BERNOULLI DISJOINTNESS (AFTER BERNSHTEYN)

FORTE SHINKO

Fix an infinite (not necessarily countable) discrete group G. A G-flow is a nonempty compact Hausdorff space X equipped with a continuous action of G. A very important G-flow is the **Bernoulli shift** n^{G} , where n is finite.

A **subflow** of a *G*-flow *X* is a non-empty closed *G*-invariant subset of *X*. Given two *G*-flows *X* and *Y*, a **joining** of *X* and *Y* is a subflow of $X \times Y$ which projects onto *X* and *Y*. We say that *X* and *Y* are **disjoint**, denoted $X \perp Y$, if the only joining of *X* and *Y* is the trivial joining $X \times Y$. This is equivalent to saying that if *Z* is a *G*-flow which has *X* and *Y* as factors, then these factor maps factor through $X \times Y$.

A G-flow X is **minimal** if every orbit of X is dense. If a G-flow X is disjoint from n^G , then it is easy to show that X must be minimal. It was shown in [GTWZ] that this is the only restriction:

Theorem 1 (Glasner-Tsankov-Weiss-Zucker). $X \perp n^G$ for any minimal G-flow X.

This property is called **Bernoulli disjointness** for obvious reasons.

1. Proof of Bernoulli disjointness

The original proof of Theorem 1 involved casework depending on various properties of G, and using many difficult results as a blackbox. Recently Anton Bernshteyn found a nicer proof of this result using the Lovász Local Lemma, which works uniformly for all groups G (see [Ber]). His proof is as follows:

Proof of Theorem 1. Let $Z \subset X \times n^G$ be a joining. To show that $Z = X \times n^G$, it suffices to show that Z is dense. So fix nonempty open sets $U \subset X$ and $V \subset n^G$. We need to show that $Z \cap (U \times V)$ is nonempty.

We claim that it suffices to find a subset $F \subset G$ satisfying the following two conditions:

- (1) $\bigcap_{f \in F} f \cdot U$ meets every orbit (in X).
- (2) $F \cdot V$ contains an orbit (in n^G).

To see this, suppose that the orbit $G \cdot y$ is contained in $F \cdot V$. Then there is some $x \in X$ with $(x, y) \in Z$. Now there is some $g \in G$ with $g \cdot x \in \bigcap_{f \in F} f \cdot U$. Since $g \cdot y \in F \cdot V$, there is some $f \in F$ with $g \cdot y \in f \cdot V$, so since $g \cdot x \in f \cdot U$ as well, we have $g \cdot (x, y) \in f \cdot (U \times V)$. Thus $f^{-1}g \cdot (x, y) \in U \times V$, and this is also in Z since Z is G-invariant.

We first find a family of subsets satisfying Condition 1. Fix any point $x_0 \in X$, and let $S = \{g \in G : x_0 \in g \cdot U\}$. Note that any finite subset F of S satisfies Condition 1, since the intersection is a nonempty open set (since it contains x_0) and thus meets every orbit by minimality of X. We claim that S is infinite. Indeed, let $T \subset G$ be a finite subset such that $X = T \cdot U$ (this exists by minimality and compactness, since minimality implies $X = G \cdot U$). Then for every $g \in G$, we have $X = gT \cdot U$, and thus there is some $t \in T$ with $x_0 \in gt \cdot U$,

Date: August 30, 2019.

and thus $gt \in S$, i.e. $g \in t^{-1}S$. Thus $G = T^{-1}S$, so since T is finite, S must be infinite (in fact left-syndetic).

So S has arbitrarily large finite subsets, and thus it suffices to show that a sufficiently large subset of S satisfies Condition 2. We will show the following stronger fact, which is interesting in its own right:

Theorem 2 (Bernshteyn). Let V be a non-empty open subset of n^G . Then for every sufficiently large finite subset $F \subset G$, the set $F \cdot V$ contains an orbit.

Proof of Theorem 2. Let $F \subset G$ be a finite subset. Without loss of generality, we can shrink V so that $V = V_{\phi}$, where V_{ϕ} is the basic open neighbourhood defined by a finite partial function $\phi : G \to 2$, say with dom $\phi = D$.

We claim that we can assume without loss of generality that F is D-separated, i.e. such that for any $f, f' \in F$, we have $fD \cap f'D = \emptyset$ (i.e. the D-balls in the Cayley graph are disjoint). To see that this, note that we can recursively construct a D-separated subset of F of size $\geq \frac{|F|}{|D|^2}$ as follows: pick any $f_0 \in F$, then pick any $f_1 \in F \setminus (D^{-1}Df_0)$, then pick any $f_2 \in F \setminus (D^{-1}D\{f_0, f_1\})$, and so on (each step removes at most $|D|^2$ elements from F).

Now for $F \cdot V_{\phi}$ to contain an orbit is equivalent to saying that the following intersection is nonempty:

$$\bigcap_{g \in G} gF \cdot V_{\phi}$$

By compactness, it suffices to show that each finite intersection is nonempty.

Endow n^G with the product of the uniform probability measures. We recall the Lovász Local Lemma:

Theorem 3 (Lovász Local Lemma). Let \mathcal{A} be a set of events in a probability space, each with probability $\leq p$, such that for $A \in \mathcal{A}$, there is a subset $\mathcal{B} \subset \mathcal{A}$ with $|\mathcal{A} \setminus \mathcal{B}| \leq d$ such that A is independent from \mathcal{B} . If

$$4p(d+1) < 1,$$

then for any $A_0, \ldots, A_k \in \mathcal{A}$, we have $\mathbb{P}[\bar{A}_0 \cdots \bar{A}_k] > 0$.

We verify the hypotheses of the Lovász Local Lemma for $\mathcal{A} = \{\neg (gF \cdot V_{\phi})\}_{g \in G}$.

For a given $g \in G$, since F is D-separated, the sets $gf \cdot D$ are pairwise disjoint for distinct $f \in F$, and thus

$$\mathbb{P}[\neg (gF \cdot V_{\phi})] = \prod_{f \in F} \mathbb{P}[\neg (V_{gf \cdot \phi})] = \left(1 - \frac{1}{n^{|D|}}\right)^{|F|}$$

Now the event $gF \cdot V_{\phi}$ is independent with the set $\{hF \cdot V_{\phi} : gFD \text{ and } hFD \text{ are disjoint}\}$. If gFD and hFD are not disjoint, then

$$h \in gFDD^{-1}F^{-1}$$

and thus the event $gF \cdot V_{\phi}$ is independent with a set of cocardinality $\leq |D|^2 |F|^2$. So for the Lovász Local Lemma to hold, we need the following inequality to hold:

$$4 \cdot \left(1 - \frac{1}{n^{|D|}}\right)^{|F|} \left(|D|^2 |F|^2 + 1\right) < 1$$

which clearly holds for F sufficiently large.

This concludes the proof of Bernoulli disjointness.

Appendix A. Proof of the Lovász Local Lemma

We restate the Lovász Local Lemma.

Theorem 4 (Lovász Local Lemma). Let \mathcal{A} be a set of events in a probability space, each with probability $\leq p$, such that for $A \in A$, there is a subset $\mathcal{B} \subset A$ with $|\mathcal{A} \setminus \mathcal{B}| \leq d$ such that A is independent from \mathcal{B} . If

$$4p(d+1) < 1,$$

then for any $A_0, \ldots, A_k \in \mathcal{A}$, we have $\mathbb{P}[\bar{A}_0 \cdots \bar{A}_k] > 0$.

This is the original proof (see Lemma, p.616 in [EL]):

Proof. We prove the following stronger claim:

Proposition 1. For any distinct $A_0, \ldots, A_k \in \mathcal{A}$, we have

- (1) $\mathbb{P}[\bar{A}_1 \cdots \bar{A}_k] > 0$ and (2) $\mathbb{P}[A_0 | \bar{A}_1 \cdots \bar{A}_k] \leq 2p$.

Proof. We proceed by strong induction on k.

Note that (1) clearly holds when k = 0, and if k > 0, then $\mathbb{P}[A_1 | \bar{A}_2 \cdots \bar{A}_k] \leq 2p$, so

$$\mathbb{P}[A_1|A_2\cdots A_k] \ge 1 - 2p \ge 0$$

where we use that 4p < 1, and thus $\mathbb{P}[\bar{A}_1 \cdots \bar{A}_k] > 0$.

For (2), assume wlog that A_0 is independent from $\{A_{q+1}, \ldots, A_k\}$, where $q \leq d$. Then we have

$$\mathbb{P}[A_0|\bar{A}_1\cdots\bar{A}_k] = \frac{\mathbb{P}[A_0A_1\cdots A_q|A_{q+1}\cdots A_k]}{\mathbb{P}[\bar{A}_1\cdots\bar{A}_q|\bar{A}_{q+1}\cdots\bar{A}_k]}$$

The numerator is $\leq p$ as follows:

$$\mathbb{P}[A_0\bar{A}_1\cdots\bar{A}_q|\bar{A}_{q+1}\cdots\bar{A}_k] \le \mathbb{P}[A_0|\bar{A}_{q+1}\cdots\bar{A}_k] \le \mathbb{P}[A_0] \le p$$

The denominator is $> \frac{1}{2}$ as follows:

$$\mathbb{P}[\bar{A}_1 \cdots \bar{A}_q | \bar{A}_{q+1} \cdots \bar{A}_k] \ge 1 - \sum_{i=1}^q \mathbb{P}[A_i | \bar{A}_{q+1} \cdots \bar{A}_k] \ge 1 - \sum_{i=1}^q 2p \ge 1 - 2pd > \frac{1}{2}$$

where the last inequality uses that 4pd < 1. So we are done.

References

- [Ber] Anton Bernshteyn. A short proof of bernoulli disjointness via the local lemma. arXiv preprint arXiv:1907.08507, 2019.
- P. Erdős and L. Lovász. Problems and results on 3-chromatic hypergraphs and some related [EL] questions. In Infinite and finite sets (Collog., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. II, pages 609-627. Colloq. Math. Soc. János Bolyai, Vol. 10. 1975.
- [GTWZ] Eli Glasner, Todor Tsankov, Benjamin Weiss, and Andy Zucker. Bernoulli disjointness. arXiv preprint arXiv:1901.03406, 2019.