Math 55, First Midterm Exam
 SOLUTIONS

(1) There are twelve positive integers less than 36 that are relatively prime to 36 . Hence $\phi(36)=\mathbf{1 2}$. Since 37 is a prime number, we have $\phi(37)=37-1=\mathbf{3 6}$. In the second question of Quiz \# 2 we saw that $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$ for any power of a prime number p. Therefore, $\phi(81)=\phi\left(3^{4}\right)=3^{4}-3^{3}=\mathbf{5 4}$ and $\phi(1024)=\phi\left(2^{10}\right)=2^{10}-2^{9}=\mathbf{5 1 2}$.
(2) It is important to note that the domain is the set of nonnegative integers.
(a) The statement $\exists x\left(\left(x^{2}<10\right) \wedge(|3-x|>2)\right)$ is true because $x=0$ satisfies both inequalities in the conjunction.
(b) The statement $\forall x((x \neq 4) \rightarrow(x-5>1))$ is false. It does not hold for $x=3$.
(c) The statement $\forall x \exists y(x+y=0)$ is false because positive integers have no additive inverses among the nonnegative integers.
(d) The statement $\exists x \forall y(x y=0)$ is true because $x=0$ is a nonnegative integer, and it satisfies $0 \cdot y=0$ for all y.
(3) We use induction on n. The induction base is $n=1$. Here the statement is true because 5 divides $1^{5}-1=0$. For the induction step, we now assume that the statement is true for $n=k$ and we shall prove that it also holds for $n=k+1$. Consider the identity

$$
(k+1)^{5}-(k+1)=5 \cdot\left(k^{4}+2 k^{3}+2 k^{2}+k\right)+\left(k^{5}-k\right)
$$

According to the induction hypothesis, the expression in the second parenthesis is divisible by 5 . Since the expression in the first parenthesis is an integer, we conclude that the left hand side is divisible by 5 . Hence 5 divides $n^{5}-n$ for all positive integers n.
(4) We use the Extended Euclidean Algorithm to check that $\operatorname{gcd}(81,250)=1$.

$$
\begin{array}{cl}
250 & =3 \cdot 81+7 \\
81 & =11 \cdot 7+4 \\
7 & =1 \cdot 4+3 \\
4 & =1 \cdot 3+1
\end{array}
$$

By back substitution we find that
$1=2 \cdot 4-7=2 \cdot(81-11 \cdot 7)-7=2 \cdot 81-23 \cdot 7=2 \cdot 81-23 \cdot(250-3 \cdot 81)=71 \cdot 81-23 \cdot 250$.

Hence 71 is an inverse to 81 modulo 250.
(5) Yes, the symmetric difference operation on sets is associative. By trying out all eight possibilities in a membership table, we find that $A \oplus(B \oplus C)=(A \oplus B) \oplus C$, and this
set consist of all elements that lie either in all three sets or in precisely one of them:

A	B	C	$A \oplus B$	$B \oplus C$	$(A \oplus B) \oplus C$	$A \oplus(B \oplus C)$
T	T	T	F	F	T	T
T	T	F	F	T	F	F
T	F	T	T	T	F	F
T	F	F	T	F	T	T
F	T	T	T	F	F	F
F	T	F	T	T	T	T
F	F	T	F	T	T	T
F						

Here " T " represents the statement that an arbitrary element of the domain is contained in the set labeling that column, and " F " represents the statement that the element not is contained in the set labeling that column.

