKO

1. Introduction

A graph G is a set V (G) equipped with a symmetric relation E(G) (note that G
may have loops). A function φ : V (G)→ V (H) is a homomorphism if it preserves
the edge relation, i.e. if (v, w) ∈ E(G), then (φ(v), φ(w)) ∈ E(H). Let Hom(G,H)
denote the set of homomorphisms from G to H. We write G ≤ H if Hom(G,H) is
nonempty (this is usually denoted G→ H in finite graph theory).

Given a cardinal number n (which may be infinite), let Kn denote the complete
graph on n vertices: V (Kn) = n, and (k, l) ∈ E(Kn) iff k 6= l (we follow the
set-theoretic convention of writing n for the set of k with 0 ≤ k < n). Given a
graph G, a proper n-colouring of G is a homomorphism from G to Kn, and the
chromatic number of G, denoted χ(G), is the minimal n such that G ≤ Kn (we
write χ(G) =∞ if no such n exists, which occurs exactly when G is not simple).

Given graphs G and H, the categorical product G×H is the graph with V (G×
H) = V (G) × V (H) such that ((v, w), (v′, w′)) ∈ E(G × H) iff (v, v′) ∈ E(G) and
(w,w′) ∈ E(H). There are projections G×H → G and G×H → H, so χ(G×H) is
bounded above by both χ(G) and χ(H). Hedetniemi asked in his PhD thesis if this
bound is optimal:

Conjecture 1 (Hedetniemi [Hed66]). Let G and H be finite graphs. Then

(∗) χ(G×H) = min{χ(G), χ(H)}.

Let us make a few remarks.

(1) If either G or H is not simple, then (∗) holds trivially, since if G is not simple,
then H ≤ G×H. So the conjecture is really about simple graphs.

(2) The equality (∗) is known to hold in the following cases:
(a) χ(G×H) ≤ 2 (easy).
(b) χ(G×H) = 3, due to El-Zahar and Sauer [ES85].
(c) When χ(G) is infinite and χ(H) is finite, due to Hajnal [Haj85] (for

possibly infinite graphs).
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(d) For Borel chromatic numbers of analytic graphs, (∗) holds when χB(G)
and χB(H) are uncountable, as a corollary of the G0-dichotomy [KST99,
6.11].

(3) The generalisation to infinite graphs does not hold in general. This was first
explictly published by Hajnal [Haj85] (in the same issue of Combinatorica as
El-Sahar and Zauer!).

In May 2019, Yaroslav Shitov refuted Hedetniemi’s conjecture:

Theorem 1 (Shitov [Shi19]). Hedetniemi’s conjecture is false.

We present his proof below.

2. Preliminaries

Given graphs G and H, the exponential graph HG is the graph with V (HG) =
V (H)V (G), such that (α, β) ∈ E(HG) iff for all (v, w) ∈ E(G), we have (α(v), β(w)) ∈
E(H). It satisfies the following property:

Hom(G×H,K) ∼= Hom(G,KH)

We can use this to simplify Hedetniemi’s conjecture. The conjecture says that if G is
a finite graph with χ(G) > n, then any of the following equivalent statements holds:

• For every graph H, if χ(G×H) ≤ n, then χ(H) ≤ n.
• For every graph H, if G×H ≤ Kn, then H ≤ Kn.
• For every graph H, if H ≤ (Kn)G, then H ≤ Kn.
• (Kn)G ≤ Kn.
• χ((Kn)G) ≤ n.

So we have the following equivalent formulation of Hedetniemi’s conjecture, first
observed by El-Zahar and Sauer [ES85, Conjecture 2]:

Conjecture 2 (Hedetniemi v2). Let G be a finite graph with χ(G) > n. Then
χ((Kn)G) ≤ n.

We will be dealing with this version of the conjecture, and thus we will be interested
in the graph (Kn)G. This is the graph with vertex set nV (G), where α and β are
adjacent iff for all (v, w) ∈ E(G), we have α(v) 6= β(w). Let k̄ denote the constant
function taking the value k.

A suited colouring of (Kn)G is a proper n-colouring Φ : (Kn)G → Kn such that
Φ(k̄) = k for all k ∈ n. If χ((Kn)G) ≤ n, then it is easily seen that there is a suited
colouring of (Kn)G, so we will work exclusively with suited colourings. The main
convenience offered by suited colourings is the following fact, which we will use freely
without further mention:
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Proposition 1. Let Φ be a suited colouring of (Kn)G. Then for every α ∈ (Kn)G,
we have Φ(α) ∈ im(α).

Proof. Since Φ is suited, we have Φ(α) = Φ(Φ(α)), so since Φ is a proper colouring,

α and Φ(α) are not adjacent in (Kn)G. In particular, their images must intersect,
and thus Φ(α) ∈ im(α). �

Given graphs G and H, the strong product G�H is the graph with vertex set
V (G)×V (H) such that (v, w) and (v′, w′) are adjacent iff one of the following holds:

(1) (v, v′) ∈ E(G) and (w,w′) ∈ E(H).
(2) (v, v′) ∈ E(G) and w = w′.
(3) v = v′ and (w,w′) ∈ E(H).

We can now state the main theorem:

Theorem 2. Let G be a finite graph with girth > 5 and radius > 2, and let n > 6m.
If n is sufficiently large, then χ((Kn)G�Km) > n.

To use this to refute Hedetniemi’s conjecture, we will use the fractional chro-
matic number, which is defined as follows:

χf (G) := inf
m

χ(G�Km)

m

Proof of Theorem 1. Fix a finite graph G with girth > 5 and χf (G) > 7 (for example,

any graph with girth > 5 and independence number < |G|
7

, see [Die17, 11.2.2]). G
has radius > 2, since otherwise G would be a tree, which has χf (G) ≤ 2. Then for
any m, we have

χ(G�Km) ≥ χf (G) ·m > 7m,

Let n = 7m. By Theorem 2, if n is sufficiently large, then χ((Kn)G�Km) > n, refuting
Conjecture 2. �

3. Condensed proof

We present a version of the proof requiring minimal overhead.
We will write Pk to denote the probability taken over k ∈ n uniformly distributed,

and similarly for Pα, where α ranges over nG.

Proof of Theorem 2. For every α ∈ nG, write ᾱ ∈ (Kn)G�Km for the function ᾱ(v, k) =
α(v).

Suppose that χ((Kn)G�Km) ≤ n, and fix a suited colouring Ψ of (Kn)G�Km .
First we find for each v ∈ G, some µv ∈ (Kn)G�Km such that

(1) | im(µv)| = 3m+ 1, and
(2) µv(w, i) = Ψ(µv) iff d(w, v) > 2.
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For k ∈ {3m, . . . , n− 1}, define µk ∈ (Kn)G�Km via

µk(w, i) =


i w = v

i+m d(w, v) = 1

i+ 2m d(w, v) = 2

k otherwise

Since G has radius > 2, the set {µ3m, . . . , µn−1} has size n − 3m, and since G has
girth > 5, it is a clique in (Kn)G�Km . Thus since n − 3m > 3m, there is some µk
such that Ψ(µk) /∈ {0, . . . , 3m− 1}. But since Ψ(µk) ∈ im(µk) = {0, . . . , 3m− 1, k},
we must have Ψ(µk) = k. Set µv = µk.

Next, we claim that for every α ∈ nG, if Ψ(ᾱ) = α(v) /∈ im(µv), then there is some
v′ 6= v such that α(v′) ∈ {Ψ(µv), α(v)}. To see this, define β ∈ nG as follows:

β(w) =

{
Ψ(µv) d(w, v) ≤ 1

α(v) otherwise

Since α(v) /∈ im(µv), we must have β̄ and µv adjacent, and thus Ψ(β̄) 6= Ψ(µv). Thus
Ψ(β̄) = α(v) = Ψ(ᾱ). So β̄ and ᾱ are not adjacent, and thus there is some v′ 6= v
such that α(v′) ∈ im(β) = {Ψ(µv), α(v)}.

The claim, combined with the fact that | im(µv)| = 3m + 1 < n
2

+ 1, gives the
following inequality:(

1

2
− 1

n

)|G|
<
∏
v

Pk[k /∈ im(µv)]

= Pα[∀v [α(v) /∈ im(µv)]]

≤
∑
v

Pα[Ψ(ᾱ) = α(v) /∈ im(µv)]

≤
∑
v

Pα[∃v′ 6= v [α(v′) ∈ {Ψ(µv), α(v)}]]

≤
∑
v

∑
v′ 6=v

Pα[α(v′) ∈ {Ψ(µv), α(v)}]

≤
∑
v

∑
v′ 6=v

2

n

=
2|G|(|G| − 1)

n

This only holds for finitely many n, so we are done. �
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Appendix A. Uncondensed proof

We will need the following important definition:

Definition 1 (Shitov). Fix a suited colouring Φ of (Kn)G. Then for a vertex v ∈ G,
a colour k ∈ n is v-robust if for every α ∈ (Kn)G with Φ(α) = k, there is a vertex
w ∈ G with d(w, v) ≤ 1 and α(w) = k.

The proof strategy goes as follows. We will show that for any suited colouring,
there is always a vertex with many robust colours. However, Hedetniemi’s conjecture
will provide us with too many suited colourings, in particular, one which does not
have a vertex with many robust colours.

We first prove the existence of a vertex with many robust colours:

Proposition 2. Let G be a finite graph and fix a suited colouring Φ of (Kn)G. Then
there is some v ∈ G such that

Pk[k is not v-robust] <
|G|

√
|G|3
n

Proof. For every v and k, define βv,k ∈ (Kn)G as follows: if k is v-robust, pick
βv,k arbitrarily; otherwise, pick βv,k witnessing the non-robustness, i.e. such that
Φ(βv,k) = k and for every v′ with d(v′, v) ≤ 1, we have βv,k(v

′) 6= k.
We claim that if Φ(α) = α(v) and α(v) is not v-robust, then ∃v′ 6= v such that

α(v′) ∈ im(βv,α(v)). If not, then α and β would be adjacent in (Kn)G, contradicting
the fact that Φ(α) = Φ(β).

This gives the following bound, from which the proposition follows immediately:∏
v

Pk[k is not v-robust]

= Pα[∀v [α(v) is not v-robust]]

≤
∑
v

Pα[Φ(α) = α(v) and α(v) is not v-robust]

≤
∑
v

∑
v′ 6=v

Pα
[
α(v′) ∈ im βv,α(v)

]
≤
∑
v

∑
v′ 6=v

|G|
n

<
|G|3

n

�
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Given a graph G, the reflexive closure G◦, is the graph obtained from G by
adding every loop.

We will now see the consequences of having too many suited colourings:

Proposition 3. Let G be a graph with girth > 5 and radius > 2, and let n > 6m.
Suppose that χ((Kn)G�Km) ≤ n. Then there is a suited colouring of (Kn)G

◦
such that

for every v ∈ G◦,

Pk[k is v-robust] <
1

2
+

1

n

Proof. Note that there is a natural map G �Km → G◦, and this induces a natural
map (Kn)G

◦ → (Kn)G�Km . For every α ∈ (Kn)G
◦
, let ᾱ ∈ (Kn)G�Km be the image of

α under this map. Let Ψ be a suited colouring of (Kn)G�Km , and let Φ be the suited
colouring of (Kn)G

◦
obtained by composing Ψ with the map (Kn)G

◦ → (Kn)G�Km .
Now fix v ∈ G◦. For k ∈ {3m, . . . , n− 1}, define µk ∈ (Kn)G�Km via

µk(w, i) =


i w = v

i+m d(w, v) = 1

i+ 2m d(w, v) = 2

k otherwise

Since G has radius > 2, the set {µ3m, . . . , µn−1} has size n − 3m, and since G has
girth > 5, it is a clique in (Kn)G�Km . Thus since n − 3m > 3m, there is some µk
such that Ψ(µk) /∈ {0, . . . , 3m− 1}. But since Ψ(µk) ∈ im(µk) = {0, . . . , 3m− 1, k},
we must have Ψ(µk) = k.

It suffices to show that every v-robust colour is contained in im(µk), since | im(µk)| =
3m+1 < n

2
+1. To this end, let l be a v-robust colour. Define β ∈ (Kn)G

◦
as follows:

β(w) =

{
k d(w, v) ≤ 1

l otherwise

We must have Φ(β) = k, since if Φ(β) = l, then by robustness, we would have
β(w) = k for some w with d(v, w) ≤ 1, and thus l = k. Thus Ψ(β̄) = Φ(β) = k.
Since Ψ(µk) = k and Ψ is a proper colouring, µk and β̄ are not adjacent, and thus
we must have l ∈ im(µk). �

Proof of Theorem 2. Suppose that χ((Kn)G�Km) ≤ n. By Proposition 3, there is a
suited colouring Φ of (Kn)G

◦
such that for every v ∈ G◦, we have

Pk[k is v-robust] <
1

2
+

1

n
.
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But by Proposition 2, there is some v ∈ G such that

Pk[k is not v-robust] <
|G|

√
|G|3
n
.

There are only finitely many n such that both of these hold (since their sum is
1
2

+ o(1)). �
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