
BERNOULLI DISJOINTNESS (AFTER BERNSHTEYN)

FORTE SHINKO

Fix an infinite (not necessarily countable) discrete group G. A G-flow is a nonempty
compact Hausdorff space X equipped with a continuous action of G. A very important
G-flow is the Bernoulli shift nG, where n is finite.

A subflow of a G-flow X is a non-empty closed G-invariant subset of X. Given two
G-flows X and Y , a joining of X and Y is a subflow of X × Y which projects onto X and
Y . We say that X and Y are disjoint, denoted X ⊥ Y , if the only joining of X and Y is
the trivial joining X×Y . This is equivalent to saying that if Z is a G-flow which has X and
Y as factors, then these factor maps factor through X × Y .

A G-flow X is minimal if every orbit of X is dense. If a G-flow X is disjoint from nG,
then it is easy to show that X must be minimal. It was shown in [GTWZ] that this is the
only restriction:

Theorem 1 (Glasner-Tsankov-Weiss-Zucker). X ⊥ nG for any minimal G-flow X.

This property is called Bernoulli disjointness for obvious reasons.

1. Proof of Bernoulli disjointness

The original proof of Theorem 1 involved casework depending on various properties of G,
and using many difficult results as a blackbox. Recently Anton Bernshteyn found a nicer
proof of this result using the Lovász Local Lemma, which works uniformly for all groups G
(see [Ber]). His proof is as follows:

Proof of Theorem 1. Let Z ⊂ X × nG be a joining. To show that Z = X × nG, it suffices
to show that Z is dense. So fix nonempty open sets U ⊂ X and V ⊂ nG. We need to show
that Z ∩ (U × V ) is nonempty.

We claim that it suffices to find a subset F ⊂ G satisfying the following two conditions:

(1)
⋂
f∈F f · U meets every orbit (in X).

(2) F · V contains an orbit (in nG).

To see this, suppose that the orbit G · y is contained in F · V . Then there is some x ∈ X
with (x, y) ∈ Z. Now there is some g ∈ G with g · x ∈

⋂
f∈F f · U . Since g · y ∈ F · V , there

is some f ∈ F with g · y ∈ f ·V , so since g ·x ∈ f ·U as well, we have g · (x, y) ∈ f · (U ×V ).
Thus f−1g · (x, y) ∈ U × V , and this is also in Z since Z is G-invariant.

We first find a family of subsets satisfying Condition 1. Fix any point x0 ∈ X, and let
S = {g ∈ G : x0 ∈ g · U}. Note that any finite subset F of S satisfies Condition 1, since
the intersection is a nonempty open set (since it contains x0) and thus meets every orbit by
minimality of X. We claim that S is infinite. Indeed, let T ⊂ G be a finite subset such that
X = T ·U (this exists by minimality and compactness, since minimality implies X = G ·U).
Then for every g ∈ G, we have X = gT · U , and thus there is some t ∈ T with x0 ∈ gt · U ,
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and thus gt ∈ S, i.e. g ∈ t−1S. Thus G = T−1S, so since T is finite, S must be infinite (in
fact left-syndetic).

So S has arbitrarily large finite subsets, and thus it suffices to show that a sufficiently
large subset of S satisfies Condition 2. We will show the following stronger fact, which is
interesting in its own right:

Theorem 2 (Bernshteyn). Let V be a non-empty open subset of nG. Then for every suffi-
ciently large finite subset F ⊂ G, the set F · V contains an orbit.

Proof of Theorem 2. Let F ⊂ G be a finite subset. Without loss of generality, we can shrink
V so that V = Vφ, where Vφ is the basic open neighbourhood defined by a finite partial
function φ : G→ 2, say with domφ = D.

We claim that we can assume without loss of generality that F is D-separated, i.e. such
that for any f, f ′ ∈ F , we have fD ∩ f ′D = ∅ (i.e. the D-balls in the Cayley graph are
disjoint). To see that this, note that we can recursively construct a D-separated subset of F

of size ≥ |F |
|D|2 as follows: pick any f0 ∈ F , then pick any f1 ∈ F \ (D−1Df0), then pick any

f2 ∈ F \ (D−1D{f0, f1}), and so on (each step removes at most |D|2 elements from F ).
Now for F · Vφ to contain an orbit is equivalent to saying that the following intersection

is nonempty: ⋂
g∈G

gF · Vφ.

By compactness, it suffices to show that each finite intersection is nonempty.
Endow nG with the product of the uniform probability measures. We recall the Lovász

Local Lemma:

Theorem 3 (Lovász Local Lemma). Let A be a set of events in a probability space, each
with probability ≤ p, such that for A ∈ A, there is a subset B ⊂ A with |A \ B| ≤ d such
that A is independent from B. If

4p(d+ 1) < 1,

then for any A0, . . . , Ak ∈ A, we have P[Ā0 · · · Āk] > 0.

We verify the hypotheses of the Lovász Local Lemma for A = {¬(gF · Vφ)}g∈G.
For a given g ∈ G, since F is D-separated, the sets gf ·D are pairwise disjoint for distinct

f ∈ F , and thus

P[¬(gF · Vφ)] =
∏
f∈F

P[¬(Vgf ·φ)] =

(
1− 1

n|D|

)|F |
.

Now the event gF · Vφ is independent with the set {hF · Vφ : gFD and hFD are disjoint}.
If gFD and hFD are not disjoint, then

h ∈ gFDD−1F−1,
and thus the event gF · Vφ is independent with a set of cocardinality ≤ |D|2|F |2. So for the
Lovász Local Lemma to hold, we need the following inequality to hold:

4 ·
(

1− 1

n|D|

)|F |(
|D|2|F |2 + 1

)
< 1

which clearly holds for F sufficiently large. �

This concludes the proof of Bernoulli disjointness. �
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Appendix A. Proof of the Lovász Local Lemma

We restate the Lovász Local Lemma.

Theorem 4 (Lovász Local Lemma). Let A be a set of events in a probability space, each
with probability ≤ p, such that for A ∈ A, there is a subset B ⊂ A with |A \ B| ≤ d such
that A is independent from B. If

4p(d+ 1) < 1,

then for any A0, . . . , Ak ∈ A, we have P[Ā0 · · · Āk] > 0.

This is the original proof (see Lemma, p.616 in [EL]):

Proof. We prove the following stronger claim:

Proposition 1. For any distinct A0, . . . , Ak ∈ A, we have

(1) P[Ā1 · · · Āk] > 0 and
(2) P[A0|Ā1 · · · Āk] ≤ 2p.

Proof. We proceed by strong induction on k.
Note that (1) clearly holds when k = 0, and if k > 0, then P[A1|Ā2 · · · Āk] ≤ 2p, so

P[Ā1|Ā2 · · · Āk] ≥ 1− 2p > 2p ≥ 0

where we use that 4p < 1, and thus P[Ā1 · · · Āk] > 0.
For (2), assume wlog that A0 is independent from {Aq+1, . . . , Ak}, where q ≤ d. Then we

have

P[A0|Ā1 · · · Āk] =
P[A0Ā1 · · · Āq|Āq+1 · · · Āk]
P[Ā1 · · · Āq|Āq+1 · · · Āk]

The numerator is ≤ p as follows:

P[A0Ā1 · · · Āq|Āq+1 · · · Āk] ≤ P[A0|Āq+1 · · · Āk] ≤ P[A0] ≤ p

The denominator is > 1
2

as follows:

P[Ā1 · · · Āq|Āq+1 · · · Āk] ≥ 1−
q∑
i=1

P[Ai|Āq+1 · · · Āk] ≥ 1−
q∑
i=1

2p ≥ 1− 2pd >
1

2

where the last inequality uses that 4pd < 1. So we are done. �

�
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[EL] P. Erdős and L. Lovász. Problems and results on 3-chromatic hypergraphs and some related
questions. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th
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