
Math 113, Final Exam

SOLUTIONS

(1) The characteristic of the field K = GF(25) is 5. Thus, every non-zero element of K

has order 5 in the additive group (K,+), and hence this group is isomorphic to Z5 × Z5.

The multiplicative group (K∗, · ) consists of all non-zero elements in K, so it has order 24.

By Theorem 33.5, this group is cyclic, and hence it is isomorphic to Z24.

(2) This problem is similar to # 14 on page 197. The ring Q(R,T ) is constructed by

starting with the set of pairs R×T = {0, 1, 2, 3, 4, 5}×{1, 5}, and then forming the classes

of the equivalence relation (r, t) ∼ (r′, t′) defined by rt′ = r′t. There are six classes

0

1
= {(0, 1), (0, 5)},

1

1
= {(1, 1), (5, 5)},

2

1
= {(2, 1), (4, 5)},

3

1
= {(3, 1), (3, 5)},

4

1
= {(4, 1), (2, 5)},

5

1
= {(1, 5), (5, 1)}.

From this we see that Q(R,T ) is isomorphic to R = Z6.

(3) The symmetry group of the square (with vertices 1, 2, 3, 4) is the dihedral group D4

which has order 8. For each g ∈ D4 we list number of colorings that are fixed under g:

g id (1234) (1432) (13)(24) (13) (24) (12)(34) (14)(23)
|Xg| n4 n n n2 n3 n3 n2 n2

Burnside’s Formula tells us that the number of colorings is

1

8

∑

g∈D4

Xg =
1

8

(

n4 + 2n3 + 3n2 + 2n
)

=
1

8
n(n + 1)(n2 + n + 2).

For n = 6, this number equals 231, as seen in Exercise # 7 (b) on page 231.

(4) Each additive group homomorphism φ : Z × Z × Z → Z is uniquely determined by

its value on the three generators e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1). Moreover,

ai = φ(ei) has to be equal to 0 or 1 in order for φ to be a ring homomorphism since

ai = φ(ei · ei) = φ(ei) ·φ(ei) = a2

i . However, we must have aiaj = 0 for 1 ≤ i < j ≤ 3 since

ai+aj = φ
(

ei+ej

)

= φ
(

(ei+ej)(ei+ej)
)

= φ(ei+ej)φ(ei+ej) = (ai+aj)
2 = ai+aj+2aiaj .

We conclude that there are precisely four ring homomorphisms φ. They are given by

(a1, a2, a3) ∈
{

(0, 0, 0) , (1, 0, 0) , (0, 1, 0) , (0, 0, 1)
}

.

(5) The sequence {id} < A3 < S3 is a composition series because the two factor groups are

cyclic of prime order, so they are simple. The following is a composition series for S3×S3:

{id} × {id} < {id} × A3 < {id} × S3 < A3 × S3 < S3 × S3.



The consecutive factor groups are cyclic of order 2 or 3, so they are simple and abelian.

By Definition 35.18, this means that the group S3 × S3 is solvable.

(6) This is the special case n = 4 of Exercise # 39 on page 96. We consider the subgroup

of S4 generated by the transposition (12) snd the 4-cycle (1234). That subgroup contains

(23) = (1234)(12)(1234)3 , (34) = (1234)2(12)(1234)2, (14) = (1234)3(12)(1234)

and hence also

(13) = (23)(12)(23) and (24) = (23)(34)(23).

So, we see that this subgroup contains all six transpositions. But S4 is generated but its

transpositions, by Corollary 9.12. Therefore the group S4 is generated by (12) and (1234).

(7) We apply the Sylow Theorems to show that every group G of order 96 = 253 has a

proper normal subgroup. The argument is analogous to that in Example 37.13 on page

331. The number of Sylow 2-subgroups is odd and divides 96, so it is either 1 or 3. If it

equals 1 then the unique Sylow 2-subgroup is a normal of order 32 in G, and we are done.

So, we assume that there are 3 subgroups of order 32. Let H and K be two of them. Then

the order of H∩K must equal 16; for, otherwise if |H∩K| ≤ 8 then HK has order at least
32·32

8
= 128 by Lemma 37.8, and this would exceed |G| = 98. Now, since H ∩K has index

2 in H, it is normal in H, and, similarly, it is normal in K. The normalizer is a subgroup

of G that properly contains both H and K, so its order is a proper multiple of 32 and it

divides 96. This implies that the nornalizer of H ∩ K in G is equal to G. In other words,

H ∩ K is a subgroup of order 16 that is normal in G. This shows that G is not simple.


