HEDETNIEMI'S CONJECTURE

FORTE SHINKO

1. Introduction

A graph G is a set $V(G)$ equipped with a symmetric relation $E(G)$ (note that G may have loops). A function $\phi: V(G) \rightarrow V(H)$ is a homomorphism if it preserves the edge relation, i.e. if $(v, w) \in E(G)$, then $(\phi(v), \phi(w)) \in E(H)$. Let Hom (G, H) denote the set of homomorphisms from G to H. We write $G \leq H$ if $\operatorname{Hom}(G, H)$ is nonempty (this is usually denoted $G \rightarrow H$ in finite graph theory).

Given a cardinal number n (which may be infinite), let K_{n} denote the complete graph on n vertices: $V\left(K_{n}\right)=n$, and $(k, l) \in E\left(K_{n}\right)$ iff $k \neq l$ (we follow the set-theoretic convention of writing n for the set of k with $0 \leq k<n$). Given a graph G, a proper n-colouring of G is a homomorphism from G to K_{n}, and the chromatic number of G, denoted $\chi(G)$, is the minimal n such that $G \leq K_{n}$ (we write $\chi(G)=\infty$ if no such n exists, which occurs exactly when G is not simple).

Given graphs G and H, the categorical product $G \times H$ is the graph with $V(G \times$ $H)=V(G) \times V(H)$ such that $\left((v, w),\left(v^{\prime}, w^{\prime}\right)\right) \in E(G \times H)$ iff $\left(v, v^{\prime}\right) \in E(G)$ and $\left(w, w^{\prime}\right) \in E(H)$. There are projections $G \times H \rightarrow G$ and $G \times H \rightarrow H$, so $\chi(G \times H)$ is bounded above by both $\chi(G)$ and $\chi(H)$. Hedetniemi asked in his PhD thesis if this bound is optimal:

Conjecture 1 (Hedetniemi [Hed66]). Let G and H be finite graphs. Then

$$
\begin{equation*}
\chi(G \times H)=\min \{\chi(G), \chi(H)\} \tag{*}
\end{equation*}
$$

Let us make a few remarks.
(1) If either G or H is not simple, then $(*)$ holds trivially, since if G is not simple, then $H \leq G \times H$. So the conjecture is really about simple graphs.
(2) The equality $(*)$ is known to hold in the following cases:
(a) $\chi(G \times H) \leq 2$ (easy).
(b) $\chi(G \times H)=3$, due to El-Zahar and Sauer [ES85].
(c) When $\chi(G)$ is infinite and $\chi(H)$ is finite, due to Hajnal [Haj85] (for possibly infinite graphs).
(d) For Borel chromatic numbers of analytic graphs, $(*)$ holds when $\chi_{B}(G)$ and $\chi_{B}(H)$ are uncountable, as a corollary of the G_{0}-dichotomy [KST99, 6.11].
(3) The generalisation to infinite graphs does not hold in general. This was first explictly published by Hajnal [Haj85] (in the same issue of Combinatorica as El-Sahar and Zauer!).
In May 2019, Yaroslav Shitov refuted Hedetniemi's conjecture:
Theorem 1 (Shitov [Shi19]). Hedetniemi's conjecture is false.
We present his proof below.

2. Preliminaries

Given graphs G and H, the exponential graph H^{G} is the graph with $V\left(H^{G}\right)=$ $V(H)^{V(G)}$, such that $(\alpha, \beta) \in E\left(H^{G}\right)$ iff for all $(v, w) \in E(G)$, we have $(\alpha(v), \beta(w)) \in$ $E(H)$. It satisfies the following property:

$$
\operatorname{Hom}(G \times H, K) \cong \operatorname{Hom}\left(G, K^{H}\right)
$$

We can use this to simplify Hedetniemi's conjecture. The conjecture says that if G is a finite graph with $\chi(G)>n$, then any of the following equivalent statements holds:

- For every graph H, if $\chi(G \times H) \leq n$, then $\chi(H) \leq n$.
- For every graph H, if $G \times H \leq K_{n}$, then $H \leq K_{n}$.
- For every graph H, if $H \leq\left(K_{n}\right)^{G}$, then $H \leq K_{n}$.
- $\left(K_{n}\right)^{G} \leq K_{n}$.
- $\chi\left(\left(K_{n}\right)^{G}\right) \leq n$.

So we have the following equivalent formulation of Hedetniemi's conjecture, first observed by El-Zahar and Sauer [ES85, Conjecture 2]:

Conjecture 2 (Hedetniemi v2). Let G be a finite graph with $\chi(G)>n$. Then $\chi\left(\left(K_{n}\right)^{G}\right) \leq n$.

We will be dealing with this version of the conjecture, and thus we will be interested in the graph $\left(K_{n}\right)^{G}$. This is the graph with vertex set $n^{V(G)}$, where α and β are adjacent iff for all $(v, w) \in E(G)$, we have $\alpha(v) \neq \beta(w)$. Let \bar{k} denote the constant function taking the value k.

A suited colouring of $\left(K_{n}\right)^{G}$ is a proper n-colouring $\Phi:\left(K_{n}\right)^{G} \rightarrow K_{n}$ such that $\Phi(\bar{k})=k$ for all $k \in n$. If $\chi\left(\left(K_{n}\right)^{G}\right) \leq n$, then it is easily seen that there is a suited colouring of $\left(K_{n}\right)^{G}$, so we will work exclusively with suited colourings. The main convenience offered by suited colourings is the following fact, which we will use freely without further mention:

Proposition 1. Let Φ be a suited colouring of $\left(K_{n}\right)^{G}$. Then for every $\alpha \in\left(K_{n}\right)^{G}$, we have $\Phi(\alpha) \in \operatorname{im}(\alpha)$.

Proof. Since Φ is suited, we have $\Phi(\alpha)=\Phi(\overline{\Phi(\alpha)})$, so since Φ is a proper colouring, α and $\overline{\Phi(\alpha)}$ are not adjacent in $\left(K_{n}\right)^{G}$. In particular, their images must intersect, and thus $\Phi(\alpha) \in \operatorname{im}(\alpha)$.

Given graphs G and H, the strong product $G \boxtimes H$ is the graph with vertex set $V(G) \times V(H)$ such that (v, w) and $\left(v^{\prime}, w^{\prime}\right)$ are adjacent iff one of the following holds:
(1) $\left(v, v^{\prime}\right) \in E(G)$ and $\left(w, w^{\prime}\right) \in E(H)$.
(2) $\left(v, v^{\prime}\right) \in E(G)$ and $w=w^{\prime}$.
(3) $v=v^{\prime}$ and $\left(w, w^{\prime}\right) \in E(H)$.

We can now state the main theorem:
Theorem 2. Let G be a finite graph with girth >5 and radius >2, and let $n>6 m$. If n is sufficiently large, then $\chi\left(\left(K_{n}\right)^{G \boxtimes K_{m}}\right)>n$.

To use this to refute Hedetniemi's conjecture, we will use the fractional chromatic number, which is defined as follows:

$$
\chi_{f}(G):=\inf _{m} \frac{\chi\left(G \boxtimes K_{m}\right)}{m}
$$

Proof of Theorem 1. Fix a finite graph G with girth >5 and $\chi_{f}(G)>7$ (for example, any graph with girth >5 and independence number $<\frac{|G|}{7}$, see [Die17, 11.2.2]). G has radius >2, since otherwise G would be a tree, which has $\chi_{f}(G) \leq 2$. Then for any m, we have

$$
\chi\left(G \boxtimes K_{m}\right) \geq \chi_{f}(G) \cdot m>7 m
$$

Let $n=7 m$. By Theorem 2, if n is sufficiently large, then $\chi\left(\left(K_{n}\right)^{G \boxtimes K_{m}}\right)>n$, refuting Conjecture 2.

3. Condensed proof

We present a version of the proof requiring minimal overhead.
We will write \mathbb{P}_{k} to denote the probability taken over $k \in n$ uniformly distributed, and similarly for \mathbb{P}_{α}, where α ranges over n^{G}.
Proof of Theorem 2. For every $\alpha \in n^{G}$, write $\bar{\alpha} \in\left(K_{n}\right)^{G \boxtimes K_{m}}$ for the function $\bar{\alpha}(v, k)=$ $\alpha(v)$.

Suppose that $\chi\left(\left(K_{n}\right)^{G \boxtimes K_{m}}\right) \leq n$, and fix a suited colouring Ψ of $\left(K_{n}\right)^{G \boxtimes K_{m}}$.
First we find for each $v \in G$, some $\mu_{v} \in\left(K_{n}\right)^{G \boxtimes K_{m}}$ such that
(1) $\left|\operatorname{im}\left(\mu_{v}\right)\right|=3 m+1$, and
(2) $\mu_{v}(w, i)=\Psi\left(\mu_{v}\right)$ iff $d(w, v)>2$.

For $k \in\{3 m, \ldots, n-1\}$, define $\mu_{k} \in\left(K_{n}\right)^{G \boxtimes K_{m}}$ via

$$
\mu_{k}(w, i)= \begin{cases}i & w=v \\ i+m & d(w, v)=1 \\ i+2 m & d(w, v)=2 \\ k & \text { otherwise }\end{cases}
$$

Since G has radius >2, the set $\left\{\mu_{3 m}, \ldots, \mu_{n-1}\right\}$ has size $n-3 m$, and since G has girth >5, it is a clique in $\left(K_{n}\right)^{G \boxtimes K_{m}}$. Thus since $n-3 m>3 m$, there is some μ_{k} such that $\Psi\left(\mu_{k}\right) \notin\{0, \ldots, 3 m-1\}$. But since $\Psi\left(\mu_{k}\right) \in \operatorname{im}\left(\mu_{k}\right)=\{0, \ldots, 3 m-1, k\}$, we must have $\Psi\left(\mu_{k}\right)=k$. Set $\mu_{v}=\mu_{k}$.

Next, we claim that for every $\alpha \in n^{G}$, if $\Psi(\bar{\alpha})=\alpha(v) \notin \operatorname{im}\left(\mu_{v}\right)$, then there is some $v^{\prime} \neq v$ such that $\alpha\left(v^{\prime}\right) \in\left\{\Psi\left(\mu_{v}\right), \alpha(v)\right\}$. To see this, define $\beta \in n^{G}$ as follows:

$$
\beta(w)= \begin{cases}\Psi\left(\mu_{v}\right) & d(w, v) \leq 1 \\ \alpha(v) & \text { otherwise }\end{cases}
$$

Since $\alpha(v) \notin \operatorname{im}\left(\mu_{v}\right)$, we must have $\bar{\beta}$ and μ_{v} adjacent, and thus $\Psi(\bar{\beta}) \neq \Psi\left(\mu_{v}\right)$. Thus $\Psi(\bar{\beta})=\alpha(v)=\Psi(\bar{\alpha})$. So $\bar{\beta}$ and $\bar{\alpha}$ are not adjacent, and thus there is some $v^{\prime} \neq v$ such that $\alpha\left(v^{\prime}\right) \in \operatorname{im}(\beta)=\left\{\Psi\left(\mu_{v}\right), \alpha(v)\right\}$.

The claim, combined with the fact that $\left|\operatorname{im}\left(\mu_{v}\right)\right|=3 m+1<\frac{n}{2}+1$, gives the following inequality:

$$
\begin{aligned}
\left(\frac{1}{2}-\frac{1}{n}\right)^{|G|} & <\prod_{v} \mathbb{P}_{k}\left[k \notin \operatorname{im}\left(\mu_{v}\right)\right] \\
& =\mathbb{P}_{\alpha}\left[\forall v\left[\alpha(v) \notin \operatorname{im}\left(\mu_{v}\right)\right]\right] \\
& \leq \sum_{v} \mathbb{P}_{\alpha}\left[\Psi(\bar{\alpha})=\alpha(v) \notin \operatorname{im}\left(\mu_{v}\right)\right] \\
& \leq \sum_{v} \mathbb{P}_{\alpha}\left[\exists v^{\prime} \neq v\left[\alpha\left(v^{\prime}\right) \in\left\{\Psi\left(\mu_{v}\right), \alpha(v)\right\}\right]\right] \\
& \leq \sum_{v} \sum_{v^{\prime} \neq v} \mathbb{P}_{\alpha}\left[\alpha\left(v^{\prime}\right) \in\left\{\Psi\left(\mu_{v}\right), \alpha(v)\right\}\right] \\
& \leq \sum_{v} \sum_{v^{\prime} \neq v} \frac{2}{n} \\
& =\frac{2|G|(|G|-1)}{n}
\end{aligned}
$$

This only holds for finitely many n, so we are done.

Appendix A. Uncondensed proof

We will need the following important definition:
Definition 1 (Shitov). Fix a suited colouring Φ of $\left(K_{n}\right)^{G}$. Then for a vertex $v \in G$, a colour $k \in n$ is v-robust if for every $\alpha \in\left(K_{n}\right)^{G}$ with $\Phi(\alpha)=k$, there is a vertex $w \in G$ with $d(w, v) \leq 1$ and $\alpha(w)=k$.

The proof strategy goes as follows. We will show that for any suited colouring, there is always a vertex with many robust colours. However, Hedetniemi's conjecture will provide us with too many suited colourings, in particular, one which does not have a vertex with many robust colours.

We first prove the existence of a vertex with many robust colours:
Proposition 2. Let G be a finite graph and fix a suited colouring Φ of $\left(K_{n}\right)^{G}$. Then there is some $v \in G$ such that

$$
\mathbb{P}_{k}[k \text { is not } v \text {-robust }]<\sqrt[|G|]{\frac{|G|^{3}}{n}}
$$

Proof. For every v and k, define $\beta_{v, k} \in\left(K_{n}\right)^{G}$ as follows: if k is v-robust, pick $\beta_{v, k}$ arbitrarily; otherwise, pick $\beta_{v, k}$ witnessing the non-robustness, i.e. such that $\Phi\left(\beta_{v, k}\right)=k$ and for every v^{\prime} with $d\left(v^{\prime}, v\right) \leq 1$, we have $\beta_{v, k}\left(v^{\prime}\right) \neq k$.

We claim that if $\Phi(\alpha)=\alpha(v)$ and $\alpha(v)$ is not v-robust, then $\exists v^{\prime} \neq v$ such that $\alpha\left(v^{\prime}\right) \in \operatorname{im}\left(\beta_{v, \alpha(v)}\right)$. If not, then α and β would be adjacent in $\left(K_{n}\right)^{G}$, contradicting the fact that $\Phi(\alpha)=\Phi(\beta)$.

This gives the following bound, from which the proposition follows immediately:

$$
\begin{aligned}
& \prod_{v} \mathbb{P}_{k}[k \text { is not } v \text {-robust }] \\
& =\mathbb{P}_{\alpha}[\forall v[\alpha(v) \text { is not } v \text {-robust }]] \\
& \leq \sum_{v} \mathbb{P}_{\alpha}[\Phi(\alpha)=\alpha(v) \text { and } \alpha(v) \text { is not } v \text {-robust }] \\
& \leq \sum_{v} \sum_{v^{\prime} \neq v} \mathbb{P}_{\alpha}\left[\alpha\left(v^{\prime}\right) \in \operatorname{im} \beta_{v, \alpha(v)}\right] \\
& \leq \sum_{v} \sum_{v^{\prime} \neq v} \frac{|G|}{n} \\
& <\frac{|G|^{3}}{n}
\end{aligned}
$$

Given a graph G, the reflexive closure G°, is the graph obtained from G by adding every loop.

We will now see the consequences of having too many suited colourings:
Proposition 3. Let G be a graph with girth >5 and radius >2, and let $n>6 m$. Suppose that $\chi\left(\left(K_{n}\right)^{G \boxtimes K_{m}}\right) \leq n$. Then there is a suited colouring of $\left(K_{n}\right)^{G^{\circ}}$ such that for every $v \in G^{\circ}$,

$$
\mathbb{P}_{k}[k \text { is } v \text {-robust }]<\frac{1}{2}+\frac{1}{n}
$$

Proof. Note that there is a natural map $G \boxtimes K_{m} \rightarrow G^{\circ}$, and this induces a natural map $\left(K_{n}\right)^{G^{\circ}} \rightarrow\left(K_{n}\right)^{G \boxtimes K_{m}}$. For every $\alpha \in\left(K_{n}\right)^{G^{\circ}}$, let $\bar{\alpha} \in\left(K_{n}\right)^{G \boxtimes K_{m}}$ be the image of α under this map. Let Ψ be a suited colouring of $\left(K_{n}\right)^{G \boxtimes K_{m}}$, and let Φ be the suited colouring of $\left(K_{n}\right)^{G^{\circ}}$ obtained by composing Ψ with the map $\left(K_{n}\right)^{G^{\circ}} \rightarrow\left(K_{n}\right)^{G \boxtimes K_{m}}$.

Now fix $v \in G^{\circ}$. For $k \in\{3 m, \ldots, n-1\}$, define $\mu_{k} \in\left(K_{n}\right)^{G \boxtimes K_{m}}$ via

$$
\mu_{k}(w, i)= \begin{cases}i & w=v \\ i+m & d(w, v)=1 \\ i+2 m & d(w, v)=2 \\ k & \text { otherwise }\end{cases}
$$

Since G has radius >2, the set $\left\{\mu_{3 m}, \ldots, \mu_{n-1}\right\}$ has size $n-3 m$, and since G has girth >5, it is a clique in $\left(K_{n}\right)^{G \boxtimes K_{m}}$. Thus since $n-3 m>3 m$, there is some μ_{k} such that $\Psi\left(\mu_{k}\right) \notin\{0, \ldots, 3 m-1\}$. But since $\Psi\left(\mu_{k}\right) \in \operatorname{im}\left(\mu_{k}\right)=\{0, \ldots, 3 m-1, k\}$, we must have $\Psi\left(\mu_{k}\right)=k$.

It suffices to show that every v-robust colour is contained in $\operatorname{im}\left(\mu_{k}\right)$, since $\left|\operatorname{im}\left(\mu_{k}\right)\right|=$ $3 m+1<\frac{n}{2}+1$. To this end, let l be a v-robust colour. Define $\beta \in\left(K_{n}\right)^{G^{\circ}}$ as follows:

$$
\beta(w)= \begin{cases}k & d(w, v) \leq 1 \\ l & \text { otherwise }\end{cases}
$$

We must have $\Phi(\beta)=k$, since if $\Phi(\beta)=l$, then by robustness, we would have $\beta(w)=k$ for some w with $d(v, w) \leq 1$, and thus $l=k$. Thus $\Psi(\bar{\beta})=\Phi(\beta)=k$. Since $\Psi\left(\mu_{k}\right)=k$ and Ψ is a proper colouring, μ_{k} and $\bar{\beta}$ are not adjacent, and thus we must have $l \in \operatorname{im}\left(\mu_{k}\right)$.

Proof of Theorem 2. Suppose that $\chi\left(\left(K_{n}\right)^{G \boxtimes K_{m}}\right) \leq n$. By Proposition 3, there is a suited colouring Φ of $\left(K_{n}\right)^{G^{\circ}}$ such that for every $v \in G^{\circ}$, we have

$$
\mathbb{P}_{k}[k \text { is } v \text {-robust }]<\frac{1}{2}+\frac{1}{n} .
$$

But by Proposition 2, there is some $v \in G$ such that

$$
\mathbb{P}_{k}[k \text { is not } v \text {-robust }]<\sqrt[|G|]{\frac{|G|^{3}}{n}}
$$

There are only finitely many n such that both of these hold (since their sum is $\left.\frac{1}{2}+o(1)\right)$.

References

[Die17] Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer, Berlin, fifth edition, 2017.
[ES85] M. El-Zahar and N. W. Sauer. The chromatic number of the product of two 4-chromatic graphs is 4. Combinatorica, 5(2):121-126, 1985.
[Haj85] A. Hajnal. The chromatic number of the product of two \aleph_{1}-chromatic graphs can be countable. Combinatorica, 5(2):137-139, 1985.
[Hed66] S. T. Hedetniemi. Homomorphisms of graphs and automata. ProQuest LLC, Ann Arbor, MI, 1966. Thesis (Ph.D.)-University of Michigan.
[KST99] A. S. Kechris, S. Solecki, and S. Todorcevic. Borel chromatic numbers. Adv. Math., 141(1):1-44, 1999.
[Shi19] Y. Shitov. Counterexamples to Hedetniemi's conjecture. Ann. of Math. (2), 190(2):663667, 2019.

