BERNOULLI DISJOINTNESS (AFTER BERNSHTEYN)

FORTE SHINKO

Fix an infinite (not necessarily countable) discrete group G. A G-flow is a nonempty
compact Hausdorff space X equipped with a continuous action of G. A very important
G-flow is the Bernoulli shift n¢, where n is finite.

A subflow of a G-flow X is a non-empty closed G-invariant subset of X. Given two
G-flows X and Y, a joining of X and Y is a subflow of X x Y which projects onto X and
Y. We say that X and Y are disjoint, denoted X L Y| if the only joining of X and Y is
the trivial joining X x Y. This is equivalent to saying that if Z is a G-flow which has X and
Y as factors, then these factor maps factor through X x Y.

A G-flow X is minimal if every orbit of X is dense. If a G-flow X is disjoint from n¢,
then it is easy to show that X must be minimal. It was shown in [GTWZ] that this is the
only restriction:

Theorem 1 (Glasner-Tsankov-Weiss-Zucker). X L n% for any minimal G-flow X .

This property is called Bernoulli disjointness for obvious reasons.

1. PROOF OF BERNOULLI DISJOINTNESS

The original proof of Theorem 1 involved casework depending on various properties of G,
and using many difficult results as a blackbox. Recently Anton Bernshteyn found a nicer
proof of this result using the Lovédsz Local Lemma, which works uniformly for all groups G
(see [Ber]). His proof is as follows:

Proof of Theorem 1. Let Z C X x n® be a joining. To show that Z = X x n®, it suffices
to show that Z is dense. So fix nonempty open sets U C X and V C n%. We need to show
that Z N (U x V) is nonempty.

We claim that it suffices to find a subset F' C G satisfying the following two conditions:

(1) Nyer f - U meets every orbit (in X).

(2) F -V contains an orbit (in n%).
To see this, suppose that the orbit G -y is contained in F' - V. Then there is some x € X
with (z,y) € Z. Now there is some g € G with g -z € ﬂfeFf -U. Since g-y € F'-V, there
is some f € Fwithg-y € f-V,sosince g-x € f-U as well, we have g- (z,y) € f- (U x V).
Thus f~1g- (z,y) € U x V, and this is also in Z since Z is G-invariant.

We first find a family of subsets satisfying Condition 1. Fix any point zy € X, and let
S={g9€G:xy€ g-U}. Note that any finite subset F' of S satisfies Condition 1, since
the intersection is a nonempty open set (since it contains xy) and thus meets every orbit by
minimality of X. We claim that S is infinite. Indeed, let T' C G be a finite subset such that
X =T -U (this exists by minimality and compactness, since minimality implies X = G - U).
Then for every g € G, we have X = ¢T - U, and thus there is some t € T with xy € gt - U,
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and thus gt € S, i.e. g € t71S. Thus G = TS, so since T is finite, S must be infinite (in
fact left-syndetic).

So S has arbitrarily large finite subsets, and thus it suffices to show that a sufficiently
large subset of S satisfies Condition 2. We will show the following stronger fact, which is
interesting in its own right:

Theorem 2 (Bernshteyn). Let V be a non-empty open subset of n®. Then for every suffi-
ciently large finite subset ' C G, the set 'V contains an orbit.

Proof of Theorem 2. Let F' C G be a finite subset. Without loss of generality, we can shrink
V so that V' = V4, where V; is the basic open neighbourhood defined by a finite partial
function ¢ : G — 2, say with dom ¢ = D.

We claim that we can assume without loss of generality that F' is D-separated, i.e. such
that for any f, f’ € F, we have fD N f'D = @& (i.e. the D-balls in the Cayley graph are
disjoint). To see that this, note that we can recursively construct a D-separated subset of F’

% as follows: pick any fo € F, then pick any f; € F'\ (D"'D/fy), then pick any
f2 € F\ (D™'D{fo, f1}), and so on (each step removes at most |D|? elements from F).
Now for F'- V4 to contain an orbit is equivalent to saying that the following intersection

is nonempty:

of size >

m gF . V¢.
gelG
By compactness, it suffices to show that each finite intersection is nonempty.
Endow n% with the product of the uniform probability measures. We recall the Lovész
Local Lemma:

Theorem 3 (Lovész Local Lemma). Let A be a set of events in a probability space, each
with probability < p, such that for A € A, there is a subset B C A with |A\ B| < d such
that A is independent from B. If
dp(d+1) < 1,
then for any Ay, ..., Ay € A, we have P[Ag--- A;] > 0.
We verify the hypotheses of the Lovasz Local Lemma for A = {—=(gF - V})}4ec-
For a given g € G, since I is D-separated, the sets gf - D are pairwise disjoint for distinct

f € F, and thus
L\ IF
Pl(gF - Vo)l = ] P (Viso)] <1—m) :
feFr

Now the event gF - Vj is independent with the set {hE" -V, : gF'D and hF'D are disjoint}.
If gF'D and hF'D are not disjoint, then

hegFDD'F,

and thus the event gF -V, is independent with a set of cocardinality < |D|?|F|*. So for the
Lovasz Local Lemma to hold, we need the following inequality to hold:

1 |F| b
4 (“W) (IDPIF]? +1) < 1

which clearly holds for F' sufficiently large. U

This concludes the proof of Bernoulli disjointness. 0J
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APPENDIX A. PROOF OF THE LOVASZ LOCAL LEMMA
We restate the Lovasz Local Lemma.

Theorem 4 (Lovasz Local Lemma). Let A be a set of events in a probability space, each
with probability < p, such that for A € A, there is a subset B C A with |A\ B| < d such
that A is independent from B. If

dp(d+1) < 1,
then for any Ao, ..., Ax € A, we have P[Ag - -+ A;] > 0.

This is the original proof (see Lemma, p.616 in [EL]):
Proof. We prove the following stronger claim:

Proposition 1. For any distinct Ay, ..., A, € A, we have
Proof. We proceed by strong induction on k. B B
Note that (1) clearly holds when k = 0, and if k£ > 0, then P[A;]|As--- Ax] < 2p, so
P[A|Ay - Ap] >1-2p>2p >0

where we use that 4p < 1, and thus P[A; - -- 4;] > 0.
For (2), assume wlog that A, is independent from {A4,.1,..., Ay}, where ¢ < d. Then we

have _ o _
B P[Aqu“'Aq|Aq+1“'Ak]

P[Ag| Ay - - A = ek L ~
[ 0‘ ' k] IP)[Al"'Aq|Aq—i-1"'Ak]

The numerator is < p as follows:
PlAgA; - AglAgia - - A] S P[Ag|Agy - - Ap] < P[Ag] < p

The denominator is > % as follows:

q q
L _ _ _ 1
PlA; - Al Agr - A 2 1= PIAAg - A > 1= 2p>1—2pd > 5

i=1 =1
where the last inequality uses that 4pd < 1. So we are done. O
0
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