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Introduction
Retrosynthetic analysis provides an organizational framework for planning the synthesis

of a desired target molecule X given some set Synth(X) of chemical precursors, or synthons.
In retrosynthetic analysis, one “works backwards” by starting with the target molecule X and
decomposing it into synthons[1]. This retrosynthetic decomposition is denoted by

X ⇒
∑
i∈[n]

Yi, Yi ∈ Synth(X) and n ∈ N.

The latter expression is taken to be a formal sum. Moreover, this expression assumes that there
is a valid chemical reaction

∑
Yi ⇒ X.

Now, graphs provide a natural way of visually representing molecules as exemplified below:

O

←→ •
•

•

•
•

•

•

•
•

Figure 1

Therefore we can assign to any target molecule X a corresponding simple graph G(X). Our
objective is to take advantage of this graphical representation of molecules by modeling this
retrosynthetic decomposition as a partition of G(X). To do this, we will represent X by a
pair (G(X), ωX) where ωX : EG(X) → R≥0 assigns a non-negative weight to each edge of G(X).
These weights are to be interpreted as some measure of bond strength between the corresponding
atoms/ functional groups.

This paper will be divided into three parts: (i) a review of data clustering methods; (ii) a
review of Energy Partition Analysis which will be used to assess a weight function; (iii) an
application of these algorithms on target molecules with known retrosynthetic decompositions.

1. Graph Partitions
We begin with a review of some basic graph theory terminology that will be used in the

subsequent graph partition algorithms. We subsequently detour into the realm of statistical
clustering, first briefly mentioning the k-means clustering algorithm, which will lead into our
main graph partitioning tool: spectral clustering. We will subsequently mention another tool
for graph partitioning known as semidefinite spectral clustering.
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Graph Preliminaries

The following definitions are adapted from [3]. Let G(V,E) be a simple graph with vertex
set V = [n] := {1, ..., n − 1, n} for some n ∈ N. We assume that if ij ∈ E, then there is a
corresponding weight wij ∈ R≥0, for all i, j ∈ V. The adjacency matrix of G is the matrix A
with ijth entry

δij =
{

1, if ij ∈ E;
0, otherwise.

The weighted adjacency matrix of G is the matrix W with (W )ij = δijwij where (W )ij = 0 if
ij /∈ E. The degree of vertex i is defined as

di :=
∑

j∈[n]
wij .

The degree matrix D of G is the matrix with (D)ij = di if i = j, and 0 otherwise.
A subset S ⊂ V is connected if for any i, j ∈ V , there is a path (i, k1, k2, ..., km, j) such that

kh ∈ S for all h ∈ [m]. S is called a connected component if it is connected and {ij ∈ E : i ∈
S, j ∈ V \S} = Ø.

A partition of G is a finite collection of nonempty subsets G1 := (V1, E1), ..., Gk := (Vk, Ek) ⊂
G satisfying V1 ∪ · · · ∪ Vk = V and Vi ∩ Vj = Ø for i 6= j with each having corresponding edge
set Ei := {ij ∈ E : i, j ∈ Vi}.

The graph Laplacian of G is the matrix L := D −W.

Proposition 1. L is symmetric and positive semidefinite.
Proof: Clearly, D = Dt, and since G is a simple graph, (W )ij = (W )ji, and thus Lt =
(D −W ) = Dt −W t = D −W = L. We have that for any x := (x1, ..., xn)t ∈ Rn :

xtLx = xtDx− xtWx =
∑
i∈[n]

dix
2
i −

∑
i∈[n]

∑
j∈[n]

wijxixj

= 1
2

∑
i∈[n]

∑
j∈[n]

wijx
2
i − 2wijxixj + wijx

2
j


= 1

2
∑
i∈[n]

∑
j∈[n]

wij(xi − xj)2.

It follows that L is symmetric and positive-semidefinite. �

Given a graph Laplacian L with eigenvalues λ1, ..., λn, we assume, after reordering, that
λ1 ≤ ... ≤ λn. Hence, when we say that v1, ...,vk are the first k eigenvectors of L, these are the
eigenvectors corresponding to the k smallest eigenvalues of L.

Now, if G has k connected components G1, ..., Gk, then after reordering of the vertices ac-
cording to the components each vertex belongs to we clearly have that L will be a block matrix
consisting of k blocks where block k is the Laplacian corresponding to the kth connected com-
ponent. Moreover, We have the following proposition:

Proposition 2. Let G = ([n], E) be a connected graph. Then the eigenvalue 0 of L occurs
with multiplicity 1 with corresponding eigenvector 1 := (1, ..., 1)t ∈ Rn.

Proof: Now, suppose that x is an eigenvector with eigenvalue 0. It follows that

xtLx = 1
2
∑
i∈[n]

∑
j∈[n]

wij(xi − xj)2 = 0.
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Since G is connected, wij > 0 for some ij ∈ E. Since the weights are non-negative, it
follows that the latter sum is 0 if and only if xi = xj for all i, j ∈ [n]. It follows that
x ∈ span{1}, which completes the proof. �

It follows from the previous discussion and Prop. 2 that if G has k connected components,
then 0 occurs as an eigenvalue with multiplicity k where the corresponding eigenspace is spanned
by

(1Gi)j :=
{

1, if j ∈ Ai;
0, otherwise,

where (1Gi)j is the jth component of 1Gi ∈ Rn.
This concept will be important in our discussion of spectral clustering. First, we interlude

with a brief discussion of k-means clustering.

k-Means Clustering
Suppose you have k finite subsets G1, ..., Gk ⊂ Rn. The centroid ci of Gi is defined as

ci := 1
|Gi|

∑
x∈Gi

x.

Suppose you are given m observations x1, ...,xm ∈ Rn. We wish to group these points together
based on their relative Euclidean distance (i.e. group “close” points together in Euclidean space).
Formally, we wish to find clusters G1, ..., Gk with centroids c1, ..., ck such that the following
quantity is minimized[2]

∑
i∈[k]

∑
x∈Gi

||x− ci||2.

The following k-means algorithm is an adaptation from the one given in p. 510 of [2]. The
set of “optimal” clusters is determined as follows:

Input: x1, ..., xm, M := max number of iterations , ε := tolerated error.
1. Initialize centroids c1, ..., ck ∈ Rn with corresponding clusters G1, ..., Gk.
2. Repeat :

a. For i ∈ [m] :
Set Ni := minj ||xi − cj ||, and assign xi → GNi .

b. For i ∈ [k] :
Let c′i to be the mean of the elements in Gi, and
assign c′i → ci.

c. Stop if:
i. Number of iterations > M , or
ii. ||ci − c′i|| < ε for every i ∈ [k].

Output: G1, ..., Gk.

Spectral Clustering
In the following, we begin with a weighted graph G = (V := [n], E) in which the weights wij

are be interpreted as a measure of similarity between vertices i, j. We wish to find an optimal
partition V1, ..., Vk ⊂ V based on the similarities of the connected vertices. Letting L be the
graph Laplacian of G, the following gives a spectral clustering algorithm, as presented in pg. 5
of [3]:
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Input: n× n Laplacian matrix L, number of clusters k to be constructed .
1. Compute the first k eigenvectors v1, ..., vk of L.
2. Let V be the n× k matrix with vj as the jth column vector .
3. Let yi be the ith row vector of V.
4. Cluster the yi via the k-means algorithm into clusters C1, ..., Ck.
5. For i ∈ [k], let Ai := {j : yj ∈ Ci}.

Output: A1, ..., Ak.

Intuitively, spectral clustering uses the Laplacian L to embed the given points in Rk according
to connected components of G1, ..., Gk. If G has k connected components, then Prop. 2 implies
that the k smallest eigenvalues of the given L will serve as approximations to the 0 eigenvalue
of the desired k-connected components[2].This embedding facilitates clustering via the k-means
algorithm.

As seen in [4], spectral clustering can be seen as a relaxation in the solution of the multiway-
graph equipartition problem of a weighted graph G. In the latter, a partition of G1, ..., Gk ⊂ G
is desired, such that the following is minimized

MECut(G1, ..., Gk) := 1
2
∑

j∈[k]
1

T
Gj

(D −W )1Gj

where 1Gj is defined in the preliminaries, and

D =


DG1 0 · · · 0

0 DG2 · · · 0
...

...
...

0 0 · · · DGk

 and W =


WG1,G1 WG1,G2 · · · WG1,Gn

WG2,G1 WG2,G2 · · · WG2,Gn

...
...

...
WGn,G1 WG2,G2 · · · WGn,Gn

 ,

where WGi,Gj := [Wij ]i∈Vi,j∈Vj , and DGi is the degree matrix corresponding to the vertices in Vi.
Again, following the results in [4], letting X be the matrix with jth column vectors 1Gj ∈ Rn,
the latter problem can be restated in the following manner

argmin
X

trace(XtLX) (1)

where the “minimum is achieved when X is taken to be any orthogonal basis for the subspace
spanned by the eigenvalues corresponding to the k smallest eigenvalues of L.” The spectral
relaxation is precisely when L is taken to be the graph Laplacian, and thus it is clear that the
given spectral clustering algorithm gives a minimal solution with respect to this relaxation.

Semidefinite Spectral Clustering
Another relaxation for the latter optimization problem is explored in [4], and thoroughly

derived in section 4 of [5]. (1) is written as the following quadratic program with corresponding
objective function

argmin
X

trace(XtLX)

s.t. (X)2
ij = (X)ij

Xek = en

Xten = mek := n

k
ek

4



where en := [1, ..., 1]T ∈ Rn. The latter is reduced to the following semidefinite program in ([4],
[7]):

argmin
S

trace(V tLeV Y )

s.t. diag(V SV t) = [1, (1/k)ek]t ∈ Rnk+1,

S is positive semi-definite.

Here we have that:

Le :=
(

0 0T ∈ Rnk

0 ∈ Rnk Ik ⊗ L

)
, V :=

(
1 0T ∈ R(n−1)(k−1)

1
kek ⊗ en ∈ Rnk Vk ⊗ Vn

)
, andVk :=

(
Ik−1
et

k−1

)
.

where Ik is the multiplicative identity in Mk×k(R). Interior point methods can be used to solve
the latter semidefinite program. The optimal feasible matrix is then defined as Y ∗ = V S∗V t

where S∗ is the solution found in the latter SDP. The matrix Z∗ is taken to be the sum of
the k diagonal n × n block matrices of Y ∗2:nk+1,2:nk+1 ∈ Mnk×nk(R). Let λ1, ..., λn ∈ R be the
eigenvalues of Z∗ listed in descending order with corresponding eigenvectors v1, ...,vn. Letting
X∗ ∈ Mn×k(R) is taken to be the matrix with jth column vector vj . We can now perform
k-means clustering on the rows of X∗, and cluster the n graph vertices as was done in the last
step of the spectral clustering algorithm presented in the previous section.

The latter discussion summarizes the semidefinite spectral clustering algorithm given in [4].

2. Assessing Chemical Weights
Recall that given a molecule X, we have a corresponding graph G(X) where each vertex

corresponds to some atom or functional group, and each edge corresponds to bonds between
these molecular components. The latter section gives methods for decomposing a graph into
connected components using weights. This section considers possible choices for our weight
function ωx : EG(X) → R≥0. Our tool in determining weights will be Energy Partition Analysis.

Energy Partition Analysis

Energy partition analysis looks at the interaction energy between two molecular fragments.
This can be thought of as the bonding energy between any two fragments. This interaction
energy ∆E can be decomposed as

∆E = ∆Edef + ∆Eint.

The first term is the energy required to lift each fragment from its individual equilibrium state to
its state in the whole compound. The second term is the energy difference between the fragment
in its state within the molecule and the rest of the molecule.

∆Eint = ∆Eelectrostatic + ∆EPauli + ∆Eorb.

The first term can be thought of as the energy due to classical considerations of electric charges
amongst the molecular fragments. The second term is due to steric interactions which result from
the fact that certain electrons cannot occupy the same regions of space. The final component is
the energy gained when each fragment orbital is allowed to relax to an optimal equilibrium state
within the molecule. The quantity −∆E is otherwise known as the bond dissociation energy
between two given fragments ([6], [7]).
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The above decompositions of this term give further possible choices for edge weights. However,
in practice, given the empirical data available, the natural choice for edge weights in our graphical
representation of molecules is the bond dissociation energy ∆E between the respective vertices.
The following section applies the latter algorithms where the weights are given as the respective
bond dissociation energies.

3. Application of Algorithms
In this section, we apply the spectral clustering algorithm on the graphical representations of

explicit molecules using the software R. Technical difficulties experienced in the implementation
of the semidefinite spectral clustering algorithm in R have not been overcome. However, there
exists an R framework for the SDP solver CSPD[8] which has showed promise for implementation.

The following provide the results of the graph partitions given by the standard spectral clus-
tering algorithm for particular examples. The respective weights are taken to be approximate
bond dissociation energies for each bond present in the molecule. These energies are taken from
[9]. We begin with the molecule presented in the introduction:

Example 1

O

←→ 3
4

5

6
7

9

8

1
2

Figure 2

In the latter molecule, the expected decomposition is given by breaking the bond connecting
atoms 6 and 7[1]. That is, we expect the partition {1, 2, 3, 4, 5, 6}, {7, 8, 9}. We make the following
simplifying assumptions given the bond dissociation energies provided in [9]: (1) the double
bonds in the benzene ring are weighted as CH2=CH2, (ii) all other bonds between Carbon
atoms are weighted as C-C bonds, and (iii) the C=O bond is weighted as is. The weights are
given in the table below:

Edge Associated Weight
(1, 2) 0.607
(2, 3) 0.682
(3, 4) 0.607
(4, 5) 0.682
(5, 6) 0.607
(6, 7) 0.607
(7, 8) 0.607
(1, 6) 0.682
(7, 9) 0.749
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The corresponding Laplacian is

L =



1.289 −0.607 0 0 0 −0.682 0 0 0
−0.607 1.289 −0.682 0 0 0 0 0 0

0 −0.682 1.289 −0.607 0 0 0 0 0
0 0 −0.607 1.289 −0.682 0 0 0 0
0 0 0 −0.682 1.289 −0.607 0 0 0

−0.682 0 0 0 −0.607 1.896 −0.607 0 0
0 0 0 0 0 −0.607 1.963 −0.607 −0.749
0 0 0 0 0 0 −0.607 0.607 0
0 0 0 0 0 0 −0.749 0 0.749


The latter matrix was input into R which resulted in the following clustering vector

Vertex 1 Vertex 2 Vertex 3 Vertex 4 Vertex 5
2 2 2 2 2

Vertex 6 Vertex 7 Vertex 8 Vertex 9
2 1 1 1

This clustering vector corresponds to the partition {1, 2, 3, 4, 5, 6}, {7, 8, 9}, which was the ex-
pected result.

Example 2

Ph

O

Ph ←→ 1
2

8

3
4

5
6

7

Figure 3

The expected decomposition in this example is given by breaking the bond 34[1]. This cor-
responds to the partition {1, 2, 3, 8}, {4, 5, 6, 7} ⊂ {1, ..., 8}. We make the following simplifying
assumptions (given the bond dissociation energies provided): (1) the bonds between the benzene
ring (Ph) and the carbons are weighted as C6H5-CH3 bonds, (ii) the carbons attached to vertex
2 are weighted as C-C bonds, (iii) the remaining bonds between Carbon atoms are weighted
as CH3-CH3 bonds, and (iv) the C=O bond is weighted as is. The weights are given in the
following table:

Edge Associated Weight
(1, 2) 0.389
(2, 3) 0.607
(3, 4) 0.368
(4, 5) 0.368
(5, 6) 0.368
(6, 7) 0.389
(2, 8) 0.749
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The corresponding Laplacian is given by

L =



0.389 −0.389 0 0 0 0 0 0
−0.389 1.745 −0.607 0 0 0 0 −0.749

0 −0.607 0.975 −0.368 0 0 0 0
0 0 −0.368 0.736 −0.368 0 0 0
0 0 0 −0.368 0.736 −0.368 0 0
0 0 0 0 −0.368 0.757 −0.389 0
0 0 0 0 0 −0.389 0.389 0
0 −0.749 0 0 0 0 0 0.749


The latter matrix was input into R which resulted in the clustering vector:

Vertex 1 Vertex 2 Vertex 3 Vertex 4
2 2 2 2

Vertex 5 Vertex 6 Vertex 7 Vertex 8
1 1 1 2

The latter corresponds to the partition {1, 2, 3, 4, 8}, {5, 6, 7} of V. Note that this differs from
the expected result in that atom 4 was inappropriately clustered given the expected partition.

Example 3

O ←→ 3
4

5

6
7

8

12

9
10

111
2

Figure 4

The assigned weights are given in the following table:

Edge Associated Weight
(1, 2) 0.368
(2, 3) 0.368
(3, 4) 0.368
(4, 5) 0.368
(5, 6) 0.607
(6, 7) 0.682
(7, 8) 0.607
(8, 9) 0.607
(9, 10) 0.368
(10, 11) 0.368
(1, 6) 0.607
(8, 12) 0.749

We made the following simplifying assumptions: (1) bonds appearing with weight 0.368 are
weighted as CH3-CH3 bonds; (2) those with weight 0.607 are weighted as C-C bonds, (3) those
with weight 0.682 are weighted as CH2=CH2 bonds; and (4) those with weight 0.749, as C=O
bonds[9]. The expected decomposition is given by breaking the bond between atoms 6 and 7[10],
that is, it is given by the partition {1, 2, ..., 6}, {7, 8, ..., 12} of the molecular graph. Spectral
clustering gives the following clustering vector
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Vertex 1 Vertex 2 Vertex 3 Vertex 4 Vertex 5 Vertex 6
2 2 2 2 2 2

Vertex 7 Vertex 8 Vertex 9 Vertex 10 Vertex 11 Vertex 12
2 1 1 1 1 1

which corresponds to the partition {1, 2, ..., 7}, {8, 9, ..., 12}. In this example, the vertex 7 was
inappropriately clustered given the expected partition.

We do note that in this and the previous example, the vertex placed in the “incorrect” (based
on the expected partition) cluster is one of the vertices at which the bond is broken.

Example 4

NO2

O

O OH

←→ 8
7

15

6
5

4
3

2
1

13
10

11
14 12

9

Figure 5

The assigned weights are given in the following table:

Edge Associated Weight
(1, 2) 0.368
(2, 3) 0.368
(3, 4) 0.368
(4, 5) 1.0765
(5, 6) 1.0765
(6, 7) 0.682
(6, 13) 0.607
(7, 8) 0.607
(7, 15) 0.247
(8, 9) 0.682
(9, 10) 0.607
(10, 11) 0.607
(10, 13) 0.682
(11, 12) 1.0765
(11, 14) 0.749

We made the following simplifying assumptions: (1) bonds appearing with weight 0.368 are
weighted as CH3-CH3 bonds; (2) those with weight 0.607 are weighted as C-C bonds, (3) those
with weight 0.682 are weighted as CH2=CH2 bonds; (4) those with weight 0.749, as C=O bonds;
(5) those with weight 1.0765, as C-O bonds; and (6) those with weight 0.247, as C=O bonds[9].

Here we will perform two rounds of spectral clustering: a partition the molecular graph into
k clusters for k = 2 and k = 3. The expected partition in the former case is given by breaking
the bond (4, 5), and the latter by breaking the bonds (4, 5) and (7, 15)[10]. These correspond to
the respective partitions {1, 2, 3, 4}, {1, 2, ..., 15}\{1, 2, 3, 4} and {1, 2, 3, 4}, {5, 6, ..., 14}, {15} of
the presented molecular graph[10].
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For k = 2, we obtain the following clustering vector:

Vertex 1 Vertex 2 Vertex 3 Vertex 4 Vertex 5 Vertex 6 Vertex 7 Vertex 8
2 2 2 1 1 1 1 1

Vertex 8 Vertex 9 Vertex 10 Vertex 11 Vertex 12 Vertex 13 Vertex 14 Vertex 15
1 1 1 1 1 1 1 1

For k = 3, we obtain the following clustering vector:

Vertex 1 Vertex 2 Vertex 3 Vertex 4 Vertex 5 Vertex 6 Vertex 7 Vertex 8
3 3 3 1 1 1 1 1

Vertex 8 Vertex 9 Vertex 10 Vertex 11 Vertex 12 Vertex 13 Vertex 14 Vertex 15
1 1 2 2 2 1 2 1

For k = 2, the results are the same as in Examples 2 and 3, in which one of the vertices at
which a bond is being broken is “misclustered” (particularly vertex 4). For k = 3, we obtain
the partition {1, 2, 3}, {3, 4, ..., 9, 13, 15}, {10, 11, 12, 14}. This unfortunately did not come close
to our expected partition for this molecule.

4. Summary
We saw in the previous section that the spectral clustering algorithm served as a useful tool

for giving a bi-partition of a molecular graph. It performed satisfactorily in all four examples.
The interesting remark to note is that in each of the latter three examples, the bi-partition
“mis-clustered” only one vertex which was one of the vertices at which the bond was expected
to break. This observation leads to us accept this method as satisfactory for these molecular
bi-partitions. Unfortunately, in the last example when we classified into 3 clusters, the result
deviated from our expected molecular decomposition significantly.

Questions in Need of Answers
One of the ideas that was not implemented in this molecular decomposition process is that

of introducing catalyst reactions into this molecular decomposition framework. Many of the
reactions seen in [1] and [10] involve the use of catalysts. However, often these reactions may
change the fundamental structure of the original molecular graph. What is the best way to
codify these reactions into our decomposition process?

Also, as stated at the beginning of Section 4, the semidefinite spectral clustering proposed in
[4] has not been fully implemented in R. It would be interesting to see how the results from the
two methods differ in the examples above, if at all. This will be implemented in the near future,
again the R package Rcsdp provides an SDP-solving framework that will aid in its ultimate
implementation.
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