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A basic problem in metric algebraic geometry is finding a point in a variety X in Rn that
is closest to a given data point u ∈ Rn. Thus, we wish to solve the optimization problem

minimize ||x− u|| subject to x ∈ X. (1)

In what follows, this minimum in (1) is always attained because X is non-empty and closed.
Hence there exists an optimal solution. If that solution is unique then we denote it by x∗.

We already discussed this problem for the Euclidean norm on Rn. In this lecture we
study (1) in the case when || · || is a polyhedral norm. This means that the unit ball

B = {x ∈ Rn : ||x|| ≤ 1}

is a centrally symmetric convex polytope. Every centrally symmetric convex polytope B in
Rn defines a polyhedral norm on Rn. Using the unit ball, we can paraphrase (1) as follows:

minimize λ subject to λ ≥ 0 and (u+ λB) ∩ X ̸= ∅. (2)

Familiar examples of polyhedral norms are || · ||∞ and || · ||1, where the unit ball B is the
cube and the crosspolytope respectively. Polyhedral norms are very important in optimal
transport theory, where one uses Wasserstein norm on the space of probability distributions.
This will be our main application in this lecture, and it will be discussed in detail later on.

We begin our discussion with a general polyhedral norm, that is, we allow B to be an
arbitrary full-dimensional centrally symmetric polytope in Rn. The boundary of B consists
of faces whose dimensions range from 0 to n − 1. We use the dot · for the standard inner
product on Rn. Recall that a subset F of B is a face if there exists ℓ ∈ Rn\{0} such that

F = {x ∈ B : ℓ · x ≥ ℓ · y for all y ∈ B
}
. (3)

The set of all faces, ordered by inclusion, is a partial ordered set, called the face poset ofB. An
important combinatorial invariant of our polytope B is its f-vector f(B) = (f0, f1, . . . , fn−1).
The ith coordinate fi of the f-vector is the number of i-dimensional faces of B.

The dual of B is also a centrally symmetric polytope, namely

B∗ =
{
ℓ ∈ Rn : ℓ · x ≤ 1 for all x ∈ B

}
.

The norm || · ||∗ defined by B∗ is dual to the norm || · || given by B. The f-vector of B∗ is the
reverse of the f-vector of B. More precisely, we have fi(B

∗) = fn−1−i(B) for i = 0, 1, . . . , n−1.
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Example 1. Fix the unit cube B = [−1, 1]n. Its dual is the cross-polytope

B∗ = conv{±e1,±e2, . . . ,±en} ⊂ Rn.

Here ej is the jth standard basis vector. The number of i-dimensional faces of the cube is

fi(B) =

(
n

i

)
· 2n−i.

The 3-dimensional crosspolytope is the octahedron. The 3-cube and the octahedron satisfy

f(B) = (8, 12, 6) and f(B∗) = (6, 12, 8).

These numbers govern the combinatorial structure of the norms || · ||∞ and || · ||1 on R3. ⋄

We now turn to the critical equations for the optimization problem given in (1) or (2).
To derive these a combinatorial stratification of the problem is used, given by the face poset
of the polytope B. Suppose that the variety X is in sufficiently general position in Rn. This
hypothesis implies that (u + λ∗B) ∩ X = {x∗} is a singleton for the optimal value λ∗ in
(2). The point 1

λ∗ (x
∗ − u) lies in boundary of the unit ball B. Hence it lies in the relative

interior of a unique face F of the polytope B. Let LF denote the linear span of F in Rn. We
have dim(LF ) = dim(F )+1. Let ℓ be any linear functional on Rn that attains its maximum
over the polytope B at the face F . This means that (3) holds.

Lemma 2. The optimal point x∗ in (1) is the unique solution to the optimization problem

Minimize ℓ(x) subject to x ∈ (u+ LF ) ∩X. (4)

Proof. The general position hypothesis ensures that u + LF intersects X transversally, and
x∗ is a smooth point of that intersection. Moreover, x∗ is a minimum of the restriction of ℓ
to the variety (u+LF )∩X. By our hypothesis, this linear function is generic relative to the
variety, so the number of critical points is finite and the function values are distinct.

Example 3 (Touching at a facet). Suppose that the face F is a facet of the unit ball B.
Then LF = Rn, and ℓ is an outer normal vector to that facet, which is unique up to scaling.
Here, (4) asks for the minimum of ℓ over X. This corresponds to the left diagram in Figure 1.

Example 4 (Touching at a vertex). Suppose F is a vertex of the unit ball B. This case
arises when X is a hypersurface. It corresponds to the middle diagram in Figure 1. Here,
the affine space u+ LF is the line that connects u and x∗. That line intersects X in a finite
set of cardinality degree(X), and x∗ is the real point among them at which ℓ is minimal.

The problem (4) amounts to linear programming over a real variety. We now determine
the algebraic degree of this optimization task when F is a face of codimension i. To this
end, we replace the affine variety X ⊂ Rn by its closure in complex projective space Pn,
and we retain the same symbol X for that projective variety. We consider the affine space
L = u+LF in Rn and we also identify it with its closure in Pn. If the face F has codimension
i then the linear space L has codimension i− 1. The following result assumes that that this
space is in general position relative to the variety X and relative to the isotropic quadric.
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Theorem 5. Let L be a general affine-linear space of codimension i−1 in Rn and ℓ a general
linear form. The number of critical points of ℓ on L ∩X is the polar degree δi(X).

Proof. This result is [5, Theorem 5.1]. The number of critical points of a linear form is the
degree of the dual variety (L∩X)∨. That degree coincides with the polar degree δi(X).

Example 6. Examples 3 and 4 explain Theorem 5 in the two extreme cases i = 1 and
i = n. Touching at a vertex (i = n) can only happen when X is a hypersurface, and here
δn(X) = degree(X). Touching at a facet (i = 1) can happen for varieties of any dimension,
as long as the dual variety X∨ is a hypersurface. In that case we have δ1(X) = degree(X∨).

Theorem 5 offers a direct interpretation of each polar degree δi(X) in terms of optimiza-
tion on X. Some readers might prefer this interpretation as a definition of polar degrees.

Example 7. Consider (1) and (2) where X is a general surface of degree d in R3. The
optimal face F of the unit ball B depends on the location of the data point u. The algebraic
degree of the solution x∗ equals δ3(X) = d if dim(F ) = 0, it is δ2(X) = d(d−1) if dim(F ) = 1,
and it is δ1(X) = d(d − 1)2 if dim(F ) = 2. Here x∗ is the unique point in (u + λ∗B) ∩ X,
where λ∗ is the optimal value in (2). Figure 1 visualizes this scenario for d = 2 and || · ||∞.
The variety X is the green sphere, which is a surface of degree d = 2. The unit ball for the
norm || · ||∞ is the cube B = [−1, 1]3. The picture shows the smallest λ∗ such that u+ λ∗B
touches the sphere X. The cross marks the point of contact. This is the point x∗ in X
which is closest in ∞-norm to the green point u in the center of the cube. Point of contact
is either on a facet, or on an edge, or it is a vertex. The algebraic degree of x∗ is two in all
three cases, i.e. we can write the solution x∗ in terms of the data u by solving the quadratic
formula. If the green variety were a cubic surface then these degrees would be 3, 6 and 12. ⋄
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Figure 1: The cube is an || · ||∞ ball around the green point u. The variety X is the sphere.
The contact point x∗ is marked with a cross. The optimal face F is a facet, vertex, or edge.

We have learned that the conormal variety NX and its cohomology class [NX ] are key
players when it comes to reliably solving the distance minimization problem for a variety X.
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The polar degrees δi(X) reveal precisely how many paths need to be tracked by numerical
solvers like [1, 3] in order to find and certify [2] the optimal solution x∗ in (1) or (4).

We now come to the title of this lecture. The variety X will be an independence model in
a probability simplex, described algebraically by matrices or tensors of low rank, and we mea-
sure distances using Wasserstein metrics on that simplex. This is a class of polyhedral norms
which are important in optimal transport theory. We now present the relevant definitions.

A probability distribution on the finite set [n] = {1, 2, . . . , n} is a point ν in the simplex
∆n−1 = {(ν1, . . . , νn) ∈ Rn

≥0 :
∑n

i=1 νi = 1}. We metrize this simplex by the Wasserstein
distance. To define this, we first turn the state space [n] into a finite metric space by fixing a
symmetric n×n matrix d = (dij) with nonnegative entries. These entries satisfy dii = 0 and
dik ≤ dij +djk for all i, j, k. Given two probability distributions µ, ν ∈ ∆n−1, we consider the
following linear programming problem, where z = (z1, . . . , zn) denotes the decision variables:

Maximize
n∑

i=1

(µi − νi) zi subject to |zi − zj| ≤ dij for all 1 ≤ i < j ≤ n. (5)

The optimal value of (5), denoted Wd(µ, ν), is the Wasserstein distance between µ and ν.
An optimal solution z∗ to problem (5) is an optimal discriminator for the two probability

distributions µ and ν. It satisfies Wd(µ, ν) = ⟨µ− ν, z∗⟩, and its coordinates z∗i are weights
on the state space [n] that tell µ and ν apart. Here ⟨ · , · ⟩ is the standard inner product on
Rn. The linear program (5) is the Kantorovich dual of the optimal transport problem.

The feasible region of the linear program (5) is unbounded because it is invariant under
translation by 1 = (1, 1, . . . , 1). It is compact after taking the quotient modulo the line R1:

Pd =
{
z ∈ Rn/R1 : |zi − zj| ≤ dij for all 1 ≤ i < j ≤ n

}
. (6)

This (n − 1)-dimensional polytope is the Lipschitz polytope of the metric space ([n], d). In
tropical geometry, one calls Pd a polytrope because it is convex both classically and tropically.

The polytope P ∗
d that is dual to Pd lies in the hyperplane perpendicular to the line R1.

We call P ∗
d the root polytope because its vertices are, up to scaling, the elements ei − ej in

the root system of Lie type An−1. More precisely, we have

P ∗
d = {x ∈ Rn : maxz∈Pd

⟨x, z⟩ ≤ 1 } = conv
{ 1

dij
(ei − ej) : 1 ≤ i, j ≤ n

}
.

This is a centrally symmetric polytope since the finite metric space ([n], d) satisfies dij = dji.

Proposition 8. The Wasserstein metric Wd on the probability simplex ∆n−1 is given by the
polyhedral norm whose unit ball is the root polytope P ∗

d .

Proof. Fix the polyhedral norm with unit ball P ∗
d . The distance between µ and ν in this

norm the smallest λ such that µ ∈ ν+λP ∗
d , or, equivalently,

1
λ
(µ− ν) ∈ P ∗

d . By definition of
dual polytope, this minimal λ is the maximum inner product ⟨µ−ν, z⟩ over all points z in the
dual (P ∗

d )
∗ of the unit ball. But this specifies the Lipschitz polytope, i.e. (P ∗

d )
∗ = Pd. Hence

the distance between µ and ν is equal to Wd(µ, ν), which is the optimal value in (5).
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Example 9. Let n = 4 and fix the finite metric space graph distance on the 4-cycle

d =

 0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0

 . (7)

The induced metric on the tetrahedron ∆3 is given by the Lipschitz polytope

Pd =
{
(x1, x2, x3, x4) ∈ R4/R1 : |x1 − x2| ≤ 1, |x1 − x3| ≤ 1, |x2 − x4| ≤ 1, |x3 − x4| ≤ 1

}
= conv

{
(1, 0, 0,−1), (1, 0, 0,−1), (1

2
,−1

2
,−1

2
, 1
2
), (−1

2
, 1
2
, 1
2
,−1

2
), (0, 1,−1, 0), (0,−1, 1, 0)

}
.

Note that this 3-dimensional polytope is an octahedron. Therefore, its dual is a cube:

P ∗
d =

{
(y1, y2, y3, y4) ∈ (R1)⊥ : |y1 − y4| ≤ 1, |y2 − y3| ≤ 1, |y2 + y3| ≤ 1

}
= conv

{
(1,−1, 0, 0), (1, 0,−1, 0), (0, 1, 0,−1), (0, 0, 1,−1)
(−1, 1, 0, 0), (−1, 0, 1, 0), (0,−1, 0, 1), (0, 0,−1, 1)

}
.

This is the unit ball for the Wasserstein metric on ∆3 that is induced by d. Measuring the
distance from a point to a surface with respect to this metric is illustrated in Figure 1.

We wish to compute the Wasserstein distance from a given distribution µ to a fixed
discrete statistical model M ⊂ ∆n−1. This is the problem studied in [4, 5]. Our discussion
serves as an introduction. As is customary in algebraic statistics, we assume that M is
defined by polynomials in ν1, . . . , νn. Our task is to solve the following optimization problem:

Wd(µ,M) := min
ν∈M

Wd(µ, ν) = min
ν∈M

max
x∈Pd

⟨µ− ν, x⟩. (8)

Computing this quantity means solving a non-convex optimization problem. Our aim is to
study this problem and propose solution strategies, using methods from geometry, algebra
and combinatorics. The analogous problem for the Euclidean metric was treated earlier.

We now present a detailed case study for the tetrahedron ∆3 whose points are joint
probability distributions of two binary random variables. The 2-bit independence model
M ⊂ ∆3 consists of all nonnegative 2× 2 matrices of rank one whose entries sum to one:(

ν1 ν2
ν3 ν4

)
=

(
pq p(1− q)

(1−p)q (1−p)(1−q)

)
, (p, q) ∈ [0, 1]2. (9)

Thus, M is the quadratic surface in the tetrahedron ∆3 defined by the equation ν1ν4 =
ν2ν3. The next theorem gives the optimal value function and the solution function for this
independence model. We use the Wasserstein metric Wd that was defined in Example 9.
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Theorem 10. The Wasserstein distance from a distribution µ ∈ ∆3 to the surface M is

Wd(µ,M) =



2
√
µ1(1−

√
µ1)− µ2 − µ3 if µ1 ≥ µ4 ,

√
µ1 ≥ µ1 + µ2 ,

√
µ1 ≥ µ1 + µ3,

2
√
µ2(1−

√
µ2)− µ1 − µ4 if µ2 ≥ µ3 ,

√
µ2 ≥ µ1 + µ2 ,

√
µ2 ≥ µ2 + µ4,

2
√
µ3(1−

√
µ3)− µ1 − µ4 if µ3 ≥ µ2 ,

√
µ3 ≥ µ1 + µ3 ,

√
µ3 ≥ µ3 + µ4,

2
√
µ4(1−

√
µ4)− µ2 − µ3 if µ4 ≥ µ1 ,

√
µ4 ≥ µ2 + µ4 ,

√
µ4 ≥ µ3 + µ4,

|µ1µ4 − µ2µ3|/(µ1 + µ2) if µ1 ≥ µ4, µ2 ≥ µ3, µ1+µ2 ≥
√
µ1, µ1+µ2 ≥

√
µ2,

|µ1µ4 − µ2µ3|/(µ1 + µ3) if µ1 ≥ µ4, µ3 ≥ µ2, µ1+µ3 ≥
√
µ1, µ1+µ3 ≥

√
µ3,

|µ1µ4 − µ2µ3|/(µ2 + µ4) if µ4 ≥ µ1, µ2 ≥ µ3, µ2+µ4 ≥
√
µ4, µ2+µ4 ≥

√
µ2,

|µ1µ4 − µ2µ3|/(µ3 + µ4) if µ4 ≥ µ1, µ3 ≥ µ2, µ3+µ4 ≥
√
µ4, µ3+µ4 ≥

√
µ3.

The solution function ∆3 → M, µ 7→ ν∗(µ) is given (with the same case distinction) by

ν∗(µ) =



(
µ1 ,

√
µ1 − µ1 ,

√
µ1 − µ1 , −2

√
µ1 + µ1 + 1

)
,(√

µ2 − µ2 , µ2 , −2
√
µ2 + µ2 + 1 ,

√
µ2 − µ2

)
,(√

µ3 − µ3 , −2
√
µ3 + µ3 + 1 , µ3 ,

√
µ3 − µ3

)
,(

−2
√
µ4 + µ4 + 1 ,

√
µ4 − µ4 ,

√
µ4 − µ4 , µ4

)
,(

µ1 , µ2 , µ1(µ3+µ4)/(µ1+µ2) , µ2(µ3+µ4)/(µ1+µ2)
)
,(

µ1 , µ1(µ2+µ4)/(µ1+µ3) , µ3 , µ3(µ2+µ4)/(µ1+µ3)
)
,(

µ2(µ1+µ3)/(µ2+µ4) , µ2 , µ4(µ1+µ3)/(µ2+µ4) , µ4

)
,(

µ3(µ1+µ2)/(µ3+µ4) , µ4(µ1+µ2)/(µ3+µ4) , µ3 , µ4

)
.

The boundaries separating the various cases are given by the surfaces {µ ∈ ∆3 : µ1 − µ4 =
0, µ1+µ2 ≥

√
µ1, µ1+µ3 ≥

√
µ1} and {µ ∈ ∆3 : µ2−µ3 = 0, µ1+µ2 ≥

√
µ2, µ2+µ4 ≥

√
µ2}.

(1, 0, 0, 0)

(0, 0, 0, 1)

(0, 1, 0, 0)

(0, 0, 1, 0)

( 12 , 0, 0,
1
2 )

(1, 0, 0, 0)

(0, 0, 0, 1)

(0, 1, 0, 0)

(0, 0, 1, 0)

Figure 2: The optimal value function of Theorem 10 subdivides the tetrahedron of probability
distributions µ (left). The surfaces that separate the various cases are shown in blue (right).
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Theorem 10 involves a distinction into eight cases. This division of ∆3 is shown in
Figure 2. Each of the last four cases breaks into two subcases, since the numerator in the
formulas is the absolute value of µ1µ4 − µ2µ3. The sign of this 2 × 2 determinant matters
for the pieces of our piecewise algebraic function. Thus, the tetrahedron ∆3 is divided into
12 regions on which µ 7→ Wd(µ,M) is algebraic. We now explain how to visualize Figure 2.
The red surface consists of eight pieces that, together with the blue surface, separate the
eight cases (this surface is not the model). Four convex regions are enclosed between the red
surfaces and the edges they meet. These regions represent the first four cases in Theorem
10. For instance, the region containing the points (1, 0, 0, 0), (1/2, 0, 0, 1/2) corresponds to
the first case. The remaining four regions are each bounded by two red and two blue pieces,
and correspond to the last four cases. Each of these four regions is further split in two by the
model which we do not depict for the sake of visualization. The two sides are determined by
the sign of the determinant µ1µ4 − µ2µ3. The two blue surfaces in the right figure separate
the various cases. These specify the points µ ∈ ∆3 with more than one optimal solution.
For the proof of Theorem 10 and a simpler example see [5]. For further details see [4].

Returning to the general case, suppose that M is a smooth variety in ∆n−1 ⊂ Rn. For
any point ν ∈ ∆n−1, we seek its distance to M under our polyhedral norm. As before, the
optimal point ν∗ determines a unique face F of the unit ball B = P ∗

d . Given that face F , we
now characterize optimality as in Lemma 2. Let F be the set of all index pairs (i, j) such
that the point 1

dij
(ei − ej) is a vertex and it lies in F . Let ℓF be any linear functional on Rm

that attains its maximum over B at F . We work in the linear space spanned by the face:

LF =
{ ∑

(i,j)∈F

λij(ei − ej) : λij ∈ R
}
. (10)

The point ν∗ on M that is closest to µ is the solution of the following optimization problem:

Minimize ℓF = ℓF (ν) subject to ν ∈ (µ+ LF ) ∩M. (11)

This is a polynomial optimization problem in the linear subspace LF of Rn−1. With the
notation in (10), the decision variables are λij for (i, j) ∈ F . The algebraic complexity of
this problem is given by the polar degree (Theorem 5). The combinatorial complexity of
(11) is governed by the facial structure of the Wasserstein ball B = P ∗

d associated to a finite
metric space ([n], d). We now focus on the polar dual, which is the (n − 1)-dimensional
Lipschitz polytope B∗ = Pd. This polytope lives in Rn/R1 ≃ Rn−1, and is defined in (6).

In the study of independence models M ⊂ ∆n−1, the following metrics ([n], d) arise:

• The discrete metric on any finite set [n] where dij = 1 for distinct i, j.

• The L0-metric on the Cartesian product [m1]× · · · × [mk] where dij = #{l : il ̸= jl}.
Here i = (i1, . . . , ik) and j = (j1, . . . , jk) are elements in that Cartesian product.

• The L1-metric on the Cartesian product [m1]× · · · × [mk] where dij =
∑k

l=1 |il − jl|.

For the last two metrics we have n = m1 · · ·mk. To compute Wasserstein distances, we need
to describe the Lipschitz polytope Pd as explicitly as possible. All three metrics above are
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graph metrics. This means that there exists an undirected simple graph G with vertex set
[n] such that dij is the length of the shortest path from i to j in G. The corresponding
Wasserstein balls are called symmetric edge polytopes. They are studied in [5, [Section 4].

The following four independence models are used for the case studies in [5, Section 6]. We
use the tuple ((m1)d1 , . . . , (mk)dk) to denote the independence model with n =

∏k
i=1

(
mi+di−1

di

)
states where the ith entry (mi)di refers to a multinomial distribution with mi possible out-
comes and di trials, which can be interpreted as an unordered set of di identically distributed
random variables on [mi] = {1, 2, ...,mi}. The subscript di is omitted if di = 1. For example,
(22, 2) is the independence model for three binary random variables where the first two are
identically distributed. We list the n = 6 states in the order 00, 10, 20, 01, 11, 21. These are
the vertices of the associated graph G, which is the product of a 3-chain and a 2-chain. This
model M is the image of the map from the square [0, 1]2 into the simplex ∆5 given by

(p, q) 7→
(
p2q, 2p(1− p)q, (1− p)2q, p2(1− q), 2p(1− p)(1− q), (1− p)2(1− q)

)
. (12)

Example 11. We consider the 3-bit model (2, 2, 2) with the L0-metric on [2]3; the model
(3, 3) for two ternary variables with the L1-metric on [3]2; the model (26) for six identically
distributed binary variables with the discrete metric on [7]; the model (22, 2) in (12) with
the L1-metric on [3]× [2]. In Table 1, we report the f-vectors of their Wasserstein balls.

M n dim(M) Metric d f -vector of the (n−1)-polytope P ∗
d

(2, 2, 2) 8 3 L0 = L1 (24, 192, 652, 1062, 848, 306, 38)

(3, 3) 9 4 L1 (24, 216, 960, 2298, 3048, 2172, 736, 82)

(26) 7 1 discrete (42, 210, 490, 630, 434, 126)

(22, 2) 6 2 L1 (14, 60, 102, 72, 18)

Table 1: f -vectors of the Wasserstein balls for the four models in Example 11.

Independence models correspond in algebraic geometry to Segre-Veronese varieties. They
are of considerable current interest study of tensor decompositions. We here replace the
model, which is a semialgebraic set inside a simplex, by its complex Zariski closure in a pro-
jective space. This allows us to compute the algebraic degrees of our optimization problem.

The Segre-Veronese variety M = ((m1)d1 , . . . , (mk)dk) is the embedding of Pm1−1 × · · · ×
Pmk−1 in the projective space of partially symmetric tensors P(Symd1R

m1 ⊗· · ·⊗Symdk
Rmk).

That projective space equals Pn−1 where n =
∏k

i=1

(
mi+di−1

di

)
. By definition, the Segre-

Veronese variety M is the set of all tensors of rank one inside this projective space.

Example 12. Let k = 2. The Segre-Veronese variety M
(
(2)2, (2)1

)
is an embedding of P1×

P1 into P5, where it is a quartic surface. Its points are rank one tensors of format 2× 2× 2
which are symmetric in the first two indices. This model appears in the last row of Table 3.

We identify the variety M with its real nonnegative points with the simplex ∆n−1. The
independence model M consists of nonnegative rank one tensors whose entries sum to 1.
The dimension of M is denoted m := (m1 − 1) + · · · + (mk − 1). The computation of the
polar degrees of M appears in the doctoral dissertation of Luca Sodomaco [6, Chapter 6].
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Theorem 13 (Sodomaco). The polar degrees of the Segre-Veronese variety are

δr−1(M) =
m−n+1+r∑

s=0

(−1)s
(
m− s+ 1

n− r

)
(m− s)!

( ∑
i1+···+ik=s

k∏
l=1

(
ml

il

)
dml−1−il
l

(ml − 1− il)!

)
. (13)

Here r is any integer in the range n− 1− dim(M) ≤ r ≤ dim(M∗).

We next examine this formula for various special cases starting with the binary case.

Corollary 14. Let M be the k-bit independence model. The formula (13) specializes to

δr−1(M) =
k−2k+1+r∑

s=0

(−1)s
(
k + 1− s

2k − r

)
(k − s)! 2s

(
k

s

)
. (14)

In algebraic geometry language, our model M here is the Segre embedding of (P1)k into
P2k−1. This is the toric variety associated with the k-cube, so its degree is the normalized
volume of the cube, which is k!. The polar degrees δr−1 in (14) are shown for k ≤ 7 in Table 2.
The indices r with δr−1 ̸= 0 range from codim(M) = 2k − 1 − k to dim(M∗) = 2k − 1.
For the sake of the table’s layout, we shift the indices on each row so that the row labeled 0
contains δcodim(M)−1 = degree(M) = k!. The dual variety M∗ is a hypersurface of degree
δ2k−2 known as the hyperdeterminant of format 2k. For instance, for k = 3, this hypersurface
in P7 is the 2×2×2-hyperdeterminant which has degree four. The entries in the first column
(k = 2) corresponds to the three scenarios in Figure 1, where the algebraic degree equals 2.

r − codim(M) k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

0 2 6 24 120 720 5040

1 2 12 72 480 3600 30240

2 2 12 96 840 7920 80640

3 4 64 800 9840 124320

4 24 440 7440 120960

5 128 3408 75936

6 880 30016

7 6816

Table 2: The polar degrees δr−1(M) of the k-bit independence model for k ≤ 7.

We briefly discuss the independence models (m1,m2) for two random variables. These are
the classical contingency tables of format m1 ×m2. Here, n = m1m2 and m = m1 +m2 − 2.
The Segre variety M = Pm1−1 × Pm2−1 ⊂ Pn−1 consists of m1 ×m2 matrices of rank one.

Corollary 15. The Segre variety of m1 ×m2 matrices of rank one has the polar degrees

δr−1(M) =
m−n+1+r∑

s=0

(−1)s
(
m− s+ 1

n− r

)
(m− s)!

(∑
i+j=s

(
m1

i

)
(m1 − 1− i)!

·
(
m2

j

)
(m2 − 1− j)!

)
.
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The polar degrees above serve as upper bounds for any particular Wasserstein distance
problem. For a fixed model M, the equality in Theorem 5 holds only when the data (ℓ, L)
is generic. However, for the optimization problem in (11), the linear space L = LF and the
linear functional ℓ = ℓF are very specific. They depend on the Lipschitz polytope Pd and
the type F of the optimal solution ν∗. For such specific scenarios, we only get an inequality.

Proposition 16. Consider the problem (11) for the independence model ((m1)d1 , . . . , (mk)dk)
with a given face F of the Wasserstein ball B = P ∗

d . The degree of the optimal solution ν∗

as an algebraic function of the data µ is bounded above by the polar degree δr−1 in (13).

Proof. This follows from Theorem 5. The upper bound relies on general principles of alge-
braic geometry. Namely, the graph of the map µ 7→ ν∗(µ) is an irreducible variety, and we
are interested in its degree over µ. The map depends on the parameters (ℓ, L). When the
coordinates of L and ℓ are independent transcendentals then the algebraic degree is the polar
degree δr−1. That algebraic degree can only go down when these coordinates take on special
values in the real numbers. That same semi-continuity argument holds for most polynomial
optimization problems, including the Euclidean distance optimization in the last lecture.

We now examine the drop in algebraic degree for the four models in Example 11. In the
language of algebraic geometry, they are the Segre threefold P1 × P1 × P1 in P7, the variety
P2×P2 of rank one 3× 3 matrices in P8, the rational normal curve P1 in P6 = P(Sym6(R2)),
and the Segre-Veronese surface P1×P1 in P5 = P(Sym2(R2)×Sym1(R2)). The finite metrics
d are specified in the fourth column of Table 1. The fifth column records the combinatorial
complexity of our optimization problem, while the algebraic complexity is recorded in Table 3.

M Polar degrees Maximal degree Average degree

(2, 2, 2) (0, 0, 0, 6, 12, 12, 4) (0, 0, 0, 4, 12, 6, 0) (0, 0, 0, 2.138, 6.382, 3.8, 0)

(3, 3) (0, 0, 0, 6, 12, 12, 6, 3) (0, 0, 0, 2, 8, 6, 6, 0) (0, 0, 0, 1.093, 3.100, 4.471, 6.0, 0)

(26) (0, 0, 0, 0, 6, 10) (0, 0, 0, 0, 6, 5) (0, 0, 0, 0, 6, 5)

(22, 2) (0, 0, 4, 6, 4) (0, 0, 3, 5, 2) (0, 0, 2.293, 3.822, 2.0)

Table 3: The algebraic degrees of the problem (8) for the four models in Example 11.

The second column in Table 3 gives the vector (δ0, δ1, . . . , δn−2) of polar degrees. The
third and fourth column are the results of a computational experiment. For each model,
we take 1000 uniform samples µ with rational coordinates from ∆n−1, and we solve the
optimization problem (8). The output is an exact representation of the optimal solution ν∗.
This includes the optimal face F that specifies ν∗, along with its maximal ideal over Q. The
algebraic degree of the optimal solution ν∗ is computed as the number of complex zeros of
that maximal ideal. This number is bounded above by the polar degree (cf. Proposition 16).
The fourth column in Table 3 shows the average of the algebraic degrees we found. For
example, for the 3-bit model (2, 2, 2) we have δ3 = 6, corresponding to P ∗

d touching M at a
3-face F , but the maximum degree we saw was 4, with an average degree of 2.138. For 4-faces
F , we have δ4 = 12, and this degree was attained in some runs. The average was 6.382.
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Such computational experiments are organized naturally into three stages: (1) combi-
natorial preprocessing, (2) numerical optimization, and (3) algebraic postprocessing. Our
object of interest is a model M in the simplex ∆n−1, typically one of the independence
models ((m1)d1 , . . . , (mk)dk) where n =

∏k
i=1

(
mi+di−1

di

)
. The state space [n] is a metric space,

with metric given by the matrix d = (dij). This matrix defines the Lipschitz polytope Pd and
its dual, the Wasserstein ball P ∗

d . Our first algorithm computes these combinatorial objects.

Algorithm 1 Combinatorial Preprocessing

Input: An n× n symmetric matrix d = (dij).
Output: A description of all facets F of the Wasserstein ball P ∗

d .
Step 1: From the inequality presentation in (6), find all vertices of the Lipschitz polytope Pd.
These vertices are the inner normal vectors ℓF to the facets F of P ∗

d . Store them.
Step 2: Determine an inequality description of the cone CF over each facet F .
Return: The list of pairs (ℓF , CF ), one for each vertex of the Lipschitz polytope Pd.

In [5], the software Polymake was used to run Algorithm 1. We next solve the optimization
problem in (8), by examining each facet F of the Wasserstein ball. The problem is that in
(11) but with the linear space LF now replaced by the convex cone CF that is spanned by F .

Algorithm 2 Numerical Optimization

Input: Model M and a point µ in the simplex ∆n−1; complete output from Algorithm 1.
Output: The optimal solution ν∗ in (8) along with its type G.
Step 1: For each facet F of the Wasserstein ball P ∗

d do: Step 1.1: Apply global optimization
methods to identify a point ν∗ ∈ M that minimizes ℓF = ℓF (ν) subject to ν ∈ (µ+CF )∩M.
Step 1.2: Identify the unique face G of F whose span contains ν∗ in its relative interior.
Step 1.3: Identify a basis of vectors ei − ej ∈ CG for the linear space LG spanned by G.
Step 1.4: Store the optimal solution ν∗ and a basis for the linear subspace LG of Rn.
Step 2: Among all candidate solutions found in Step 1, identify the solution ν∗ for which
the Wasserstein distance Wd(µ, ν

∗) to the given data point µ is smallest. Record its type G.
Return: The optimal solution ν∗, its associated linear space LG, and the facet normal ℓG.

In [5], the software SCIP was used to run Algorithm ??. SCIP employs sophisticated
branch-and-cut strategies to solve constrained polynomial optimizaion problems via LP re-
laxation. The virtue of Algorithm 2 is that it is guaranteed to find the global optimum for
our problem (8). Moreover, it furnishes an identification of the combinatorial type. This
serves as the input to the symbolic computation in Algorithm 3 below.
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Algorithm 3 Algebraic Postprocessing

Input: The optimal solution (ν∗, G) to (8) in the form found by Algorithm ??.
Output: The maximal ideal in the polynomial ring Q[ν1, . . . , νn] which has the zero ν∗.
Step 1: Use Lagrange multipliers to give polynomial equations that characterize the critical
points of the linear function ℓF on the subvariety (µ+ LG) ∩M in the affine space Rn.
Step 2: Eliminate all variables representing Lagrange multipliers from the ideal in Step 1.
Step 3: The ideal from Step 2 lives in Q[ν1, . . . , νn]. If this ideal is maximal then call it M .
Step 4: If not, remove extraneous primary components to get the maximal ideal M of ν∗.
Step 5: Determine the degree of ν∗, which is the dimension of Q[ν1, . . . , νn]/M over Q.
Return: Output generators for the maximal ideal M along with the degree found in Step 5.

Algorithm 3 can be carried out with Macaulay2. Steps 2 and 4 are the result of standard
Gröbner basis calculations. The entire pipeline is illustrated with examples in [5, Section 6].
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